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Abstract

Background: Long non-coding RNAs (lncRNAs) are emerging as crucial regulators of cellular processes in diseases
such as cancer, although the functions of most remain poorly understood. To address this, here we apply a novel
strategy to integrate gene expression profiles across 32 cancer types, and cluster human lncRNAs based on their
pan-cancer protein-coding gene associations. By doing so, we derive 16 lncRNA modules whose unique properties
allow simultaneous inference of function, disease specificity and regulation for over 800 lncRNAs.

Results: Remarkably, modules could be grouped into just four functional themes: transcription regulation,
immunological, extracellular, and neurological, with module generation frequently driven by lncRNA tissue specificity.
Notably, three modules associated with the extracellular matrix represented potential networks of lncRNAs regulating
key events in tumour progression. These included a tumour-specific signature of 33 lncRNAs that may play a role in
inducing epithelial-mesenchymal transition through modulation of TGFβ signalling, and two stromal-specific modules
comprising 26 lncRNAs linked to a tumour suppressive microenvironment and 12 lncRNAs related to cancer-associated
fibroblasts. One member of the 12-lncRNA signature was experimentally supported by siRNA knockdown, which
resulted in attenuated differentiation of quiescent fibroblasts to a cancer-associated phenotype.

Conclusions: Overall, the study provides a unique pan-cancer perspective on the lncRNA functional landscape, acting
as a global source of novel hypotheses on lncRNA contribution to tumour progression.

Keywords: lncRNA, Functional profiling, Genes networks, Cancer, Epithelial-mesenchymal transition, Extracellular matrix,
Tumour microenvironment

Background
The advent of high-throughput genomic technologies such
as Next Generation Sequencing (NGS) has led to remark-
able progress over the last decade in detecting novel tran-
scripts, many of which have no apparent protein-coding
capacity. A significant proportion of these non-coding species

are long non-coding RNAs (lncRNAs), which typically exceed
200 nucleotides in length, and function through a variety of
mechanisms including remodelling of chromatin, transcrip-
tional co-activation/repression, protein inhibition, post-
transcriptional modification, or decoy. They are now emer-
ging as crucial regulators of cellular processes and diseases,
and their aberrant transcription can lead to altered expression
of several important target genes involved in cancer [1],
resulting in tumour progression and poor prognosis [2–6].
Despite advances, the vast majority of lncRNAs identified

through large-scale efforts such as GENCODE [7] and
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MiTranscriptome [8] remain poorly understood. To ad-
dress this gap, several computational approaches have been
developed with the ability to assign putative function to
thousands of lncRNAs simultaneously by exploiting the
widespread availability of cancer genomic data [9, 10].
These methods typically employ a “guilt-by-association”
strategy, deriving a prediction based on a common expres-
sion pattern between the lncRNA and a biological process
or pathway [11]. More recent efforts attempt to strengthen
predictions by combining transcriptomic data across mul-
tiple cancer [12–15], or normal tissue types [16]. However,
whilst representing important advances, these have so far
employed limited integration strategies, either seeking con-
sensus across separate lncRNA signatures derived from a
small number of cancer types [12, 13], correlation across a
single dataset against a restricted set of cancer genes [15],
or focusing on a natural antisense transcripts only [16].
To address these shortcomings, we have developed a

unique workflow to integrate expression associations be-
tween lncRNA and protein coding (PC) genes across 32 dif-
ferent cancer types from The Cancer Genome Atlas
(TCGA) to provide a more robust lncRNA-PC association
network than can be derived from any single cancer type
alone. The workflow incorporates three novel aspects: (1)
An Expectation Maximisation (EM) algorithm for estimat-
ing the correlation between a lncRNA and PC gene that
specifically addresses low lncRNA expression relative to PC
gene expression. (2) A statistical method for integrating
lncRNA-PC correlations across multiple cancer types to de-
rive a single multi-cancer association (MCA) score between
each lncRNA and PC gene, allowing subsequent construc-
tion of a single pan-cancer lncRNA-PC gene network. (3) A
unique application of Weighted Gene Correlation Network
Analysis (WGCNA) [17] to the lncRNA-PC MCA score
network allowing its de-convolution into lncRNAs that
share consistently similar expression profiles across mul-
tiple cancers, henceforth termed “modules”.
Through detailed characterisation of these modules, we

provide the most comprehensive pan-cancer assessment of
lncRNA-PC gene expression associations to date, allowing
simultaneous hypothesis generation on lncRNA function,
disease specificity, and transcription factor regulation. More
specifically, the unique global perspective of our modular
approach reveals the potential for both coordinated and an-
tagonistic lncRNA expression to underpin disease pathway
regulation, and new insights into the role of lncRNAs in
the tumour microenvironment.

Results and discussion
A workflow to identify lncRNA modules based on their
pan-cancer protein coding gene associations
The workflow is divided into two main stages (Fig. 1). In
the first stage, RNA-Seq expression estimates of each
lncRNA and PC gene annotated by GENCODE [7] were

inspected across all 32 cancer types (Additional file 4:
Table S1), and those that failed to achieve sufficient ex-
pression signal in any cancer type were removed (see
Methods for specific criteria). 1833 lncRNAs expressed
in at least one cancer type remained after filtering. An
EM algorithm was then applied to estimate a pan-cancer
correlation coefficient ( ρ̂ ) between the expression pro-
files of each of these 1833 lncRNAs and 17,088 PC genes
across 1 ≤ n ≤ 32 cancer types in which the lncRNA ex-
pression threshold had been met. The approach was spe-
cifically developed to handle instances where lncRNA
expression is either low, absent, or undetectable across
an excessive number of samples, even if initial expres-
sion level criteria had been met. Bootstrapping then
quantified the uncertainty of ρ̂ in the form of a standard
error (SE( ρ̂ )), from which a multi-cancer association
(MCA) score was derived: MCA= ρ̂=SEðρ̂Þ . The MCA
score calculation was repeated across all PC genes to
generate an MCA profile of 17,088 scores for each of
the 1833 lncRNAs. The lncRNA-PC gene combination
achieving the highest MCA score represented the stron-
gest pan-cancer expression association for that lncRNA.
Collectively the profiles formed a matrix of 1833 × 17088
MCA scores. Full details of the derivation of ρ̂ and SE(ρ̂)
are described in Methods.
In stage two, we applied WGCNA [17] to the MCA

