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Abstract: Wild-cultivated medicinal mushroom Ganoderma lucidum was morphologically identified 

and sequenced using phylogenetic software. In submerged-liquid fermentation (SLF), biomass, 

exopolysaccharide (EPS) and intracellular polysaccharide (IPS) production of the identified  

G. lucidum was optimised based on initial pH, starting glucose concentration and agitation rate 

parameters using response surface methodology (RSM). Molecularly, the G. lucidum strain QRS 

5120 generated 637 base pairs, which was commensurate with related Ganoderma species. In RSM, 

by applying central composite design (CCD), a polynomial model was fitted to the experimental data 

and was found to be significant in all parameters investigated. The strongest effect (p < 0.0001) was 

observed for initial pH for biomass, EPS and IPS production, while agitation showed a significant 
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value (p < 0.005) for biomass. By applying the optimized conditions, the model was validated and 

generated 5.12 g/L of biomass (initial pH 4.01, 32.09 g/L of glucose and 102 rpm), 2.49 g/L EPS 

(initial pH 4, 24.25 g/L of glucose and 110 rpm) and 1.52 g/L of IPS (and initial pH 4, 40.43 g/L of 

glucose, 103 rpm) in 500 mL shake flask fermentation. The optimized parameters can be upscaled 

for efficient biomass, EPS and IPS production using G. lucidum. 

Keywords: Ganoderma lucidum; response surface methodology; submerged-liquid fermentation; 

exopolysaccharide; intracellular polysaccharide 

 

1. Introduction 

Ganoderma lucidum is a mushroom traditionally used in Chinese medicine for the prevention 

and treatment of human disease. Studies on G. lucidum and its products have reported beneficial 

biological, health-preserving and therapeutic effects [1–5]. Fungal polysaccharide has been shown to 

possess antioxidant, anti-inflammatory, antibacterial, antifungal and antiviral activities [4,6–10], and 

can be obtained via solid substrate fermentation (SSF) or submerged-liquid fermentation (SLF). 

However, owing to the inherent nature of the solid substrate in SSF, fungal growth occurs through 

mycelial colonization of the substrate bed [11]. Furthermore, poor mass transfer and heterogeneity 

issues within solid matrix render polysaccharide production in SSF a highly time-consuming method. 

SLF has been shown to be superior to SSF in this respect [11,12]. 

In SLF, a suspended biomass grows as a cluster of mycelia that eventually stabilize to form 

pellets [13] in the form of densely branched hyphae forming a compact ovoid shape. Fungal 

polysaccharide exists in two forms, exopolysaccharide (EPS) and intracellular polysaccharide (IPS). 

EPS is secreted outside the mycelium whereas IPS is produced inside the mycelium [10,14]. 

Generally, total polysaccharide content produced by the mushroom thus comprises both EPS and IPS. 

Many factors affect the cultivation of biomass and polysaccharide production in SLF, including pH, 

agitation speed, oxygen transfer rate (OTR), glucose concentration and temperature [15,16]. 

Hence, to enhance the cultivation of biomass and polysaccharide production in SLF, where the 

key parameters interact with each other in a complex manner, response surface methodology (RSM) 

represents the most effective solution compared with the one-factor-at-a-time (OFAAT) method [15]. 

In this study, RSM was used to study the interaction and correlation between the set of experimental 

variables and obtained results, and to subsequently establish the optimised conditions. The medicinal 

mushroom G. lucidum was subjected to morphological and molecular analyses prior to liquid 

fermentation. Next, a preliminary study was conducted using the OFAAT method to obtain baseline 

data and the working ranges of the selected SLF parameters, prior to the optimisation of biomass, 

exopolysaccharide (EPS) and intracellular polysaccharide (IPS) production. The selected parameters 

were initial pH, glucose concentration and agitation rate. 
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2. Materials and methods 

2.1. Molecular characterisation 

2.1.1. Mushroom mycelium 

The fruiting body of Ganoderma lucidum was obtained from the Mushroom Unit, Expo Hill, 

Universiti Putra Malaysia (UPM). The appearance and structure of the fruiting body (Figure 1A) and 

the basidiospores structure (Figure 1C) was first evaluated to validate the fungus. Next, with some 

modification of the Stamets [17] method, tissue culture was performed to obtain the mycelium. The 

fruiting body was washed with 99.9% ethanol (Sigma-Aldrich, Dorset, UK) for 10 s and dried in a 

laminar flow. Then, it was cracked using a scalpel and the inner part of the fruiting body was twisted 

and removed using forceps (Figure 1B). The tissue obtained was placed on malt extract agar (MEA) 

