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Gestational hypertension is one of the complicated disorders during pregnancy; it causes the significant risks, such as placental
abruption, neonatal deaths, and maternal deaths. Hypertension is also responsible for the metabolic and cardiovascular issues to
the mother after the years of pregnancy. Identifying and treating gestational hypertension during pregnancy by a suitable
biomarker is mandatory for the healthy mother and foetus development. Cortisol has been found as a steroid hormone that is
secreted by the adrenal gland and plays a pivotal role in gestational hypertension. A normal circulating level of cortisol is involved
in the regulation of blood pressure, and it is necessary to monitor the changes in the level of cortisol during pregnancy. In this
work, aptamer-based colorimetric assay is demonstrated as a model with gold nanorod to quantify the level of cortisol using the
coordinated aggregation (at 500mM of NaCl) and dispersion (with 10 μM of aptamer), evidenced by the scanning electron
microscopy observation and UV-visible spectroscopy analysis.)is colorimetric assay is an easier visual detection and reached the
limit of detection of cortisol at 0.25mg/mL.)is method is reliable to identify the condition of gestational hypertension during the
pregnancy period.

1. Introduction

Gestational hypertension or pregnancy-induced hyperten-
sion complicates ∼10% of the pregnant cases and causes a
poor perinatal outcome. It is also responsible for raising
other diseases, such as elevated blood pressure in the artery,
preeclampsia, and eclampsia, during the period of pregnancy
[1, 2]. In addition, there is a possibility of affecting other
parts in the body, such as kidney and heart, and inducing an
early delivery. In general, gestational hypertension arises
during the second half of pregnancy. Identifying hyper-
tension by a suitable biomarker is mandatory for a healthy
pregnant woman [3]. Cortisol is a stress hormone that is

secreted from the adrenal gland. It spikes into the main
stream of the body during the time of high stress and elevates
the cortisol level in the bloodstream. It has been proved that
the serum cortisol plays a major role in the pathophysiology
of the gestational hypertension [4], especially the higher level
of cortisol causes hypertension and endothelial dysfunction
[5]. 11β-Hydroxysteroid dehydrogenase type 2 (11β-HSD2)
is an enzyme, produced in the renal tubules; it converts
cortisol into an inactive cortisone, thus permitting the
mineralocorticoid (a receptor) as aldosterone-selective. )e
functional diminishes of this enzyme cause the mutations
with HSD11B2 gene, which encodes 11β-HSD2, mainly
considered as an initiative for hypertension [6]. )erefore,
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measuring the level of cortisol of the pregnant women
during the trimester is considered to be important for es-
timating the function of 11β-HSD2 [7].

In the current investigation, an aptamer-based col-
orimetric assay was performed to quantify the level of
cortisol. Aptamer, a DNA or RNA molecule, has been
generated from the randomized library of molecules by a
method “SELEX” (Systematic Evaluation of Ligands by
Exponential enrichment) with three vital steps, which
includes binding, separation, and amplification [8–11].
Since aptamers carry the advantages over antibodies, such
as easier to synthesize, cheaper, amenable to the modi-
fications, high affinity, and nonimmunogenic, various
aptamers were generated against a wide range of targets
from the lower-molecular weight molecules to the intact
cell. )e generated aptamers have been applied in different
fields such as medical, environmental, drug delivery,
imaging, and biosensors. Due to the highly selective and
sensitive binding nature of aptamer to its target molecule,
it has been widely applied in the field of biosensors and
more prevalent to diagnose various diseases at a higher
affinity. Aptamers that were demonstrated with various
biosensors, which include surface plasmon resonance
[12, 13], waveguide mode sensor [14], colorimetric [15],
and RAMAN spectroscopy [16], help to detect diseases
from the basic viral infection to death-causing diseases,
such as cancer [17–20]. Among the revealed sensors,
colorimetric analysis with aptamers brings out several
positive features, such as easier visualization, rapidness,
cheaper, effective, and used to detect tiny analytes in-
cluding heavy metals [21], smaller molecular weight
proteins [22], DNA [23], and cancer biomarkers [24],
without involving sophisticated instrumentation and
trained personnel [25].