score matrix. WGCNA is often used as a dimensionally
reduction method in genomics, typically applied to gene
expression networks of several thousand genes to iden-
tify a small number of modules of related genes whose
expression profiles are highly correlated. Each module is
represented by an eigen-gene, which can be used to cor-
relate modules with meta-data such as clinical traits.
The correlation of a gene’s expression profile with a
module eigen-gene (ME) provides a measure of sig-
nificance of the relationship between gene and mod-
ule. Here, we adapted WGCNA to generate “eigen-
lncs”, which are analogous to eigen-genes, to identify
16 modules of lncRNAs with highly correlated MCA
score profiles (Fig. 2a; Additional file 5: Table S2).
An important advantage of this approach is that the
eigen-lnc coefficients attributed to each PC gene
(henceforth referred to PC-module association or
PC-MA values) can be used as a surrogate for the
strength of the relationship between PC gene and
eigen-lnc (Additional file 6: Table S3). This allowed
for functional traits representative of each module to
be identified since each module is related to a set of
highly annotated PC genes. Here, we defined PC
genes achieving PC-MA > 0.02 as “pro-module” (PC
genes whose mRNA expression is consistently posi-
tively correlated with members of the module), and
PC-MA < -0.02 as “anti-module” (PC genes consist-
ently negatively correlated with the module).
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Module characterisation
Common functional traits
Functional enrichment analysis of pro-module PC
genes revealed striking properties of lncRNA-PC gene
associations (Table 1, Fig. 2b, Additional file 7: Table
S4). Primarily, modules could be grouped into four
functional signatures: immune, extracellular, transcrip-
tion regulation, and neurological, broadly correspond-
ing to four sets of positively correlated eigen-lncs or
“meta-modules” (Fig. 2b, Additional file 1: Figure S1).
Only ME4 (cilium assembly; p = 9.38E-08) and ME13
(stem cell signature; p = 4.05E-41) fell outside the
general classification. ME8 was enriched for both cell
cycle (p = 7.49E-30) and immune-associated genes
(p = 1.54E-29). Four of the top six largest modules
ME2, ME3, ME5 and ME6 comprising the majority of
lncRNAs (524/822) were associated with transcrip-
tional regulation (Table 1), possibly reflecting the
common role of lncRNAs in chromatin structure
modification and control of PC gene expression [18].
The smaller modules were typically related to more
specific signatures, including four modules associated
with the immune system (ME8, ME9, ME11, ME15),
three with the extracellular matrix (ME7, ME12,
ME16), and three with neurological processes (ME5,
ME10, ME14). No coherent functional signature could
be established for the largest module (ME1) of 723
lncRNAs, and 288 lncRNAs were allocated to a
pseudo-module (ME0) since their module membership
could not be established. Overall, a putative pan-
cancer functional association could be assigned to 822
lncRNAs by our approach.

Tissue type specificity
The functional themes of several modules reflected the
cancer or normal tissue type specificity of their lncRNAs
(Fig. 2c, Additional file 8: Table S5) [19]. As expected,
neurological-associated ME5, ME10, and ME14 were
highly specific to brain cancers, and all 21 lncRNAs of
stem cell associated ME13 were detected in testicular
germ cell tumours (TGCT), consistent with the notion
that TGCT cells are derived from normal germ cells
with distinct stem cell characteristics [20]. ME6 was also
highly specific to TGCT, and whilst there was no signifi-
cant association with a stem cell signature, it included
the lncRNA LINC-ROR, which modulates reprogram-
ming of fibroblasts to a pluripotent stem cell state [21].
Likewise, the enrichment of ME8 for immune processes
such as lymphocyte activation (p = 1.54E-29) reflected its
specificity for thymoma, and the origins of this cancer
type in the thymus gland. Interestingly, ME8 was also as-
sociated with the cell cycle (p = 7.49E-30), which is
emerging as a potential prognostic indicator in thymoma
[22]. No disease bias was observed in transcriptional
regulation-associated modules ME2 and ME3, immune-
associated ME9 and ME15, and extracellular matrix-
associated ME7, ME12 and ME16, suggesting that
lncRNAs in these modules contribute to fundamental
cellular processes common to most cancer types.

Detailed characterisation of the extracellular-associated
modules
Given their pan-cancer expression, and current poor un-
derstanding of the role of lncRNAs in extracellular pro-
cesses, we were keen to dissect modules ME7, ME12

Fig. 1 Schematic of workflow to identify lncRNA modules based on their pan-cancer PC gene associations. (1) Derivation of a multi-cancer
association (MCA) score profile for 1833 lncRNAs that pass expression level criteria, and (2) identification of 16 modules of highly correlated
lncRNAs using Weighted Gene Correlation Analysis (WGCNA) and a matrix of 1833 lncRNA MCA score profiles across 17,088 PC genes as input
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Fig. 2 Module characterisation. a Dendrogram showing hierarchical clustering of lncRNAs based on MCA score profile. Branches of the
dendrogram correspond to modules, with lncRNAs in each module assigned the same colour (indicated by the colour band below the
dendrogram). LncRNAs not assigned to a module are coloured grey. b Clustering dendrograms of module eigen-lncs. Meta-modules are defined
at height cut-off of 0.80 and indicated by different colours. Below the dendrogram, functional and cell type signatures of each module are
indicated, with green corresponding to significant positive enrichment and red to significant negative enrichment. c. Bubble chart showing
cancer type specificity of each module. Size of bubble indicates the proportion of module-associated lncRNAs that meet the expression detection
threshold in each cancer type. Red bubbles indicate outlier cancer types (> 1.5 times the interquartile range above the upper quartile). A
description of the cancer type codes is given in Additional file 4: Table S1
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and ME16 further, and generate hypotheses on their po-
tential function in supporting tumour progression.

