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Abstract 

The waste seeds of Leucaena leucocephala (LLS) used in this study were unused residues obtained 
after oil and polysaccharides extraction. The microcrystalline cellulose (MCC) was isolated from LLS 
by acid treatment. MCC produced was, then, further converted to glucose by using sulphuric acid at 
121 °C by varying the acid concentration and reaction time. The sugar composition was analyzed by 
using the phenol-sulfuric acid method and pre-column derivatization HPLC technique. The yield of 
glucose ranging from 70–85% could be obtained from MCC hydrolyzates, depending on the hydrolysis 
factors, which corresponding to around 57-75% of the percentage conversion of MCC to glucose.
Cellulose isolated from LLS was, therefore, potentially suitable to be utilized in liquid biofuels and other 
value-added chemicals such as bioethanol, 5-hydroxymethylfurfural(HMF), and levulinic acid. 
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INTRODUCTION 

Lignocellulose is the key structural element of plants and found in 

roots, stalks, seeds, and leaves at various compositions. Generally, it is 

composed of three major components, which are cellulose (38–50%), 
lignin (15–30%), hemicellulose (23–32%) and a small amount of 

pectin, protein, extractives, and ash (Kopania et al., 2012).  Cellulose

is a renewable biopolymer with high potential as a sustainable raw 

material production for various applications which can be obtained in 
abundance in nature, relatively cheap and biodegradable (Kalia et al., 

2011; Jose et al., 2014; Duff & Murray, 1996). It is widely used in many 

aspects and industries, such as food industry, pharmaceutical, paint, 

polymers, and much more. Cellulose can be found in different parts of 
the plant such as bast, seed, leaf, straw, grass, and wood. The amount 

of cellulose in the plant is varied, depending on species, origin, 

maturity, and extraction process. Therefore, the application of different 

biomasses used for the preparation of cellulose is expected to give
different properties of cellulose such as crystallinity, particle size, 

molecular weight, degradation temperature and moisture content.  

Furthermore, lignocellulosic materials can be converted into sugar 

alcohol, oxygenated bio-oil, and hydrocarbon by various chemical 
treatment methods and can be further utilized for production of variety 

of valuable chemicals such as glucose, sorbitol, and 

hydroxymethylfurfural (Ghani et al., 2008). Three types of hydrolysis 

processes are typically used to produce a variety of sugars, which are 

dilute acid, concentrated acid, and enzymatic hydrolysis. The yield of 

sugar from hydrolysis of lignocellulosic biomass is depended on the 
type of biomass due to different cell walls compositions and structures, 

the type of monosaccharides and lignin presented and the type of bonds 

between them. Extensive studies have been completed on hydrolyzed 

cellulose from rice straw, sugarcane bagasse, cotton cellulose and corn 
stalk (Li et al., 2012; Punsuvon et al., 2008; Yoon et al., 2014; Zhu et 

al., 2005). Chemical hydrolysis method is the most common method 
used to break the β-1,4-glycosidic bonds of the cellulose structure by 

using different kinds of acids such as HCl, H2SO4, HF and organic acids 

(Dusan et al., 2014; Vala & Tichagwa, 2013). Acid hydrolysis of 

lignocellulosic materials for glucose conversion has been applied in 
industrial production for almost a century ago (Lee, 1997; Sun et al., 

2015; Szczodrak & Fiedurek, 1996; Taherzadeh et al.,1997).  

Hutomo et al. (2015) compared the cellulose hydrolysis to glucose 

using two different acids. Based on their study, sulphuric acid gave 
higher glucose yield compared to hydrochloric acid. In another study, 

Wijaya et al. (2014) evaluated the effect of crystallinity on cellulose 

degradation of different categories of biomass (hardwood, softwood, 

and non-woody biomass). They reported that the lowest crystallinity 
gave highest glucose yield. Another acid that frequently used for acid 

hydrolysis is phosphoric acid. Gámez et al. (2006) treated sugarcane 

bagasse with phosphoric acid in the autoclave at 122 °C, which resulted 

in the high glucose yield of 6% at condition of 300 min and 3.2 g/l 
phosphoric acid. In different study that using the same acid, Orozco et 

al. (2007) conducted the acid hydrolysis using a microwave reactor.  