(Sigma-Aldrich, Dorset, UK) and maintained at room temperature until signs of mycelium growth 

were observed. The mycelium was then sub-cultured onto fresh MEA to obtain pure mycelium 

(Figure 1D), which was used as an initial culture for preservation in a potato dextrose agar (PDA) 

(Sigma-Aldrich, Dorset, UK) slant at 4 °C.  

2.1.2. Preparation of mycelium for DNA extraction 

The mycelium was separated from agar and placed in pre-cooled pestle and ground to a fine 

powder under liquid nitrogen. The powder was freeze-dried and stored in an Eppendorf tube 

(Eppendorf no. 0030120973, Hamburg, Germany) at −20 °C [18,19].  

2.1.3. gDNA extraction 

The fine powdered mycelium (30 mg) was resuspended and lysed in lysis buffer (500 µL) by 

pipetting multiple times until the suspension became foamy. RNAase A (EN0531, Thermo Scientific, 

Waltham, MA, USA) was added and the mixture was incubated for 5 min at 37 °C. To remove the 

cell debris, polysaccharide and protein, NaCl2 solution (165 µL, 5 mol/L) was added and the tube 

was inverted multiple times before centrifugation (13,000 rpm, 20 min, 4 °C). The resulting 

supernatant was transferred to a fresh tube and mixed with chloroform (400 µL) and phenol (400 µL) 

by gentle inversion of the tube multiple times until the solution turned cloudy. The mixture was 

centrifuged (13,000 rpm, 20 min, 4 °C) and the aqueous phase was removed and extracted using an 

equal volume of chloroform. DNA was precipitated using 95% ethanol (2 volumes) and purified 

from polysaccharide by the addition of lysis buffer (500 µL) and mixing by gentle pipetting. NaCl  

(165 µL, 5 mol/L) was added and mixed by gentle inversion multiple times. To extract the purified 

DNA, chloroform (2 volumes) was added and the sample was centrifuged (13,000 rpm, 10 min, 

4 °C). DNA was precipitated using ethanol (95%) and washed three times in ice-cold ethanol (70%). 

The washed DNA was dried, dissolved in Tris-EDTA buffer (50 µL) and stored at −20 °C [19]. 
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Figure 1. Different stages of Ganoderma lucidum QRS 5120 (A) obtained from Expo Hill, Mushroom Unit, University Putra Malaysia. (B) 

sliced fruiting body of Ganoderma lcuidum QRS 5120. (C) Basidiospores of Ganoderma lucidum QRS 5120 (Bar = 10 µm). (D) mycelium 

of Ganoderma lucidum QRS 5120 (Day 7). (E) pellets formation in submerged fermentation at day 7 (Bar = 0.05 cm). 
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2.1.4. PCR amplification 

DNA dissolved in TE buffer (Thermo Fisher no. 12090015, Invitrogen, Waltham, MA, USA) 

was brought to room temperature slowly from −20 °C. Using universal primers (ITS1 and ITS4), the 

fungal ITS gene was amplified. First, the solution (500 µL) was added to PCR tubes (Eppendorf no. 

0030124332, Hamburg, Germany). Then, 0.5 pmol of ITS1 and ITS4 was added following by 

deoxynucleotide triphosphates (dNTPs, 200 M each) (Promega no. U1511, Madison, OH, USA), 

0.5 U DNA polymerase (Promega no. D1501, Madison, OH, USA), supplied PCR buffer 

(ThermoFisher no. 14966123, Platinum II Green PCR Buffer) and water. PCR was performed as 

follow: 1 cycle (98 °C for 2 min) for initial denaturation; 25 cycles (98 °C for 15 secs; 60 °C for  

30 secs; 72 °C for 30 sec) for annealing and extension, and 1 cycle (72 °C for 10 min) for final 

extension of the amplified DNA (Eppendorf Mastercycler gradient, Hamburg, Germany) [20].  