FOS/JUND transcription factor binding site enrichment in
ME7
To establish whether lncRNAs in each of the extracellu-
lar modules share a common promoter, we performed a
de novo search for sequence motifs in regions 1000 bp
upstream of the lncRNA transcription start site (TSS).
Whilst there was no evidence for transcription factor
binding enrichment in ME12 and ME16, a top scoring
motif achieving > 95% similarity with FOS and JUND
transcription factor binding sites [23] was observed in
18/33 lncRNAs of ME7, (Fig. 3a; Additional file 9: Tables
S6a-d). There was no evidence for enrichment of the
FOS/JUND motif in the other 15 modules.
Underpinning this discovery, pro-module PC genes of

ME7 were enriched for the binding site of activator
protein-1 (AP-1) (29/188 pro-module PC genes; p =
9.80E-07; Fig. 3b; Additional file 10: Table S7), a transcrip-
tion factor dimer of Jun and the Fos family of basic leucine
zipper domain proteins, with FOS-like antigen 1 (FOSL1)
achieving the highest PC-MA value of 0.036 (Additional
file 6: Table S3). Moreover, strong binding of both c-Jun
and c-Fos to the promoter region of ME7 lncRNA, RP11-
554I8.2 (also known as LINP1), has recently been con-
firmed in triple negative breast cancer cell lines [25].
Since c-Jun and c-Fos are known to co-operate with

mothers against decapentaplegic homolog (SMAD) pro-
teins to mediate transforming growth factor beta (TGFβ)
signalling at AP-1 binding sites [26], we compared ME7

with two studies on SMAD targets [27, 28]. Firstly,
overlap with [27] revealed 39% (13/33) of ME7 lncRNAs
are expressed in human hepatic stellate cells (HSC)
(Additional file 11: Table S8), representing the highest
enrichment compared to the other modules. Of these,
53% (7/13) are potential targets for SMAD3 representing
significant enrichment (p = 0.01 by hyper-geometric
test), and either induced (39%; 5/13) or repressed (15%;
2/13) by TGFβ signalling (Fig. 3c, Additional file 11:
Table S8). Similarly, comparison with [28] showed that
the promoters of 13 of the top 20 ME7 pro-module
genes could be occupied by either SMAD2 or SMAD3.
TGFβ induces epithelial-mesenchymal transition

(EMT) in tumours via activation of SMAD proteins [29],
which translocate into the nucleus and regulate tran-
scription of TGFβ target genes [30]. Furthermore, since
SMADs have low affinity for DNA, it is crucial they
interact with cofactors such as AP-1 [31] to achieve tar-
get specificity. Exploring a potential link between ME7
and EMT induction via TGFβ signalling, we observed
significant enrichment (p = 8.74E-20) for an EMT signa-
ture in pro-ME7 PC genes that included SNAI2 (PC-
MA = 0.025) and TGFβ1 (PC-MA = 0.021). Pro-ME7 PC
genes also included HMGA2 (PC-MA = 0.024), a down-
stream effector of TGFβ during EMT [32], and FOSL1,
whose protein product Fos-related antigen 1 (Fra-1) is
implicated in EMT through modulation of TGFβ expres-
sion [24]. Taken together, our results indicate that
lncRNAs of ME7 play a role in the induction of EMT via
convergence of AP-1 and SMAD proteins at their pro-
moters and regulation of TGFβ signalling.

Determination of the tumour stromal specificity of ME12
and ME16
We noted that ME12 and ME16 shared a number of pro-
module PC genes (Fig. 4a) and achieved significant correl-
ation between their eigen-lncs (r = 0.57). In addition, both
pro-module PC gene sets of ME12 and ME16 overlapped
significantly (p < 0.05 by hyper-geometric test) with a stro-
mal cell signature [34], incorporating 24% (32/136) and
35% (48/136) signature genes respectively. By contrast, no
overlap was observed with ME7.
We explored the potential stromal specificity of ME12

and ME16 further by using a novel approach to generate
a putative list of 300 stromal cell specific (SCS) lncRNAs
frequently detected in stromal-containing clinical sam-
ples but not in pre-clinical models that consist almost
exclusively of tumour cells (Additional file 12: Table S9a;
see Methods). Both ME12 and ME16 contained an abun-
dance of SCS lncRNAs, achieving 60% (15/25) and
53.6% (7/11) overlap respectively (Additional file 12:
Table S9b). By contrast, only 1/27 (3.7%) lncRNAs in
ME7 were classed as SCS. These results provide strong

Table 1 Module features

Module Number of lncRNAs Functional signature

ME0 288 None

ME1 723 None

ME2 317 Transcriptional regulation

ME3 128 Transcriptional regulation

ME4 56 Cilium assembly

ME5 46 Transcriptional regulation / Neurological

ME6 33 Transcriptional regulation

ME7 33 Extracellular

ME8 32 Immune / cell cycle

ME9 31 Immune / extracellular

ME10 30 Neurological

ME11 29 Immune

ME12 26 Extracellular

ME13 21 Stem cell

ME14 16 Neurological

ME15 12 Immune

ME16 12 Extracellular
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in silico evidence that expression of lncRNAs in ME12
and ME16 is specific to the tumour stroma.

Functional dissection of stromal-specific modules ME12 and
ME16
To define more precise roles for the lncRNAs of ME12
and ME16, we identified 204 “ME12 specific” and 226
“ME16-specific” PC genes that achieved a PC-MA fold
difference > 2.00 with the corresponding PC gene in
ME16 and ME12 respectively (Fig. 4b; Additional file 13:
Table S10a and S10b).
Comparison with signatures from MSigDB [35] revealed

ME12-specific PC genes were consistently down-regulated
in cancers including prostate (p = 1.79E-34) and colorectal
(p = 3.10E-18), and advanced disease such as metastatic

prostate cancer (p = 1.07E-12). They were also down-
regulated in aggressive cancer subtypes such as luminal-B
(p = 2.38E-17) and basal-like breast cancers (p = 9.12E-09).
In contrast, ME16-specific PC genes were consistently as-
sociated with hallmarks of tumour progression such as
EMT (p = 3.90E-67), and up-regulated in aggressive sub-
types such as basal-like breast cancer (p = 1.00E-11).
Further evidence for under-expression of ME12

lncRNAs in cancer was provided by a systematic com-
parison of lncRNA expression between tumour and nor-
mal samples across 14 cancers types (see Methods). Each
lncRNA was classified as “pan-cancer up” or “pan-cancer
down” if differential expression was consistent across
more than one cancer type, “single cancer up” or “single
cancer down” if observed in a single cancer type, or