They found that the highest glucose yield was at reaction time between 

3–5 min with 7.5% acid concentration. Lenihan et al. (2010) also 
treated potato peels with phosphoric acid using a pilot batch reactor.  

The optimum sugar yield of 82.5% was obtained at 135°C and 10% 

(w/w) acid concentration, which 98% of the total sugar was glucose. 

Acid hydrolysis can be considered environmentally friendly due to the 
possible separation of salt and alcohol recovery. 

Recently, hydrolysis methods of cellulose to glucose using 

subcritical, hot compressed water, supercritical, as well as combination 

of both have been intensively investigated and developed (Bentivoglio 
et al., 2006; Cardenas-toro et al., 2014; Iryani et al., 2014; Kamio et 

al., 2008; Phaiboonsilpa et al., 2011).  
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The application of ionic liquid as a solvent for cellulose degradation 

is also gained considerable interest due to high yield of glucose (Hsu et 
al., 2011; Liu et al., 2017; Morales-delaRosa et al., 2012; Zhuo et al., 

2015). Dilute acid hydrolysis is the preferred process due to the absence 

in requirement of acid recovery, where the ionic liquid is needed and 

thus, making the ionic liquid application for cellulose hydrolysis 
becomes expensive (Kumar et al., 2015; Liu et al., 2017; Sun et al., 

2013). The enzymatic methods for cellulose degradation have 

advantages due to selectively to the specific reaction and no formation 

of by-products, which can disturb the next subsequently process. 
Conversely, enzymatic hydrolysis of cellulose has been observed to be 

not practical to industrialize because of the high cost of enzymes and 

the hydrolysis process that occurred at a slow rate (Sasaki et al., 2012). 

Combination of acid hydrolysis and enzymatic hydrolysis was applied 
by Amiri & Karimi (2013) to enhance cellulose degradation. Initially, 

cellulose was treated using dilute-acid hydrolysis for glucose 

production and the residual solid from the acid hydrolysis was 

enzymatically hydrolyzed. The proposed method successfully 
produced a high yield of glucose as 95.4%. 

Another aspect, extraction of fruit and seed for commercial 

products such as juice, sauce, ketchup, puree, paste or canned has 

commonly produced the insoluble residual or waste (Kumar & 
Venkatesh, 2014). Sometimes, the amount of residual waste produced 

is higher than the amount of extract used. The seed of Leucaena 

leucocephala has been evaluated for biodiesel and pharmaceutical 

product (Aderibigbe et al. 2011; Hakimi et al., 2017; Nehdi et al., 
2014). Depending on the seed, discarding this material can generate an 

environmental impact not only due to its toxicity such as jatropha 

(Parawira, 2010) but also due to the high produced volume. It is 

necessary to propose an adequate use for these cakes/residual, and one 
of the potential alternatives is to extract the valuable products with high 

commercial values, such monosaccharides and lignin. Thus, it can 

maximize the value derived from the biomass feedstock. To the best of 

our knowledge, there is no known report yet that addressing the 
utilization of seed residues obtained from industrial extraction for 

glucose production. 

The aim of this work was to produce glucose from the 

microcrystalline cellulose (MCC) obtained from two types of waste 
Leucaena leucocephala seeds. The effects of reaction conditions (acid 

concentration and reaction time) on the sugar yields were investigated, 

and the hydrolysis products were analyzed by Ultraviolet spectroscopy 

and High-Performance Liquid Chromatography (HPLC). In addition, 
MCC samples were characterized using  Fourier Transform Infrared 

(FTIR), X-ray Diffraction (XRD), and Field emission scanning electron 

microscopy (FESEM). 