2.1.5. PCR-amplified product purification and sequencing 

The PCR products were purified and directly sequenced using a 16-capillary 3100 Genetic 

Analyser (Applied Biosystem, Foster City, CA, USA). A BigDye® Terminator v3.1 Cycle 

Sequencing Kit (Applied Biosystems, Foster City, CA, USA) was used according to the 

manufacturer’s protocol. 

2.1.6. Data analysis 

The obtained gDNA sequence was entered into BLAST. The NCBI Nucleotide Collection (nr/nt) 

database was selected and the query was submitted. Sequences producing significant alignment were 

identified, and the top 10 hit blast was selected for Multiple Sequencing Alignment (MSA) using 

Clustal Omega [21].  

2.1.7. Phylogenetic analysis 

Using the neighbouring-joining (NJ) in Molecular Evolutionary Genetic Analysis (MEGA-X), 

the evolutionary distance (Knuc) of identical fungal species was calculated and a phylogenetic tree 

was generated. The species with closest Knuc were considered the same species [21]. 

2.2. Submerged-liquid fermentation 

G. lucidum QRS 5120 was subjected to batch fermentation in a 500-mL Erlenmeyer flask using 

the optimal media compositions and growth parameters (Table 1). 
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Table 1. Experimental range and levels of the independent variables. 

Independent variables 
Range and levels 

−1 0 1 

Initial pH 4 5 6 

Glucose (g/L) 10 30 50 

Agitation (rpm) 90 100 110 

2.2.1. Optimisation of media (initial pH, glucose and agitation) using RSM 

Based on the preliminary studies, initial pH was shown to have a high significance for the 

responses (mycelial biomass, EPS production and IPS production) [data not shown]. The media 

composition of seed culture in the shake flask were constant at (g/L): yeast extract 1 (Oxoid  

no. LP0021, Dardilly, France), KH2PO4 0.5 (Bendosen Laboratory Chemicals no. C0637, Bendosen, 

Norway), K2HPO4 0.5 (Bendosen Laboratory Chemicals no. C0680-2296192, Bendosen, Norway), 

MgSO4 0.5 (Bendosen Laboratory Chemicals no. C0481, Bendosen, Norway), and NH4Cl2 4 

(Bendosen Laboratory Chemicals no. C0055, Bendosen, Norway), unless otherwise stated [21]. To 

optimise the mycelium biomass, EPS and IPS production, CCD was used. The levels and range of 

the variables for this study are shown in Table 1. The lowest level of variables was initial pH 4; 

starting glucose concentration = 10 g/L; agitation rate = 90 rpm and the highest level of variables 

were initial pH 6; starting glucose concentration = 50 g/L; agitation rate = 110 rpm.  

To analyse the impact of factors and their interaction, an empirical model was established based 

on a second-order quadratic model for the responses, as shown in Eq 1: 

Y =   
  + ∑     

 
    + ∑      

  
    + ∑ ∑        

 
   

 
         (1) 

where Y is the predicted response,   
  is the constant coefficient,    is the linear coefficient,     is the 

interaction coefficient,     is the quadratic coefficient and      are the coded values. 

2.3. Analytical methods 

2.3.1. Mycelium biomass 

After the tenth day of fermentation, a 50 mL of sample was filtered using a Buchner funnel 

filter and the mycelial biomass (Figure 1E) was washed three times with distilled water. The filtered 

mycelial was dried in a food dehydrator at 35 °C to a constant weight. The mycelial biomass was 

calculated by subtracting the weight of pre-dried filter paper before filtering from the weight of filter 

paper with mycelial biomass. To obtain the concentration of mycelial biomass, the value obtained 

from the subtraction was multiplied by the dilution factor [12]. 
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2.3.2. Exopolysaccharide (EPS) 

The supernatant obtained from filtering the mycelial biomass (Section 2.3.1) was mixed with 

ethanol (95%; 4 volumes), stirred and maintained at 4 °C overnight. The mixture was then 

transferred to a pre-weighed 50 mL Falcon tube and centrifuged (10,000 rpm, 15 min). The 

supernatant was discarded upon centrifuging and the pellet was placed in a food dehydrator at the 

lowest temperature until a constant weight was achieved. Next, the EPS yield was estimated by 

multiplying the dilution factor by the EPS weight [12].  