Fig. 3 Evidence of c-Fos/c-Jun regulation in ME7. a Top-scoring de-novo motif in the region 1000 bp upstream of lncRNA transcription start site,
and top two most similar JASPAR [23] transcription factor motifs. b Enrichment of AP1-like binding sites in 188 pro-module PC genes of ME7
according to [24]. c Proportion of lncRNAs in each module regulated by TGF-β and occupied by SMAD3 according to [24]. Only modules
containing > 5 lncRNAs overlapping with those expressed in HSC myofibroblasts are shown
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“both” if the lncRNA was differentially expressed in both
directions across different cancer types (Additional file
14: Table S11a and 11b). 73% (19/26) of lncRNAs in
ME12 were classed as “pan-cancer down” or “single can-
cer down” (Fig. 4c, Additional file 14: Table S11c). These
included the known tumour suppressor maternally
expressed gene 3 (MEG3) [36], which was under-
expressed in 4/14 cancers represented in our dataset. By
contrast, only three lncRNAs in ME16 were classed as
differentially expressed, and none as either “pan-cancer
down” or “single cancer down”.
Interestingly, 39% (13/33) of lncRNAs in the third

extracellular-associated module ME7 were classed as ei-
ther “pan-cancer up” or “single cancer up”, with > 70%
of these over-expressed in head and neck squamous cell
carcinoma (HNSCC). This was concurrent with the
strong association between ME7 and FOSL1, which is
consistently over-expressed in HNSCC [37]. No evi-
dence was observed of a relationship between tissue
specificity (Fig. 2c) and up-regulation in specific can-
cer types (Additional file 14: Table S11). Of the mod-
ules showing tissue bias, only ME4 contained
lncRNAs over-expressed in a single cancer type. ME4
had some tissue specificity to breast, however none of

the four “single cancer up” lncRNAs were over-
expressed in breast cancer.

Comparison of ME12 and ME16 with a reactive stroma
signature
The above findings led us to compare ME12 and ME16
with a reactive stroma signature [38]. 44/50 genes (p <
6.46E-65 by hypergeometric test) in the signature over-
lapped with pro-module PC genes of ME16 compared to
only 9/50 genes (p < 1.71E-6) with ME12 (Fig. 4d). These
included fibroblast-activation protein (FAP; PC-MA =
0.06), an established cancer-associated fibroblast (CAF)
marker, periostin (POSTN; PC-MA = 0.05) a gene impli-
cated in metastasis [39], and members of the collagen
family such as COL5A2 (PC-MA = 0.05), COL6A3 (PC-
MA = 0.05), COL10A1 (PC-MA = 0.04) and COL6A1
(PC-MA = 0.04). Considering only module-specific
genes, 27/50 genes (p < 3.17E-38) in the signature
overlapped with ME16 but none with ME12 (Fig. 4d)
. Moreover, signature genes achieved significantly
higher PC-MA values with ME16 than ME12 (p =
1.59E-20 by Student’s t-test; Fig. 4e, Additional file
15: Table S15). Taken together, our results strongly
suggest that ME16 lncRNAs are markers of an

Fig. 4 Differentiation of the extracellular-associated modules ME12 and ME16. a Venn diagram to show overlap of pro-module PC genes
between ME12 and ME16. b Scatterplot of ME16 versus ME12 PC-MA values. ME16-specific PC genes are indicated in red, ME12 in blue with
corresponding text highlighting signature enrichments in module-specific lists. c Proportion of lncRNAs potentially dysregulated in cancer within
each module. d Venn diagrams showing overlap of all pro-module genes and module specific genes with a reactive stroma signature [33]. e
Boxplot comparing PC-MA distribution across reactive stroma signature genes between ME12 and ME16
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activated stromal phenotype that promotes tumour
progression, whereas ME12 lncRNA expression sup-
ports a tumour suppressive microenvironment.

Potential regulatory roles of lncRNAs in ME7, ME12 and
ME16
We further assessed ME7, ME12 and ME16 in the context
of lncRNA canonical interaction data collated by Chiu et
al. [40]. In this study, tumour-type specific lncRNA inter-
actions between effectors (transcription factors, micro-
RNAs and RNA binding proteins) and their targets were
inferred from eCLIP/ChIP-seq data, and transcription
factor-promoter, micro-RNA-target and RNA binding
protein-target predictions. This enabled us to assess our
method against an alternative approach that does not
solely rely on co-expression information.
Using breast cancer as an example, modules were first

filtered for lncRNAs where interaction data were avail-
able in [40]. From those remaining, representative
lncRNAs achieving the highest association score correl-
ation with the eigen-lnc were then selected from ME16
(RP11-863P13.3), ME12 (FENDRR) and ME7 (RP13-463
N16.6), PC interactions with these lncRNAs were identi-
fied from [40]. In total, 433, 454 and 31 PC genes pre-
dicted to interact with ME16, ME12 and ME7
respectively were taken forward. In order to assess these
interactions in the context of our method, we calculated
mean PC-MA scores across each set of interacting PC
genes and all modules (Table 2), with high PC-MA
scores from the same module as the representative

lncRNA indicating co-expression between lncRNA and
its putative PC gene target.
Interacting PC genes with RP11-863P13.3 and FENDRR

achieved the highest mean PC-MA scores in ME16 and
ME12 respectively (Table 2), suggesting that lncRNAs of
both these modules are co-expressed with their PC gene
partners and typically activate their targets. Conversely,
PC genes predicted to interact with RP13-463N16.6
achieved the second lowest mean PC-MA score in ME7
indicating negative expression correlation, and that
lncRNAs of ME7 play an inhibitory role towards their tar-
gets. Interestingly, these included JUND, predicted to act
as a transcription factor switch regulating multiple targets
[40], supporting our earlier finding that lncRNAs of ME7
are enriched for JUND binding sites.

esiRNA knockdown of ME16 lncRNAs
Given the strong evidence for their stromal cell specifi-
city, and association with activated stroma, we took for-
ward two lncRNAs of ME16 (AC093850.2 and RP11-
626H12.2) to experimentally assess their role in the
tumour microenvironment, alongside a lncRNA not as-
sociated with this module (RP1-122P22.2 from ME2)
and a non-targeting esiRNA (Evf-2) as negative controls.
The nearest upstream neighbour of AC093850.2 is fibro-
nectin (FN1), thus providing a potential example of a
cis-relationship between a known fibroblast marker and
lncRNA. AC093850.2 is also predicted as interacting
with FN1 in breast cancer [40], acting as a microRNA/
RNA binding protein decoy. To our knowledge, there is

Table 2 Mean PC-MA scores of lncRNA-interacting PC genes [40] associated with ME7, ME12 and ME16

Module RP11-863P13.3 (ME16) FENDRR (ME12) RP13-463 N16.6 (ME7)