 
EXPERIMENTAL 
 

Materials 

Two types of waste Leucaena leucocephala seeds were obtained 

from Biomass Energy Lab University Malaya and Forest Research 

Institute Malaysia (FRIM); seeds after extraction of oil for conversion 

to biodiesel (OELLS) and waste seed after polysaccharides extraction 
(PELLS), respectively. Acetic acid, nitric acid, and hydrochloric acid 

were purchased from Fisher Scientific. 

 

Isolation of microcrystalline cellulose (MCC)  
Extraction with boiling water under reflux was used in order to 

remove primary and secondary metabolites. The extraction was carried 

out at 95–100 °C for 2 hr.  After filtration, aqueous extract was 

discarded and the insoluble residues were collected and dried in the 

oven at 60 °C before being stored for the isolation of cellulose. 

The isolation method was adapted based on original procedures by 

Sun et al. (2004) with some modifications. The insoluble residue was 

separated by filtration and thoroughly washed with distilled water. 

Then, the waste seeds were hydrolyzed with 2.5M hydrochloric acid 

under reflux for 1 hour at 90 °C–100 °C. The insoluble residue (MCC) 

was then filtered through cotton cloth and washed repeatedly with 
distilled water until it was free from acid. The MCC was dried in an 

oven at 105°C and stored in a desiccator until further evaluation would 

be carried out. The MCC obtained after drying was snowy-white in 

appearance.  
 

Hydrolysis of MCC to glucose 
In general, 1 g of MCC was treated with different concentrations of 

sulphuric acid: 5, 10, 15, 20, and 15%. The samples were stirred 
continuously for 1h to allow the acid to be absorbed in the MCC. This 

was followed by slowly adding of distilled water to the reaction mixture 

in order to decrease the concentration of the H2SO4 to 2 M, before it 

being autoclaved at 121°C for 60 min. After the reaction was 
completed, the hydrolyzates were cooled and neutralized using 4 M 

sodium hydroxide until the pH reached 7.0. Neutralization process 

caused the formation of the by-product (formation of salt known as 

sodium sulfate) in the hydrolyzate solution. The hydrolyzate (simple 
sugar) was separated from the sodium sulfate salt by the addition of 

mixture consisted of ethanol-distilled water. The salt was filtered and 

the filtrate containing sugar was dried, weighed and stored in the cold 

room.  
Based on the results of this experiment, one of the tested acid 

concentration conditions resulting in a higher yield of glucose was 

selected and used to investigate the effects of hydrolysis conditions by 

changing the autoclave time. The reaction times tested in this study 
were 30, 60, 90 and 120 min. 

 

Chemical characterization 
The chemical compositions of OELLS and PELLS wastes were 

determined according to the standards of American Society for Testing 

and Materials (ASTM) alcohol-toluene solubility (ASTM D 1107-56), 

holocellulose (ASTM D 1104-56), and lignin (ASTM D 1106-56).  

 
Characterization of MCC 

Fourier transform infrared (FTIR) spectroscopy was used to 

measure the functional groups presented in the MCC by a Perkin-Elmer 

Spectrum 100 IR spectrophotometer. The MCC was mixed with 
potassium bromide (KBr) and compressed into thin tablets. Spectra of 

all samples were recorded in the range of 4000-450 cm-1 and the total 

number of scans was 25.  

 The crystallinity of the samples was analyzed by using an X-ray 
diffractometer (X’Pert PRO MD PANalytical) with CuKα radiation at 

35 kV and 30 mA. The X-ray diffraction patterns were recorded at a 

rate of 1.5° min-1. The Crystallinity Index has been calculated using the 

methods as described previously (Adel et al., 2011; Trache et al., 2014; 
Wang et al., 2010). 

Field emission scanning electron microscopy was carried out using 

a JEOL JSM-7600F. A small amount of the LLS, cellulose and MCC 

samples were prepared by dispersing dry powder on double-sided 
conductive adhesive tape. The FESEM micrographs were obtained to 

study the surface morphology and crystallite size of each sample. 