2.3.3. Intracellular polysaccharide (IPS) 

After weighing, the filtered mycelial biomass (Section 2.3.1) was mixed with distilled water  

(10 volumes). Then, the mixture was sterilised (121 °C, 30 min, 15 psi) in an autoclave and the 

mixture was filtered to obtain the supernatant, mixed with ethanol (95%; 4 volumes), stirred and 

maintained at 4 °C overnight. Next, the mixture was transferred to a pre-weighed 50 mL Falcon tube 

and centrifuged (10,000 rpm, 15 min). The supernatant was discarded, and the pellet was placed in a 

food dehydrator at the lowest temperature until a constant weight was achieved. The IPS yield was 

estimated by multiplying the dilution factor by the IPS weight [14]. 

3. Results and discussion 

3.1. Molecular characterisation 

3.1.1. Gel electrophoresis 

Molecular identification of a wild fungal sample is important to determine the species of the 

sample [22]. Thus, molecular identification was performed on wild G. lucidum. The base pairs of 

wild G. lucidum were estimated using agarose gel electrophoresis under UV light (Figure 2). The 

marker (Lane 1) represented the standard curve, and the base pairs of QRS 5120 were estimated to 

be 637 bp.  
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Figure 2. Agarose gel electrophoresis of DNA isolated from Ganoderma lucidum 

mycelium. Lane 1 corresponds to 10 kb marker. Lane 2 corresponds to negative control 

(−ve), Lane 3 corresponds to positive control (+ve) and Lane 4 corresponds to the sample 

(QRS_5120). 

3.1.2. Phylogenetic tree 

Upon sequencing of the product, it was aligned with the top-10 related species as retrieved from 

NCBI BLAST. Based on the BLAST reference databases, QRS 5120 was found to be 99% similar to 

Ganoderma sp. Detailed phylogenetic analyses (Figure 3) showed the evolutionary distance (Knuc) 

values. Clade A showed that G. lucidum QRS 5120 was closely related to G. lucidum isolate 39s 

compared with G. lucidum isolate 49s. 
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Figure 3. Phylogenetic tree of Ganoderma lucidum strain QRS_5120 with evolutionary distance. Bar = 0.00020.



28 

AIMS Microbiology Volume 5, Issue 1, 19–38. 

3.2. Optimization 

Using RSM, the effect of initial pH, starting glucose concentration and agitation rate on the 

biomass, EPS and IPS production was investigated. CCD design, the level of each variable and the 

responses are shown in Table 2. In total, twenty experiments were designated by CCD, where the 

coefficients were evaluated using non-linear regression analysis. To estimate the significance of the 

model coefficient, analysis of variance (ANOVA) was used. The significance of each coefficient was 

indicated by p < 0.05. 

Table 2. Experimental design matrix using RSM with CCD and responses for the 

mycelial biomass (DCW), EPS and IPS production from the mycelium of G. lucidum 

strain QRS 5120. 

Run 

No. 

Variables  Responses 

Initial 

pH 

Glucose 

(g/L) 

Agitation 

(rpm) 

 Biomass  

(DCW g/L) 
EPS (g/L) IPS (g/L) 

 Actual Predicted Actual Predicted Actual Predicted 

1 4 10 90  4.6 4.52 2.2 2.31 1.2 1.28 

2 6 50 110  3.8 3.92 1.2 1.13 0.2 0.14 

3 6 50 90  3.1 2.97 0.9 0.91 0.2 0.25 

4 5 30 100  4.1 4.12 1.1 1.31 0.8 0.85 

5 5 30 90  3.9 3.6 1.3 1.15 0.7 0.73 

6 5 50 100  3.8 3.96 1 0.91 0.9 0.83 

7 5 30 100  4.2 4.12 1.4 1.31 0.9 0.85 

8 4 50 110  5.1 4.79 2.1 2.18 1.4 1.53 

9 5 30 100  3.8 4.12 1 1.31 0.9 0.85 

10 4 50 90  4.9 5.04 1.9 1.96 1.5 1.44 

11 5 30 100  3.9 4.12 1.3 1.31 0.7 0.85 

12 5 30 110  4.2 4.3 1.4 1.37 0.9 0.77 

13 5 30 100  4.2 4.12 1.5 1.31 0.8 0.85 

14 5 30 100  4.1 4.12 1.2 1.31 0.8 0.85 

15 4 30 100  5.2 5.26 2.9 2.61 1.7 1.57 

16 6 10 110  4.1 4 1.2 1.18 0.1 0.18 

17 6 30 100  4 3.74 1.3 1.41 0.3 0.33 

18 4 10 110  4.8 4.97 2.5 2.53 1.5 1.47 

19 5 10 100  4.1 3.74 1.2 1.11 0.8 0.77 

20 6 10 90  2 2.35 1 0.96 0.3 0.19 
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3.2.1. Optimization of mycelium biomass production 