)e visual colorimetric analysis is the salt-induced ag-
gregation assay by utilizing DNA, RNA, or aptamers with
the gold nanostructure to detect the desired target. Gold is
one of the unavoidable materials in the field of biosensors
due to its versatile physical and chemical properties.
Moreover, gold nanoparticle (GNP) is smaller, suitable to
confine the electrons in order to produce the quantum ef-
fects, a key consideration for the colorimetric assay [26]. In
addition, the functionalized GNP leads to find several
downstream applications. Due to the abovementioned
positive features, gold nanomaterial and the gold surface
have been applied efficiently in all types of sensor to detect
different biomarkers [8, 27–30]. In general, the unmodified
dispersed GNPs have a bright red-wine color and changes its
color to purple or blue when it aggregates under ionic
condition [30, 31]. )is controlled change in color induced
by the aggregation can be the basis of colorimetric assay. In
the case of aptamer-based colorimetric assay, aptamers are
immobilized on the surface of the gold through the elec-
trostatic attraction [15]. When the aptamer is bound to the
target, the color of the GNP solution changed to purple at a
high salt concentration. )is study has utilized a modified
gold nanorod (GNR) attached with anticortisol aptamer to
interact with the cortisol (target), a model system that can be

applied to measure the gestational hypertension by quan-
tifying the cortisol as in earlier study [32].

2. Materials and Methods

2.1. Materials. Gold nanorod (GNR) was obtained from
Nanocs, USA. Sodium chloride (NaCl) was procured from
Sigma-Aldrich, USA. )e hormones cortisol and pro-
gesterone were from Adooq Biosciences (USA). Norepi-
nephrine was fromAbcam (USA). Anticortisol sequence was
adapted from Sanghavi et al. [32] and synthesized com-
mercially. Buffers and other reagents were obtained in pure
form and used directly. )e size and shape of the GNR were
observed under field-emission scanning electron micros-
copy at 500 nm scale.

2.2. Optimization of Monovalent Ions on Gold Nanorod for
Salt-Induced Aggregation. To perform the colorimetric as-
say, first optimize a suitable concentration of NaCl to induce
the aggregation of GNR. Different concentrations of NaCl
were added independently with the constant volume of 10 μl
GNR (final concentrations were 15, 30, 60, 125, 250, and
500mM) and kept for 10min at room temperature. )e
changes in the colors were noticed and the maximum
wavelength absorbance was measured by using the UV-
visible spectrophotometer, in which the scanned wavelength
ranged from 400 to 750 nm.

2.3. Optimization of Aptamer Attachment on Gold Nanorod.
Before performing the colorimetric assay, the condition was
optimized for the right aptamer concentration to stabilize
the GNR at a high salt concentration. Different concen-
trations of the diluted aptamer were mixed with 10 μl of
GNR (final concentration will be 1.25, 2.5, 5, 10, 15, and
20 μM) independently and kept for 30min at RT. After that,
the optimal higher concentration of NaCl was added to each
dilution and incubated for 10min to observe the changes
with the color of GNR. )e changes in the colors were
noticed and the absorbance wavelength maximum was
measured by using the UV-visible spectrophotometer
scanned from 400 to 750 nm.

2.4. Colorimetric Detection of Cortisol Using Anticortisol
Aptamer on GNR. )e aptamer modified GNR (aptamer-
GNR) was used to detect the cortisol. For that, 1mg/mL of
cortisol was added with aptamer-GNR and kept for 30min at
RT.)en, the higher concentration of NaCl was added to the
solution to observe the color change. After the confirmation
of detection, to evaluate the limit of detection, the cortisol
concentrations were titrated from 0.625 to 1mg/mL by
interacting aptamer-GNR. Specific detection of cortisol was
carried out with two control hormones, namely norepi-
nephrine and progesterone. For that, 1mg/mL of control
hormone was mixed with aptamer-GNR and incubated for
30min at RT. )en, NaCl was added to evaluate the in-
teraction of aptamer with control hormones. )e results
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obtained were compared with 1mg/mL of cortisol in-
teraction with aptamer-GNR.

3. Results and Discussion

Gestational hypertension is a critical disorder during the
pregnancy period and it causes various issues with foetus
development and delivery. Finding a level of hypertension is
necessary to take care of the mother and baby during and
after the period of pregnancy. Cortisol is the stress hormone
and its level plays a crucial role in causing different diseases,
such as gestational hypertension, during pregnancy.