Analysis of sugars 
The dried hydrolyzate product (sugar) was analyzed using UV 

Visible Spectroscopy and High-Performance Liquid Chromatography 

(HPLC). These tests were conducted to identify the purity of the 

isolated materials in terms of the carbohydrate content and 

monosaccharide compositions, respectively. The total carbohydrate or 
sugar extracted was estimated spectrophotometrically by hydrolyzing 

glucose hydrolyzate by phenol-sulfuric acid method (Dubois et al., 

1956). In brief, about 100 mg of dried hydrolyzates was dissolved in 
100 ml of distilled water. Next, 10 ml of solution was placed into test 

tubes and 1 ml of 2% phenol solution was added. Then, 5 ml of 

concentrated sulphuric acid was added rapidly. The solution was 

systematically mixed for 30 minutes in an incubating shaker. External 
calibration glucose standards were performed for the quantification of 

total carbohydrate contents. The amount of carbohydrate content in 

cellulose hydrolyzates was determined and then expressed as the 

percentage of glucose. The samples and standard were then analyzed 
under UV absorbance at 490 nm using UV-Vis spectrophotometer in 

triplicates for each sample. 

 The analysis of sugars was carried out on a Series LC-10A HPLC 

system (Shimadzu, Kyoto, Japan) equipped with an aminopropylsilyl 
column and refractive index detector (RID-10A). The chromatographic 
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separation was done using acetonitrile/water, 7:3 (v/v) as a mobile 

phase at 80 °C of column temperature. Identification of the components 
was performed by comparison of retention times with sugar standards.  

RESULTS AND DISCUSSION 

Lignocellulose composition 
The images of PELLS and OELSS were shown in Fig. 1. The color 

of PELLS was dark brown while OELSS was slightly discolored. The 

dark color might be contributed by the high content of non-cellulosic 
materials such as lignin and hemicelluloses and this could be confirmed 

by the chemical composition data (Table 1).   

The chemical compositions of both PELLS and OELLS were 

summarized in Table 1. PELLS and OELLS showed similar 
holocellulose content that equivalent to other different cellulosic 

sources such as wood fiber reported by Poletto et al. (2014) and Melon 

seed shell found by Pius et al. (2014), which was approximately 45%. 

Fig. 1  Images of Leucaena Leucocephala seeds: (a) PELLS and (b) 
OELLS. 

The isolation of cellulose fibers required the removal of other 

components such as lignin, hemicellulose, and pectin from the biomass. 
Generally, in this method, a dried biomass was immersed in acids or 

bases solution under specific temperatures for a period of time. The 

treated biomass was then filtered to separate the solid substrate from 

the liquor. Higher lignin removal was necessary to give better cellulose 
conversion or degradation. Siqueira et al. (2013) studied the effect of 

lignin composition on the cellulose hydrolysis and it was found that the 

cellulose conversion was higher when lignin composition was 

decreased. 

Table 1  Chemical composition of Leucaena Leucocephala waste seed. 

Component PELLS (wt%) OELLS (wt%) 

Alcohol toluene solubility 7.46 9.78 

Klason lignin 22.20 17.1 

Acid soluble lignin 4.23 4.63 

Holocellulose 47.30 51.90 

The purity of obtained cellulose was depended on the presence of 
band associated to lignin and hemicellulose. It was determined by 

comparing the IR spectra for  MCC-PELLS and MCC-OELLS as 

shown in Fig. 2, where no significant difference was observed between 

these spectra. These results indicated that the obtained cellulose 
structure was unchanged although the waste seeds were produced from

two different processes. A significant reduction in intensity of the peak 

around 1700 cm-1 was attributed to the C=O stretching of the acetyl 

group and uranic ester groups of the hemicellulose, which was also 
noticeable for MCC-PELLS. On the other hand, peaks around 1200 cm-

1 and 1500 cm-1 which corresponded to the C-O stretch and C=C bonds 

in lignin (Mandal & Chakrabarty, 2011) could not be observed in all 

spectra, indicating that lignin was removed during the acid hydrolysis.   