The ANOVA for mycelium biomass production is shown in Table 3. The predicted coefficient 

determination indicates that 91.47% (R
2
 = 0.9147) of the variability in the response can be explained 

using this model. The model is significant (p < 0.005). The adjusted coefficient determination value 

(Adj. R
2
 = 0.84) implies the significance of the model and is in reasonable agreement with the 

predicted R
2
 value. By considering the significant terms, the model, in terms of actual variables of 

biomass, was regressed and is expressed by Eq 2. 

                                                                    

                                                                      

                                                                          (2) 

Table 3. Analysis of variance (ANOVA) for the experimental results of the CCD 

quadratic model for biomass from the mycelium of G. lucidum strain QRS_5120. 

Source Sum of Squares DF Mean Square F Value Prob > F  

Model 8.588136364 9 0.954237374 11.90767001 0.0003

 significant 

A: pH 5.776 1 5.776 72.07714124 <0.0001
 

significant 

B: Glucose 0.121 1 0.121 1.509926262 0.2473  

C: Agitation 1.225 1 1.225 15.28644356 0.0029
 

significant 

A
2
 0.410511364 1 0.410511364 5.122660238 0.0471

 
significant 

B
2
 0.191136364 1 0.191136364 2.385138968 0.1535  

C
2
 0.073636364 1 0.073636364 0.918888259 0.3604  

AB 0.005 1 0.005 0.062393647 0.8078  

AC 0.72 1 0.72 8.984685196 0.0134
 

significant 

BC 0.245 1 0.245 3.057288712 0.1109  

Residual 0.801363636 10 0.080136364    

Lack of Fit 0.666363636 5 0.133272727 4.936026936 0.0522 not significant 

Pure Error 0.135 5 0.027    

Cor Total 9.3895 19     

Std. Dev. = 0.28308366896796 R
2
 = 0.91465321514845 Adeq Precision = 14.52399050576 

Mean = 4.095 Adjusted R
2
 = 0.83784110878205   


 Significant value. 
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From the model, initial pH (A) shows the strongest effect (p < 0.0001) on biomass, while agitation (C) shows a significant effect at p < 0.05. Both quadratic 

terms of initial pH (AA) and initial pH and agitation (AC) show significance effect at p < 0.05 on the yield of mycelium biomass. However, negative effects are 

shown by glucose (B) and quadratic terms (B
2
, C

2
, AB, and BC). Figure 4 shows the combined effect of initial pH, glucose concentration and agitation in  

three-dimensional (3D) plots. One factor is at the optimum level and the other two factors are within experimental range. Figure 4a shows the effect of initial pH 

(A) and starting glucose concentration (B), Figure 4b shows the effect of A and agitation rate (C), and Figure 4c shows the effect of B and C on biomass 

production. From Figure 4a,b, it is clear that increasing the initial pH leads to a decrease in the mycelium biomass, while agitation at all rates shows that high 

mycelium biomass production and starting glucose concentration is normally distributed. The maximum mycelium biomass obtained was at initial pH 4, glucose 

concentration 26.5 g/L and 100 rpm. From Figure 4c, no significance effect of B and C on mycelium biomass production was observed. 

 

Figure 4. Response surface curve (3D plot) of mycelium biomass from G. lucidum strain QRS 5120 showing the interaction between (a) pH 

and glucose, (b) pH and agitation, (c) Glucose and agitation.   
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3.2.2. Optimization of EPS production 

The ANOVA of EPS production is shown in Table 4. The predicted coefficient determination 

indicates that 93.58% (R
2
 = 0.9358) of the variability in the response can be explained using this 

model. The model was significant (p < 0.005). The adjusted coefficient determination value  

(Adj. R
2
 = 0.8780) implies the significance of the model and is in reasonable agreement with the 

predicted R
2
 value. By considering the significant terms, the model, in terms of actual variables of 

biomass, was regressed and is expressed in Eq 3. 