In the materials study, it has been widely accepted that
the wavelength shift of the plasmon band with the gold
shows a big impact in the biosensing applications. In general,
the spherical-shaped gold particles have been used for the
colorimetric assay to induce a large shift for the high-per-
formance detection, in which the controlled aggregation and
dispersion causes the spectral difference and in the presence
of the target, aggregation with ionic solution displays a broad
spectrum under UV-visible spectroscopy scanning. How-
ever, GNP-based colorimetric assay is not suitable for
multiplex analysis due to the absence of a properly shaped
spectrum. Researchers are looking for an alternate particle to
minimize a wide spectrum in order to move towards the
multiple target analysis. It has been revealed that the usage of
anisotropic silver nanoparticles with tetrahedron shows a
spectral shift upon target interaction but it does not cause
the aggregation, and demonstrated a microarray for mo-
lecular fingerprint analysis. Researchers also proposed the
usage of GNR to overcome the high aggregation, as GNR can
be fabricated at different range of size ratios and has unique
advantage for multiplex analysis. Towards this direction, the
current study is an attempt to optimize the condition for
future multiplex analysis [33]. To support this notion, re-
searchers have demonstrated the multiplex detection based
on the plasmon changes by GNR [33].

To proceed in this line, the current research has been
carried out to detect the level of cortisol by a gold nanorod-
(GNR-) based aggregation on colorimetric assay using an
aptamer generated against cortisol. Figure 1 shows the
schematic representation of the colorimetric assay-based
detection of cortisol. As shown in the figure, aptamers are
electrostatically bound on the surface of GNR, and upon
interacting with cortisol aptamers will be released from
GNR. With this condition when adding the higher con-
centration of NaCl, the GNRwill be aggregated and the color
of the solution is turned into purple from red (dispersion)
(Figure 1(a)).)e predicted secondary structure of the tested
anticortisol aptamer by mfold software is shown in
Figure 1(b), and the aptamer has apparent stems and loops
to interact with cortisol.

3.1. Requirement of Optimal Monovalent Ion for GNR
Aggregation. Before initiating the detection of cortisol,
determination of a suitable concentration of NaCl is
necessary to achieve higher sensitivity; for that, differ-
ent concentrations of NaCl were tested with the constant

GNR volume. Figure 2(a) displays the obtained UV-visible
spectrum with NaCl titration on GNR. It is clearly seen that
with increase in the NaCl concentration, the optical density
(OD) of the GNR was reduced. With the concentration
from 30 to 250mM, the peak position has not been shifted,
but at the higher concentration (500mM), the apparent
peak shift was noticed from 550 to 620 nm, due to the
aggregation of GNR (Figure 2(b)). )e aggregation was
evidenced by the field-emission scanning electron mi-
croscopy observation (Figure 2(b), inset). )is aggregation
is due to the NaCl bridging on the unmodified negatively
charged GNRs, resulting in appearance of purple or blue
solution [31].

3.2. Requirement of Optimal Aptamer Concentration for GNR
Dispersion. Upon finding the optimal concentration at
500mM of NaCl, the experiment was performed to find a
suitable concentration of anticortisol aptamer to cover
completely the surface of GNR, to be stable under 500mM of
NaCl in the absence of cortisol. Without the complete cov-
erage, the GNRwill cause the aggregation by NaCl even in the
absence of cortisol and leads to the erroneous positive result.
For the optimization analysis, initially different concentra-
tions from 1.25 to 10 μM of aptamer were mixed in-
dependently with the fixed volume of GNR and 500mM (final
concentration) NaCl was added to check the stability of GNR.
In general, thiol-conjugated aptamers have been used to
immobilize them on the surface of the gold and they are very
stable under a high salt concentration. In our case, we directly
immobilized the unmodified aptamer on the surface of the
GNR. In principle, the aptamer or single-stranded DNA can
attract to the surface of gold nanostructure due to the co-
ordination between gold and “N” atoms in DNA bases. As
shown in Figure 3, the aptamer concentration with 1.25 μM
shows the peak maximum at 620 nm with the optical ab-
sorbance of 0.6, indicating GNR is in the aggregated form in
the presence of NaCl. By increasing the aptamer concen-
tration further, the peak intensity was also increased and all
the higher concentrations of aptamer showed the peak at the
wavelength ∼550 nm, indicating that GNR is in the dispersal
state. At the aptamer concentration of 10 μM, the solution
shows the maximum peak intensity with optical absorption as
1.2. )is result confirms that the aptamer concentration
needed to detect the cortisol ideally by the colorimetric assay
is 10 μM. As shown in Figure 3(a), the concentration at 10 μM
causes the formation of an apparent peak at 550 nm with a
clear change of the solution to red. To confirm that this
concentration is the optimum, we performed the experiments
with further concentrations at 15 and 20 μM. )e results
clearly displayed that 10 μM is the optimum concentration for
the current colorimetric assay for the cortisol detection
(Figures 3(a) and 3(b)).