Mean PC-MA Rank Mean PC-MA Rank Mean PC-MA Rank

ME0 −0.0028 17 −0.0013 16 −0.0015 13

ME1 −0.0024 16 −0.0019 17 −0.0005 8

ME2 0.0004 4 0.0006 3 0.0005 5

ME3 −0.001 13 −0.0009 15 0.0007 3

ME4 −0.0013 15 −0.0005 12 −0.0013 12

ME5 0.0005 3 −0.0002 7 0.0006 4

ME6 −0.0006 11 −0.0006 13 0.002 1

ME7 −0.0006 9 −0.0001 5 −0.0028 16

ME8 −0.0009 12 −0.0009 14 −0.0002 7

ME9 −0.0004 7 0.0001 4 −0.0006 9

ME10 −0.0013 14 −0.0004 9 −0.0006 10

ME11 −0.0006 8 −0.0003 8 0.0008 2

ME12 0.0016 2 0.002 1 −0.0017 14

ME13 −0.0006 10 −0.0005 11 −0.0009 11

ME14 −0.0001 5 −0.0001 6 0.0001 6

ME15 −0.0004 6 −0.0004 10 −0.0019 15

ME16 0.0027 1 0.0011 2 −0.0036 17
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no evidence that the protein coding neighbours of RP11-
626H12.2 play a direct role in CAF activation.
We used an established experimental model of CAF dif-

ferentiation [41] that uses TGF-β1 to activate human pri-
mary fibroblasts, assessed as induction of alpha-smooth
muscle actin (αSMA), a commonly used CAF marker
(Fig. 5a). CAFs are the major cell type in the tumour micro-
environment and are known to play a role in the invasion
and metastasis of tumour cells [42, 43]. There is strong evi-
dence showing association between CAFs and poor prog-
nosis in several types of cancers [44]. Figure 5a shows that
the knock-down of AC093830.2 has an effect on cell num-
ber, but is not completely required for cell viability. We ob-
served that TGF-β1-mediated activation of fibroblasts (as
assessed by the number of cells harbouring αSMA-positive
stress fibres determined by immunofluorescent labelling
and high content microscopy) is impaired when expression
of both candidate lncRNAs, but not lncRNA from different
functional modules, is reduced in human fibroblasts using
specific esiRNAs (Fig. 5b). This reduction in TGF-β1-
mediated stress-fibre formation reached statistical signifi-
cance for one of the lncRNAs, AC093830.2, when com-
pared to the response in the presence of esiRNA targeting a
gene not expressed in these cells (Evf-2). The magnitude of
reduction observed is modest; this may be a result of rela-
tively low levels of activation by TGF-β1 in this system, in
which basal αSMA is readily detected. Future studies using
more sophisticated 3D in vitro models, more accurately re-
capitulating the quiescent in vivo conditions in which basal
αSMA is lower, are likely to reveal more pronounced effects
of perturbing responses to TGF-β1 stimulation and associ-
ated physiological importance.
In comparison to control (Fig. 5c and d) and unstimu-

lated AC093850.2 knock-down (Fig. 5e), images of TGF-
β1 activated fibroblasts knocked-down with AC093830.2
RNAi show that the cells are morphologically different to
activated wild-type CAFs, and a few cells still show some
transformation into the TGF-β1 induced phenotype (Fig.
5f, white cross). These results suggest that AC093850.2 is
functionally linked with the differentiation of fibroblasts
to a CAF phenotype, and may act in a redundant manner.
Further support for the association of ME16 with the

CAF phenotype was provided by analysis of gene expres-
sion data from a separate study using the same method
of induction of a CAF phenotype [45]. A comparison
showed that 20/64 genes over-expressed (log2FC > 1.50,
p < 1.00E-04) in response to TGF-β1 treatment of HFFF2
fibroblasts are also members of the pro-module gene set
of ME16, representing significant overlap (p = 1.47E-14
by hypergeometric test).

Conclusion
In this study, we present the most comprehensive exam-
ination of the pan-cancer lncRNA expression landscape

to date. A key contribution is the development of a
novel approach to integrate transcriptome data across
multiple cancers, allowing us to generate lncRNA-PC
networks and de-convolute lncRNAs into a small num-
ber of functionally coherent modules. By doing so, we
provide some important insights and hypotheses into
the role of lncRNAs in cancer. Principally, lncRNAs can
be grouped into just four functional themes based on
their associations with PC genes: immune, extracellular,
transcription regulation, and neurological.
Whilst a number of modules are clearly driven by the

tissue specificity of their lncRNAs, several pan-cancer
modules are identified, of which three may represent dis-
tinct lncRNA networks associated with extracellular pro-
cesses that regulate key events in tumour progression.
Two of these modules are stromal specific, corresponding
to a 26-lncRNA signature associated with a tumour sup-
pressive microenvironment, and 12 lncRNAs with a po-
tential role in cancer fibroblast activation leading to poor
prognosis. The third module consists of a tumour-derived
signature of 33 lncRNAs that may play a role in inducing
EMT through modulation of TGFβ signalling. Adding
confidence to our approach, our findings complemented a
previous study that used an alternative method for asses-
sing lncRNA-PC gene associations. Furthermore, the po-
tential functional regulatory roles of two members of the
putative lncRNA CAF signature were validated by experi-
mental modulation in fibroblasts. Interestingly, whilst re-
duction in TGF-β1-mediated stress-fibre formation was
observed for both lncRNAs, it reached statistical signifi-
cance only for AC093850.2 (also known as LINC01614).
The nearest upstream neighbour of AC093850.2 is fibro-
nectin, a key component of CAF-derived ECM known to
influence matrix remodelling associated with metastasis
[46]. Therefore, our findings could indicate a lncRNA-
mediated control mechanism of fibroblast differentiation
via cis-regulation of fibronectin by AC093850.2.
Since reference to modules alone may mask subtle

functional differences that exist between lncRNAs, we
encourage researchers to explore the individual
lncRNA PC-MA profiles provided as supplementary data
(https://figshare.com/s/753cc0df15197b0b9572). Together
with the modules, they provide a unique, global
compendium from which to generate novel hypotheses
and motivate detailed functional studies on lncRNA
roles in cancer.