                                                                

                                                                      

                                                                

                               (3) 

Table 4. Analysis of variance (ANOVA) for the experimental results of the CCD 

quadratic model for EPS production the mycelium of G. lucidum strain QRS_5120. 

Source Sum of Squares DF Mean Square F Value Prob > F  

Model 5.364181818 9 0.596020202 16.20420717 <0.0001

 significant 

A: pH 3.6 1 3.6 97.8744439 <0.0001
 

significant 

B: Glucose 0.1 1 0.1 2.718734553 0.1302  

C: Agitation 0.121 1 0.121 3.289668809 0.0998  

A
2
 1.330056818 1 1.330056818 36.16071429 0.0001

 
significant 

B
2
 0.255056818 1 0.255056818 6.934317845 0.0250

 
significant 

C
2
 0.008181818 1 0.008181818 0.222441918 0.6473  

AB 0.045 1 0.045 1.223430549 0.2946  

AC 0 1 0 0 1.0000  

BC 0 1 0 0 1.0000  

Residual 0.367818182 10 0.036781818    

Lack of Fit 0.192818182 5 0.038563636 1.101818182 0.4589 not significant 

Pure Error 0.175 5 0.035    

Cor Total 5.732 19     

Std. Dev. = 0.19178586543804 R
2
 = 0.93583074287889 Adeq Precision = 12.53566341056 

Mean = 1.48 Adjusted R
2
 = 0.8780784114699   


 Significant value. 
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From the model, initial pH (A) shows the strongest effect (p < 0.0001) on EPS concentration while both quadratic terms of initial pH (AA) 

and initial pH and glucose (BB) show a significance effect at p < 0.005 and p < 0.05, respectively, on EPS production. However, negative effects 

are shown by glucose (B), agitation (C) and quadratic terms (C
2
, AB, AC and BC). Figure 5 shows the combined effect of initial pH, glucose 

concentration and agitation in 3D plots. One factor is at the optimum level and the other two factors are within experimental range. Figure 5a 

shows the effect of initial pH (A) and starting glucose concentration (B), Figure 5b shows the effect of A and agitation rate (C) and Figure 5c 

shows the effect of B and C on biomass production. From Figure 5a,b, increasing initial pH leads decreased EPS production, agitation at all rates 

shows high EPS production and starting glucose concentration is normally distributed. The maximum EPS obtained was at initial pH 4, glucose 

concentration 26.5 g/L and 100 rpm. From Figure 5c, no significance effect of B and C on mycelium biomass production was observed. 

 

Figure 5. Response surface curve (3D plot) of EPS production from G. lucidum strain QRS 5120 showing the interaction between (a) 

pH and glucose, (b) pH and agitation, (c) Glucose and agitation.  
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3.2.3. Optimization of IPS production 

The ANOVA of IPS production is shown in Table 5. The predicted coefficient determination 

indicates that 96.88% (R
2
 = 0.9688) of the variability in the response can be explained using this 

model. The model is highly significant (p < 0.0001). The adjusted coefficient determination value 

(Adj. R
2
 = 0.9407) implies the significance of the model and is in reasonable agreement with the 

predicted R
2
 value. By considering the significant terms, the model, in terms of actual variables of 

biomass, was regressed and is expressed in Eq 4. 

                                                                 

                                                                      

                                                                      (4) 

Table 5. Analysis of variance (ANOVA) for the experimental results of the CCD 

quadratic model for IPS production the mycelium of G. lucidum strain QRS_5120. 

Source Sum of Squares DF Mean Square F Value Prob > F  

Model 3.935181818 9 0.437242424 34.47789725 <0.0001

 significant 

A: pH 3.844 1 3.844 303.1111111 <0.0001
 

significant 

B: Glucose 0.009 1 0.009 0.709677419 0.4192  

C: Agitation 0.004 1 0.004 0.315412186 0.5867  

A
2
 0.030056818 1 0.030056818 2.370071685 0.1547  

B
2
 0.005681818 1 0.005681818 0.448028674 0.5184  

C
2
 0.025056818 1 0.025056818 1.975806452 0.1901  

AB 0.005 1 0.005 0.394265233 0.5441  

AC 0.02 1 0.02 1.577060932 0.2377  

BC 0.005 1 0.005 0.394265233 0.5441  

Residual 0.126818182 10 0.012681818    

Lack of Fit 0.098484848 5 0.01969697 3.475935829 0.0989 not 

significant 

Pure Error 0.028333333 5 0.005666667    

Cor Total 4.062 19     

Std. Dev. = 0.11261357902943 R
2
 = 0.96877937424466 Adeq Precision = 17.969511850411 