3.3. Genuine Interaction of Cortisol and Nonbiofouling.
)e abovementioned experiments were used to determine
the optimal NaCl and aptamer concentrations. Before
proceeding further for the cortisol detection, the nonspecific
binding of cortisol on the surface of the GNR was tested. If
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Figure 1: (a) Schematic representation of cortisol detection by aptamer-GNR based colorimetric assay. As-received GNR appears red and in
the presence of NaCl, it turned into purple. At higher concentration of aptamer-GNR, it appears to be red even in the presence of NaCl.
When aptamer-GNR reacts with cortisol at appropriate concentration, the color of the GNR solution is turned to purple with NaCl,
indicating the release of the aptamer from the GNR. �e aggregation is displayed by SEM analysis (inset). (b) Secondary structure of
anticortisol aptamer. Folded by mfold online software.
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cortisol itself binds on the GNR, it may lead to a false-
negative result. For this analysis, different concentrations of
cortisol (0.5, 1, 2, and 4mg/mL) were mixed independently
with the constant GNR and induced the color change by
500mM of NaCl. It was noticed that even when the

concentration of cortisol was increased, the color of the GNR
solution turned to purple in the presence of NaCl due to the
aggregation, which means that the cortisol itself is not able to
bind on the surface of the GNR, and similar results were
observed with all the concentrations tested (Figure 4).
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Figure 2: NaCl titration on GNR. (a) Different concentrations of (30 to 500mM) NaCl were mixed independently with a constant amount
of GNR and the aggregation pattern was observed. Inset displays the color developments. (b) Peak absorbance maximum with different
concentrations of NaCl, averaged with different experimental replicates. Inset is for aggregation obtained by SEM.
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Figure 3: Optimization of aptamer concentration. (a) Aptamer with concentrations of 1.25 to 20 μM was mixed independently with GNR
and the aggregation was checked in the presence of NaCl. Inset displays the color developments. (b) Peak absorbance maximums with
different concentrations of aptamer, averaged with different experimental replicates. )e arrow indicates the direction of the changes.
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3.4. Cortisol in Aggregation of Aptamer-GNR. After all the
optimizations, we performed the colorimetric assay us-
ing aptamer, cortisol, and GNR with the above final
conditions. Initially, the higher concentration (1 mg/mL)
of cortisol was used to evaluate the release of aptamer
from the GNR. As shown in Figure 5, in the control
experiment using aptamer-GNR (without cortisol), we
did not observe the changes with the spectrum at dif-
ferent wavelengths, and it still remains same at the
wavelength 550 nm. )is means that in the absence of

cortisol, the aptamer-GNR kept its red color under a high
concentration of salt. At the same time, when we mixed
1 mg/mL of cortisol to aptamer-GNR, the cortisol in-
teracts with aptamer on GNR and released. Under this
condition, at the higher salt concentration, the color of
the solution turned into purple and the spectrum was
shifted from 550 to 620 nm due to the aggregation
(Figure 5(a) and inset). )e apparent mechanism with
the aggregation and dispersion is shown in the
Figure 5(b).
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Figure 4: Nonfouling effect of cortisol on GNR. Different concentrations of cortisol (0.5–4mg/mL) were mixed independently with
constant amount of GNR, and 500mM NaCl was added to evaluate the nonfouling effect.
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3.5.DeterminationofLimitofDetectionwithGNRAggregation.
Since it was found that 1mg/mL of cortisol was clearly
detected by the colorimetric assay, to evaluate the limit of
detection, the titration was performed with the cortisol from
1mg/mL down to 0.06mg/mL under similar experimental
conditions. Figure 6 explains the results of the cortisol
detection at different concentrations. It was noticed that the