Methods
TCGA RNA-Seq data processing
Raw FASTQ sequence files for each solid tumour repre-
sented in TCGA were downloaded from the Cancer
Genomics Hub (CGHub; [47]), and reads aligned to the
human (GRCh38) genome using StarAlign [48] with no
more than three mismatches and only uniquely mapped
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reads allowed. Reads whose ratio of mismatches to
mapped length was greater than 0.10 were also dis-
carded. All other parameters were set to their defaults

for unstranded alignment. To reduce possible biases in-
troduced by variable total read counts between samples,
tumours achieving < 20,000,000 mapped reads were

Fig. 5 A candidate lncRNA is able to attenuate TGF-β1-induced fibroblast differentiation. Human primary fibroblasts were transfected with esiRNA
targeting two candidate lncRNAs (AC093850.2 and RP11-626H12.2), a transcript not expressed in human cells (Evf-2) and a lncRNA from a different
module not predicted to influence fibroblast differentiation (RP1-122P22.2). Each experiment consisted of nine technical and three biological
replicates. a Cells were dispensed into 384 well plates, reverse transfected with esiRNAs, incubated for 2 days knock-down and then stimulated or
not with TGF-β1 for 24 h. Images were acquired using a MetaXpress Micro × 2 objective and cells identified using the nuclei stain Hoechst, and
segmented using MetaXpress software. Data processed in Excel and Prism7. b The protocol was identical to that of A, but the cell were stained
with αSMA antibody after fixation, and imaged using the × 20 objective. Positive CAFs were identified on the formation of de novo αSMA-
positive stress fibres and morphological changes using MetaXpress Custom Module Editor. **p < 0.05, ***p < 0.01, ****p < 0.001. Only comparisons
between groups reaching statistical significance are indicated. c Microscope images of unstimulated, control Evf-2 knock-down cells. d TGF-β1-
stimulated, control Evf-2 knock-down cells. The white * indicates a transformed CAF with both morphological and αSMA positive fibres. e
Unstimulated, AC093850.2 knock-down cells. f TGF-β1-stimulated, AC093850.2 knock-down cells. The white + indicates a cell counted as a CAF
with a partial transformation
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removed. The expression level, based on Fragments Per
Kilobase per Million fragments mapped (FPKM), of each
gene present in the human (GRCh38) GENCODEv22
annotation file was estimated using Cufflinks with li-
brary type defined as “fr-unstranded” and all other pa-
rameters set to defaults [49]. Expression values were
then batch normalized using COMBAT [50] where ap-
propriate. Only genes annotated as “lincRNA” or “pro-
tein_coding” were considered. LncRNAs overlapping PC
genes, such as antisense transcripts, were ignored. Since
expression across transcripts less than the average RNA
fragment length can be over-estimated, genes whose lar-
gest transcript was less that 400 bp were also ignored.
We also removed lncRNA and PC genes that failed to
achieve sufficient expression signal across at least one
cancer type. Specifically, the sum of the mean and stand-
ard deviation of FPKMs across each cancer type for each
lncRNA and PC gene were calculated. If the maximum
value of this sum across all cancer types fell below 1.00,
then the gene was discarded. The resulting gene-by-
sample matrix consisted 17,088 PC genes and 2098
lncRNAs. Note that a poly-A selection protocol was
used for TCGA RNA-Seq, and so lncRNAs are restricted
to these species. Sequencing data for all TCGA cancer
types used in this study were processed using the same
procedure. The number of tumours across each cancer
type is given in Additional file 4: Table S1.

Pan-cancer estimation of the correlation between each
lncRNA and PC gene
Visual inspection of the data indicates that a three-
component mixture distribution is an appropriate repre-
sentation. The first two densities can be seen to decay
exponentially away from the x and y axes and the third
distribution looks bivariate Gaussian (Additional file 2:
Figure S2). We use the expectation maximisation (EM)
algorithm to estimate the parameters of our statistical
mixture model. Since we are specifically interested in
the correlation coefficient of the bivariate Gaussian
density, we estimate the separate parameters of the bi-
variate Gaussian covariance matrix rather than the
whole covariance matrix itself. To exploit the conveni-
ence of using sufficient statistics for the parameters, we
ensure that the mixture density is in the exponential
family. Data across 32 cancer types (indexed by c) is
used in the maximum likelihood estimation. The three-
component mixture density likelihood over the 32 can-
cer types is:

Y32

c¼1

Ync

i¼1

wc1 f 1 xci1ð Þ þ wc2 f 2 xci2ð Þ þ wc3 f 3 xci1;xci2
� �� �

where wcj is the weight for component j in cancer type c (

such that
P3

j¼1 wcj =1 for all cancer types), nc is the num-

ber of samples in cancer type c, xci1 is the ith lncRNA gene
expression value and xci2 is the ith PC gene expression
value in cancer type c. The three mixture components are

f 1 xci1;xci2
� � ¼ 6

Γ 1=6ð Þ−γ 1=6; 1ð Þ exp − xci1 þ 0:86ð Þ6
� �

f 2 xci1;xci2
� � ¼ 4

Γ 1=4ð Þ−γ 1=4; 1ð Þ exp − xci2 þ 0:86ð Þ4� �

f 3 xci1;xci2
� �

∝
Ync

i¼1

expð 1
−2 1−ρ2ð Þ ½

xci1−μc1
σ1

� 	2

þ xci2−μc2
σ2

� 	2

−2ρ
xci1−μc1

σ1

� 	
xci2−μc2

σ2

� 	
�Þ

where Γ is the standard gamma function and γ the lower
incomplete gamma function. In order to fit this into the
exponential family we assume that the lncRNA and PC
gene expression variances for each of the cancer types
are identical and defined as σ1

2 and σ2
2. The lncRNA

and PC gene expression expectations (μc1 and μc2) are
however allowed to vary for each of the cancer types.
The correlation coefficient ρ is the parameter of interest.
We use the EM algorithm with updates derived by

equating expectations in the usual way. Let w�
cm repre-

sent the current value of the parameter estimates of the
mth mixture weight (m = 1, 2, 3) in cancer type c. Let Θ∗

represent the current value of all the remaining parame-
ters, let i represent the sample number in cancer type c
(1 ≤ i ≤ nc) and let

pcim ¼ w�
cm f m xci1;xci2jΘ�� �

X3

j¼1

w�
cj f j xci1;xci2jΘ�� �

:

Then the EM updates are as follows:

wcm ¼
Xnc

i¼1

pcim=nc

μcm ¼
Xnc

i¼1

xci1pcim= ncwc3ð Þ

σ21 ¼

X32

c¼1

Xnc

i¼1

x2ci1pci3−ncwc3μ2c1

( )

X32

c¼1

ncwc3

σ22 ¼

X32

c¼1

Xnc

i¼1

x2ci2pci3−ncwc3μ
2
c2

( )

X32

c¼1

ncwc3

Walters et al. BMC Genomics          (2019) 20:454 Page 11 of 15



ρ̂ ¼

X32

c¼1

Xnc

i¼1

xci1xci2pci3−ncwc3μc1μc2

( )

σ21σ
2
2

X32

c¼1

ncwc3

Accounting for the uncertainty of the estimated pan-
cancer correlation
Here ρ̂ is a pan-cancer measure of correlation between
lncRNA and PC gene. For each correlation estimate, we
calculate the standard error of the estimate ( SEðρ̂Þ ) by
bootstrapping with 100 bootstrap samples. This enables
us to use a measure of the pan-cancer correlation that
takes the uncertainty of the estimate into account, namely
ρ̂=SEðρ̂Þ; which we refer to as the MCA score. Where
lncRNA or PC gene expression signal is insufficient to cal-
culate a correlation estimate, the cancer type is not con-
sidered further for this combination. In a significant
number of cases, low expression of the lncRNA means the
correlation cannot be estimated, and thus failure to calcu-
late an MCA score for a specific PC gene. Where this oc-
curs for over 50% of the PC genes, the lncRNA is not
considered further, resulting in removal of a further 265
lncRNAs. Overall, 1833 lncRNAs have an MCA score for
more than 50% of the 17,088 PC genes.

Weighted correlation network analysis (WGCNA)
To perform WGCNA [17], the R package “WGCNA”
was applied as follows. First, a weighted lncRNA MCA
score correlation network was constructed from the
1833 lncRNA by 17,088 PC gene MCA score matrix
using a soft thresholding power of 7 to which the MCA
score correlation was raised to calculate adjacency. To
aid choice of soft thresholding power we used the “pick-
SoftThreshold” WGCNA function with candidate pow-
ers 1–10, 12, 14, 16, 18 and 20. The power 7 was the
lowest power for which the scale-free topology fit index
reached 0.95 (Additional file 3: Figure S3A, resulting in
a network with mean connectivity of 5.94 (Additional
file 3: Figure S3B). Modules were then identified by aver-
age linkage hierarchical clustering of lncRNAs, and
modules identified in the resulting dendrogram by the
Dynamic Hybrid tree cut using signed topographical
overlap matrix (TOM) and network types, a minimum
module size of five, and a threshold for merging high
correlated modules of 0.25. All other parameters were
set to their default values.

Signature enrichment analysis
Functional, cell type, transcription factor and disease
type enrichment analyses were performed on each set of
pro- and anti-module PC genes using Toppgene [33].
Significant enrichments were defined as those achieving

False Discovery Rate less than 0.05 and signature overlap
greater than two genes.

Differential expression between tumour and normal
samples
RNA-Seq raw FASTQ sequence files for TCGA matched
normal samples across 24 cancer types were downloaded
from CGHub [47], and gene expression estimates derived
using the same procedure as for the tumour samples.
Reads aligned to the human (GRCh38) genome using
StarAlign [48] with no more than three mismatches and
only uniquely mapped reads allowed. Reads whose ratio of
mismatches to mapped length was greater than 0.10 were
also discarded. All other parameters were set to their de-
faults for unstranded alignment. FPKM expression esti-
mates of each gene present in the human (GRCh38)
GENCODEv22 annotation file were calculated using Cuf-
flinks with library type defined as “fr-unstranded” and all
other parameters set to defaults [49]. Expression values
were then batch normalized using COMBAT [50] where
appropriate. 10 cancer types comprised of < 10 samples
after filtering so were removed from further analyses
(Additional file 4: Table S1). Differentially expressed
lncRNAs (|log2FC| > 1.0 and p < 0.0001) between tumour
and normal samples representing each of the remaining
14 cancer types were detected using the Student’s t-test on
FPKM expression estimates.

De novo transcription factor motif discovery
Nucleotide sequences 1000 bp upstream of each lncRNA
were downloaded from Ensembl version 84 [51], and
grouped according to module membership. Conserved
motifs within these sequences from ME4 and ME5, and
ME7-ME16 were then determined by a Weeder 2.0 [52]
de novo search with default parameters. Modules without
a coherent functional/cell type signature (ME1) or associ-
ated with transcriptional regulation only (ME2, ME3,
ME6) were ignored. Motif matrices achieving scores > 2.0
were then assessed for similarity with transcription factor
binding sites contained within the JASPAR database using
the JASPAR matrix alignment tool [23]. De novo matrices
achieving > 95% with a JASPAR matrix were deemed sig-
nificant. Motifs associated with lncRNAs of ME13 were
manually inspected using the Repeat Masker (http://www.
repeatmasker.org) track on the University of California
Santa Cruz (UCSC) Genome Browser [53].

A novel approach to identify stromal cell specific lncRNAs
To further establish the stromal cell specificity of
lncRNAs in ME12 and ME16, we used a novel approach
to compare their expression in sample types that consist
exclusively of tumour cells (stromalow) with fresh frozen
TCGA patient samples that naturally contain a mixed
population of tumour and stromal cells (stromahigh). We
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reasoned that lncRNAs detected in stromahigh but not in
stromalow samples were likely stromal cell specific (for
this purpose, immune cells are included in the definition
of “stroma”). To represent stromalow samples, we used
828 cell lines from the Cancer Cell Line Encyclopae-
dia (CCLE; Additional file 16: Table S13) [54], and
57 PDX models [55], in which tumour had been
separated from stroma using an in silico species-
specific mapping strategy [55, 56]. As expected, both
stromalow cohorts achieved a mean estimated tumour
cell content of 99% ± 1%, compared to patient
samples from TCGA where only 8/32 cancer types
achieved median tumour cell content> 90% (Add-
itional file 15: Table S12).
BAM files consisting of reads mapped to the human