Fig. 2  FTIR spectra of (a) MCC-PELLS and (b)  MCC-OELLS. 

X-ray diffraction patterns of cellulose samples prepared from two 
different sources of waste seeds Leucaena leucocephala (OELLS and 

PELLS) gave similar diffraction patterns with slight difference in 

intensity peaks, indicating the minor changes in amorphous and 

crystalline regions. As shown in Table 2, the crystallinity of MCC 
prepared from Leucaena leucocephala waste seeds from OELSS and 

PELLS showed no significant difference (p>0.05). In addition, MCC 

produced in this study showed higher and comparable crystallinity to 

those reported for corn stalks, rice straw, wheat straw and dhaincha 
(Nuruddin et al., 2011), cotton linter, wood pulp or flax (Lenihan et al., 

2010) and MCC from kenaf core (Wang et al., 2010). The types of 

waste, in this case, showed no significant effect on the crystallinity of 

the prepared MCC.  

Table 2  Crystallinity index of the MCC. 

Fiber Crystallinity Index (% ) 

OELLS 64.67± 4.93
a

PELLS 59.33±3.25
a

Values were expressed±SD as mean (n=3). Mean within a column with 
different letters were significantly different (p<0.05, t-test). 

Fig. 3  FESEM images of (a) MCC-PELLS, (b) MCC- OELLS. 

FESEM micrographs in Fig. 3 depicted the morphology of the 

different MCC samples. Generally, the obtained MCC showed rod-
shaped and irregular fiber fragments (Trache et al., 2014; Wang et al., 

2010). The individual MCC samples that measured by FESEM images 

exhibited variable diameters. The diameters of MCC-PELLS and 

MCC-OELLS were 7.13±0.4313 and 8.975±1.414 µm. The fiber 
diameter would affect the aspect ratio of the fiber (L/d). The difference 

in size of MCC was associated with its binding material such as lignin 

and hemicellulose in both LLS wastes (Chirayil et al., 2014; Johar et 

al. 2012).  
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Evaluation of glucose produced from prepared cellulose 
Acid hydrolysis was the most favorable way to synthesize sugars 

from lignocellulosic biomass which consisted of polysaccharides,

cellulose and hemicellulose (Sun et al., 2015). Cellulose was made up 

of hexosans, therefore, it was apparent that a high yield of glucose could 

be derived from acid hydrolysis. Fig. 4 shows the retention time (min) 
of glucose by HPLC for MCC-PELLS and MCC-OELLS, where it 

could be confirmed that glucose was largely presented in the 

hydrolyzed product (sugar). 

In addition, the effects of acid sulphuric concentration and reaction 
time on the glucose yield of both Leucaena leucocephala seed wastes 

were studied at 121 °C. The color of hydrolyzate products from 

sulphuric acid hydrolysis was varied from light to dark yellow as the 

acid concentration was increased, suggesting the presence of by-
products. It was found that the percentage of glucose in the total sugar 

yield could be varied largely on the acid concentration. 

Fig. 4 HPLC chromatograms of MCC-PELLS and MCC-OELLS 
hydrolyzates in comparison with mix sugar standards. 

   
In Fig. 5, treatment using acid concentration of 5% v/v was found 

to show a higher percentage of glucose at 71 % for MCC-PELLS and 

70 % for MCC-OELLS hydrolyzate. Hutomo et al. (2015) compared 

the cellulose hydrolysis to glucose yield using two different acids. 

Based on their study, sulphuric acid gave higher glucose yield in 
comparison to hydrochloric acid. In another study, Wijaya et al. (2014) 

evaluated the effect of crystallinity on cellulose degradation of different 

categories of biomass (hardwood, softwood, and non-woody biomass). 

They reported that the lowest crystallinity gave the highest glucose 
yield. 

Fig. 5  Effect of different concentrations of H2SO4 on the yield of glucose 
at 60 minutes. 