color of the solution clearly changed at three concentrations
(1, 0.5, and 0.25mg/mL) of cortisol and the corresponding
shifts in optical absorbance were found to be 0.73, 0.73, and
0.78, respectively, at ∼620 nm. )e concentrations from 0.12
to 0.06mg/mL did not show the spectral change and still
retain their peak maximums at 550 nm, which indicated that
these cortisol concentrations are not sufficient to release the
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Figure 6: (a) Limit of detection with cortisol. Cortisol concentrations from 0 to 1mg/mL were mixed independently with GNR-aptamer
conjugates and the aggregation was checked in the presence of NaCl. Inset displays the color developments. (b) Peak absorbance maximums
with different concentrations of cortisol, averaged with different experimental replicates. )e arrow indicates the direction of the changes.
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by using GNR-aptamer conjugates. (b) Specific detection of cortisol was carried out with two different control hormones (norepinephrine (C1) and
progesterone (C2)). )e aptamers interacted with only cortisol, and the color of the GNR was changed to purple due to the aggregation.
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aptamer from GNR. Figure 7(a) shows the linear relation-
ship between the absorption maximum and the concen-
tration of the cortisol. From these results, it was concluded
that the limit of detection was found at 0.25mg/mL of
cortisol using the colorimetric assay and that it is more
suitable to monitor the gestational hypertension with the
changes in cortisol levels.

3.6. Comparative Analysis and Specificity. Table 1 summa-
rizes the quantitative detection of cortisol by different
methods including the conventional strategies. )e primary
advantages of the current colorimetric method is the visual
detection by naked eye, which is absent in other methods for
cortisol detection. In addition, colorimetric method does not
need any prior handling experiences and the special in-
struments, thereby making it appealing over other methods.
Furthermore, to compliment the obtained results, it was
compared with the interdigitated electrode sensor and a
clear binding was noticed with the same concentration used
in the colorimetric assay. However, interdigitated electrode
sensor gives a clear response compared to the colorimetric
assay (Supplementary information (available here)).

Specific detection of cortisol was shown by performing
the experiment with two different control hormones namely,
norepinephrine and progesterone. As shown in Figure 7(b),
with the control hormones, the GNR did not show the
changes in color and the absorbance peak maximums were
stable at 550 nm. At the same time with the cortisol, the
aptamer was released from the GNR upon interaction, and
the color of the GNR solution was changed to purple due to
the aggregation in the presence of NaCl. From these results,
it was concluded that cortisol was specifically detected by the
colorimetric assay with aptamer-GNR.

4. Conclusion

Gestational hypertension causes various health issues to the
mother and baby during and after the period of pregnancy.
Identifying the real condition of hypertension with a suitable
biomarker is mandatory to treat properly. In this work,
cortisol, known as the “stress hormone,” was detected by the
colorimetric assay using aptamer and gold nanorod con-
jugate as the primary tools. Cortisol was clearly detected by
showing the color change of the gold nanorod solution
turning to purple from red with monovalent salt, and the
limit of detection was found as 0.25mg/mL. )is method of
detection has advantages over other methods to quantify the

levels of cortisol with a higher specificity and helps to treat
gestational hypertension.
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M. Krzyścin, G. H. Bręborowicz, and F. K. Główka, “Increased
cortisol metabolism in women with pregnancy-related hy-
pertension,” Endocrine, vol. 61, no. 1, pp. 125–133, 2018.

[5] P. Vianna, M. E. Bauer, D. Dornfeld, and J. A. B. Chies,
“Distress conditions during pregnancy may lead to pre-
eclampsia by increasing cortisol levels and
altering lymphocyte sensitivity to glucocorticoids,” Medical
Hypotheses, vol. 77, no. 2, pp. 188–191, 2011.

[6] P. Ferrari, “)e role of 11β-hydroxysteroid dehydrogenase
type 2 in human hypertension,” Biochimica et Biophysica Acta
(BBA)—Molecular Basis of Disease, vol. 1802, no. 12,
pp. 1178–1187, 2010.
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