(GRCh37) genome were downloaded from the CGHub
for the 828 cell lines representing 19 solid cancer
types (Additional file 16: Table S13). Only cancer
types represented in the TCGA dataset were consid-
ered. FPKM values for each gene present in the hu-
man (GRCh38) GENCODEv19 annotation file were
calculated as before using Cufflinks with library type
defined as “fr-unstranded”.
RNA-Seq data for the 57 PDX models representing

eight cancer types (25 lung, 12 breast, 7 colorectal, 3
endometrial, 6 ovarian, 2 pancreatic, 1 ampullary and 1
leukaemia) were downloaded from ArrayExpress (acces-
sion number: E-MTAB-3980), and tumour and stromal
expression separated according to [55]. Note that the
tumour components of 22/69 PDX models in the ori-
ginal dataset showed evidence of patient stroma reten-
tion (mRNA expression of CAF markers FAP or CSPG4
log2 FPKM> 2.0) so were ignored [55].
For the 1540 lncRNAs common to TCGA, CCLE and

PDX datasets, we counted the number of tumour types
in which the lncRNA was undetected in cell lines but
detected in patient tumours (x), and the number of
tumour types in which lncRNA was detected in patients
regardless of cell line expression (y). Here, “detected” in
patient tumours was defined as median FPKM> 1.00
across the cancer type, and “undetected” in cell lines
defined as median FPKM< 0.50. 496 lncRNAs achieved
x/y ≥ 0.50 and x > 1, or x/y = 1.00 and x = 1, and there-
fore classed as undetected in cell lines and detected in
patient tumours (set A). 768 lncRNAs were classed as
undetected in our PDX cohort, achieving a median read
count across the 57 models of zero (set B). 300 lncRNAs
formed the union of sets A and B, and were therefore
classed as stromal cell specific (SCS) achieving expres-
sion in patient tumours but low or undetectable expres-
sion in either cell lines or PDX models. SCS lncRNAs
included MEG3, one of the few lncRNAs established as
preferentially expressed in tumour stroma [57], thus
adding confidence to our approach.

esiRNA knockdown
esiRNAs were prepared as described in [58] using
DEQOR [59] and primer3 [60] for optimized design of
the template. An in vitro transcription kit (Thermo) was
used to generate the dsRNA according to manufacturer’s
instructions, followed by SureCut RNase III (NEB) diges-
tion. After testing for complete digestion prior to use
by agarose gel electrophoresis, esiRNAs were trans-
fected into human primary fibroblasts at 5 ng per
well in a total volume of 25 μl. After 48 h, TGF- β1
(R and D Systems; 5 ng/ml) was added in serum-free
medium. After a further 24 h, fibroblasts were fixed
in formaldehyde and monitored for αSMA induction
using high content microscopy and αSMA immuno-
fluorescence, detected using a FITC-conjugated anti-
αSMA monoclonal antibody (Sigma).

Additional files

Additional file 1: Figure S1. Heatmap of eigen-lnc adjacencies. Each
row and column corresponds to one eigen-lnc. Within the heatmap, red
indicates high adjacency (positive correlation) and green low adjacency
(negative correlation) as shown by the colour legend. (TIF 1166 kb) (TIF
1166 kb)

Additional file 2: Figure S2. Typical three-component mixture distribution
observed between PC and lncRNA gene expression. The plot shows typical
patterns of PC and lncRNA gene expression. Each point is a sample. Three
clusters are visible: two are along the x and y axes, and the third is centred
away from the axes. We model these data using a three-component mixture
distribution. Two of the distributions run along and close to the x and y axes,
and are designed to represent the data points near the axes. The third
component is a bivariate Gaussian distribution (elliptical/circular in shape)
designed to represent the points some distance way from the axes. Our focus
is in estimating the correlation in the bivariate Gaussian component, but we
use a mixture distribution to allow for the observations near the axes. Failure
to do so would result in biased estimates of the correlation. (TIF 5061 kb) (TIF
5061 kb)

Additional file 3: Figure S3. Analysis of lncRNA-PC MCA score network
topology for various soft-thresholding powers. A. The scale-free fit index
(y-axis) as a function of the soft-thresholding power (x-axis). B. mean
connectivity (degree, y-axis) as a function of the soft-thresholding power
(x-axis). (TIF 2645 kb) (TIF 2645 kb)

Additional file 4: Table S1. Number of TCGA patients contributing to
this study across 32 cancer types. (XLSX 42 kb)

Additional file 5: Table S2. Module assignment and correlation of
lncRNA association score profiles with the eigen-lncs. (XLSX 589 kb)

Additional file 6: Table S3. Eigen-lnc coefficients (PC-MA scores)
contributed by each protein coding gene. (XLSX 4910 kb)

Additional file 7: Table S4. ToppGene functional enrichment in pro-
module protein coding genes. (XLSX 200 kb)

Additional file 8: Table S5. Module disease specificity. (XLSX 57 kb)

Additional file 9: Table S6. Evidence for FOS/JUN transcription factor
binding sites in lncRNA promoters of module 7. (a) Weeder motif scores.
(b) Frequency matrix associated with top scoring motif (ATGAGTCATA).
(c) Presence of top-scoring motif in ME7 lncRNAs. (d) Top 6 JASPAR
database matches with top matrix hit (human-derived motifs only). (XLSX
56 kb)

Additional file 10: Table S7. Enrichment of AP1 transcription factor
binding sites in protein coding genes achieving PC-MA in module 7.
(XLSX 31 kb)
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Additional file 11: Table S8. Number and percentage lncRNAs in each
module with ChipSeq evidence of SMAD3 occupancy. (XLSX 43 kb)

Additional file 12: Table S9. LncRNA detection in pre-clinical tumour
models. (a) Assessment of expression levels of each lncRNA in cell line
and PDX tumour models. (b) Number and proportion of lncRNAs
detected in cell lines/PDX models in each module. (XLSX 166 kb)

Additional file 13: Table S10. Module-specific gene lists of
extracellular-associated modules. (a) ME16-specific. (b) ME12- specific.
(XLSX 70 kb)

Additional file 14: Table S11. Frequency of module-associated lncRNA
dysregulation in cancer. (a) LncRNAs differential expressed in each cancer.
(b) LncRNAs differentially expressed in at least one cancer type and their
dysregulation classification. (c) Number and proportion of each dysregula-
tion class in each module. (XLSX 78 kb)

Additional file 15: Table S12. PC-MA scores of genes in reactive stroma
signature. (XLSX 58 kb)

Additional file 16: Table S13. Number of CCLE cell lines contributing
to this study across 19 cancer types. (XLSX 21 kb)
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