Growth and photosynthesis of Chlorella strains from polar, temperate and tropical freshwater environments under temperature stress

Lee, Kok Keong and Lim, Phaik Eem and Poong, Sze Wan and Wong, Chiew Yen and Phang, Siew Moi and Beardall, John (2018) Growth and photosynthesis of Chlorella strains from polar, temperate and tropical freshwater environments under temperature stress. Journal of Oceanology and Limnology, 36 (4). pp. 1266-1279. ISSN 2096-5508

Full text not available from this repository.
Official URL: https://doi.org/10.1007/s00343-018-7093-x

Abstract

Elevated temperatures as a consequence of global warming have significant impacts on the adaptation and survival of microalgae which are important primary producers in many ecosystems. The impact of temperature on the photosynthesis of microalgae is of great interest as the primary production of algal biomass is strongly dependent on the photosynthetic rates in a dynamic environment. Here, we examine the effects of elevated temperature on Chlorella strains originating from different latitudes, namely Antarctic, Arctic, temperate and tropical regions. Chlorophyll fluorescence was used to assess the photosynthetic responses of the microalgae. Rapid light curves (RLCs) and maximum quantum yield (F v / F m ) were recorded. The results showed that Chlorella originating from different latitudes portrayed different growth trends and photosynthetic performance. The Chlorella genus is eurythermal, with a broad temperature tolerance range, but with strain-specific characteristics. However, there was a large overlap between the tolerance range of the four strains due to their “eurythermal adaptivity”. Changes in the photosynthetic parameters indicated temperature stress. The ability of the four strains to reactivate photosynthesis after inhibition of photosynthesis under high temperatures was also studied. The Chlorella strains were shown to recover in terms of photosynthesis and growth (measured as Chl a) when they were returned to their ambient temperatures. Polar strains showed faster recovery in their optimal temperature compared to that under the ambient temperature from which they were isolated.

Item Type: Article
Uncontrolled Keywords: Antarctic; Arctic; F v / F m; microalgae; pigments; recovery
Subjects: Q Science > Q Science (General)
Q Science > QH Natural history
Divisions: Faculty of Science > Institute of Biological Sciences
Deputy Vice Chancellor (Research & Innovation) Office > Institute of Ocean and Earth Sciences
Depositing User: Ms. Juhaida Abd Rahim
Date Deposited: 20 Jun 2019 06:45
Last Modified: 20 Jun 2019 06:45
URI: http://eprints.um.edu.my/id/eprint/21521

Actions (login required)

View Item View Item