In total, 58% of MCC was found to be converted to glucose. Das, 
et al. (2016) reported that the highest yield of glucose (60%) from 

cellulose rice husk was obtained in the presence of H2SO4 (5% v/v), at 

140°C for 60 min. Sasaki et al. (2012) reported that the highest yield of 

glucose (63.1%) from microcrystalline cellulose powder was obtained 

at a steam pressure of 62 atm for the steaming time of 1 min. However, 
as the acid concentration was increased, further enhancement of in 

glucose formation could not be observed. This was probably due to the 

inevitable side reaction in glucose degradation. This data was consistent 

with the results obtained by Ni et al. (2013) and Sun et al. (2015). This 
might be explained by the greater presence of acid, where some 

portions of sugars were further transformed into furans (furfural and 

HMF) and other by-products, which leading to the loss of sugars. In the 

fermentation process, the HMF was an undesired component and would 
affect the yield of biofuel. HMF could inhibit yeast and other 

microorganisms used during the fermentation stage. However, HMF

was also a beneficial renewable feedstock that could be converted into 

2,5-dimethylfuran (Li et al., 2009). 
Residence time and temperature were significantly influenced by 

the hydrolysis of cellulose to sugars (Dussán et al., 2014). This was due 

to the rigid crystalline structure of cellulose, making it was difficult to 

be destroyed. Therefore, the effect of reaction time on glucose yield 
was investigated by varying the hydrolysis time from 30 min to 120 

min at a constant sulphuric acid concentration (5%). Fig. 6 shows the 

reaction time of 120 min for selected acid concentrations gave

significant effect to the yield of glucose. It could be suggested that the 
heating or reaction time showed significant influence on the hydrolysis 

of cellulose. This trend was in agreement with the results obtained by

Morales-delaRosa et al. (2012) in the hydrolysis of cellulose using 

ionic liquid. However, Lanzafame et al. (2012) utilized acid catalysts
in their study, showed an increment in hydrolysis productivity, 

although with low selectivity to glucose, due to the secondary reactions 

of glucose conversion.  

Fig. 6  Effect of reaction time on the yield of glucose. 

For both conditions, MCC-OELLS gave a higher yield of glucose 

(around 82%) but it was not a far difference to the glucose yield by

MCC-PELLS (84%). Given that, cellulose conversion was increased

for both samples at around 71% to 75%. This might be explained by the 
fact that the crystallinity indexes of both samples were almost similar. 

Besides the crystalline region, cellulose was also contained with

bundles of amorphous regions, which could influence sugar yield. This 

was supported by Zhao et al. (2005) in their study, showing easier 
hydrolysis of noncrystalline (amorphous) than the crystalline fraction 

of cellulose. Ni et al. (2013) also reported that lower sugar yield was 

contributed to the higher crystallinity of cellulose. Phaiboonsilpa & 

Saka (2011) also reported that Japanese cedar (Cryptomeria japonica) 
was liquefied by semi-flow hot-compressed water at 230°C/10 MPa for 

15 min and 280°C/10 MPa for 30 min in the first and second stages, 

respectively, where 87.76% of the sample was converted to various 

compounds in the water-soluble portion although the rest was remained 
in the water-insoluble residue. 

CONCLUSION 

Cellulose was successfully extracted from two types of waste 

Leucaena leucocephala seeds. Furthermore, extracted cellulose could 

be used as a source for various applications. Cellulose could be 

produced from different kinds of raw material. The most important 
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factor to be considered was the availability of raw materials for the 

targeted production. The results from this study demonstrated that acid 
concentration has a profound influence on glucose production. The 

main sugar product from hydrolyzates was glucose, indicating that pre-

treatment was not required for the production of glucose from waste 

seed evaluation. 5% of acid concentration (H2SO4) with a heating rate 
of 2 h at 121 °C gave the favorable reaction conditions for the 

conversion of cellulose to glucose from Leucaena leucocephala seed 

waste. This study suggested that the use of waste of Leucaena 

leucocephala seeds might be a feasible option as a feed material for the 
production of cellulose and sugars for bioethanol and other value-added 

chemicals, due its low cost and high sugar yields. 
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