Differential gene expression at different stages of mesocarp development in high- and low-yielding oil palm

Wong, Yick Ching and Teh, Huey Fang and Mebus, Katharina and Ooi, Tony Eng Keong and Kwong, Qi Bin and Koo, Ka Loo and Ong, Chuang Kee and Mayes, Sean and Chew, Fook Tim and Appleton, David R. and Kulaveerasingam, Harikrishna (2017) Differential gene expression at different stages of mesocarp development in high- and low-yielding oil palm. BMC Genomics, 18 (1). p. 470. ISSN 1471-2164

Full text not available from this repository.
Official URL: https://doi.org/10.1186/s12864-017-3855-7

Abstract

Background: The oil yield trait of oil palm is expected to involve multiple genes, environmental influences and interactions. Many of the underlying mechanisms that contribute to oil yield are still poorly understood. In this study, we used a microarray approach to study the gene expression profiles of mesocarp tissue at different developmental stages, comparing genetically related high- and low- oil yielding palms to identify genes that contributed to the higher oil-yielding palm and might contribute to the wider genetic improvement of oil palm breeding populations. Results: A total of 3412 (2001 annotated) gene candidates were found to be significantly differentially expressed between high- and low-yielding palms at at least one of the different stages of mesocarp development evaluated. Gene Ontologies (GO) enrichment analysis identified 28 significantly enriched GO terms, including regulation of transcription, fatty acid biosynthesis and metabolic processes. These differentially expressed genes comprise several transcription factors, such as, bHLH, Dof zinc finger proteins and MADS box proteins. Several genes involved in glycolysis, TCA, and fatty acid biosynthesis pathways were also found up-regulated in high-yielding oil palm, among them; pyruvate dehydrogenase E1 component Subunit Beta (PDH), ATP-citrate lyase, β- ketoacyl-ACP synthases I (KAS I), β- ketoacyl-ACP synthases III (KAS III) and ketoacyl-ACP reductase (KAR). Sucrose metabolism-related genes such as Invertase, Sucrose Synthase 2 and Sucrose Phosphatase 2 were found to be down-regulated in high-yielding oil palms, compared to the lower yield palms. Conclusions: Our findings indicate that a higher carbon flux (channeled through down-regulation of the Sucrose Synthase 2 pathway) was being utilized by up-regulated genes involved in glycolysis, TCA and fatty acid biosynthesis leading to enhanced oil production in the high-yielding oil palm. These findings are an important stepping stone to understand the processes that lead to production of high-yielding oil palms and have implications for breeding to maximize oil production.

Item Type: Article
Uncontrolled Keywords: Elaeis guineensis; Expression microarray; Gene expression; Oil palm; Oil yield
Subjects: Q Science > Q Science (General)
Q Science > QH Natural history
Q Science > QK Botany
Divisions: Deputy Vice Chancellor (Research & Innovation) Office > Centre for Research in Biotechnology for Agriculture
Deputy Vice Chancellor (Research & Innovation) Office > Institute of Research Management and Services
Depositing User: Ms. Juhaida Abd Rahim
Date Deposited: 21 Oct 2019 08:03
Last Modified: 21 Oct 2019 08:03
URI: http://eprints.um.edu.my/id/eprint/22783

Actions (login required)

View Item View Item