Mean = 0.83 Adjusted R
2
 = 0.94068081106486   


 Significant value. 
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From the model, initial pH (A) shows the strongest effect (p < 0.0001) on IPS concentration. However, negative effects are shown by glucose (B), agitation 

(C) and quadratic terms (A
2
, B

2
, C

2
, AB, AC and BC). Figure 6 shows the combined effect of initial pH, glucose concentration and agitation in 3D plots. One 

factor is at the optimum level and the other two factors are within experimental range. Figure 6a shows the effect of initial pH (A) and starting glucose 

concentration (B), Figure 6b shows the effect of A and agitation rate (C) and Figure 6c shows the effect of B and C on biomass production. From Figure 6a,b, it 

is clear that increasing initial pH leads to decreased IPS production, agitation at all rates shows high IPS production and all concentrations of starting glucose 

give high IPS concentration. By this, it was concluded that there was no interaction between the factors. The maximum IPS obtained was at initial pH 4, glucose 

concentration 40.45 g/L and 103 rpm. From Figure 6c, no significance effect of B and C on IPS production was observed. 

 

Figure 6. Response surface curve (3D plot) of IPS production from G. lucidum strain QRS 5120 showing the interaction between (a) pH and 

glucose, (b) pH and agitation, (c) Glucose and agitation.  
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3.2.4. Verification of the optimized conditions 

Table 6 shows the optimised conditions applied to verify the mycelium biomass, EPS and IPS 

production statistical model. To verify the strength and precision of the model under Eq 2, Eq 3 and 

Eq 4, various experiments were performed. The mycelium biomass obtained was 5.12 g/L, EPS 

production under optimized conditions was 2.49 g/L, and IPS production under optimized conditions 

was 1.52 g/L, which aligns with the predicted values (5.25 g/L, 2.69 g/L and 1.59 g/L, respectively). 

This shows that the model (Eq 2, Eq 3 and Eq 4) is valid for mycelium biomass, EPS and IPS 

production.  

Table 6. Validation of the model with the optimized conditions. 

Run 

Variables  Response 

pH Glucose Agitation 
 Biomass  

(DCW g/L) 
EPS (g/L) IPS (g/L) 

Biomass 4.01 32.09 102.45  5.12 ± 0.5 − − 

EPS 4 24.25 110  − 2.49 ± 0.8 − 

IPS 4 40.43 103  − − 1.52 ± 0.4 

Biomass + EPS 4 24.75 107.58  5.11 ± 0.4 2.57 ± 0.7 − 

Biomass + IPS 4 40.45 102.95  5.13 ± 0.5 − 1.57 ± 0.3 

EPS + IPS 4 26.5 105.92  − 2.62 ± 0.4 1.52 ± 0.6 

Biomass + EPS + IPS 4 26.5 100  5.19 ± 0.6 2.64 ± 0.6 1.52 ± 0.4 

3.3. Comparison of the current study with the literature 

The current statistical optimization approach to determine the preeminent parameters for 

obtaining efficient biomass, EPS and IPS production using G. lucidum in controlled shake-flask 

fermentation is shown in Table 7. As reported, only two studies utilizing G. lucidum for this purpose 

have previously been reported, utilizing only EPS and biomass production. ChangTsai and  

Houng [23] stated that mycelium formation and polysaccharide production were markedly improved 

by cultivation in optimal medium under optimal operating conditions. YuanChi and Zhang [24] also 

supported this observation by stating that optimal media markedly increases EPS production and 

mycelium formation. The process described in the current study was more efficient in producing 

biomass and EPS concentration compared with the results of YuanChi and Zhang [24] and 

ChangTsai and Houng [23], with the addition of IPS. The optimized key parameters reported in this 

study are the most up-to-date for G. lucidum using RSM on initial pH, glucose concentration and 

agitation for enhancing the production of biomass, EPS and IPS. The current optimized method can 

therefore be applied to achieve a combination of lower biomass with higher EPS and IPS in 

specialized bioreactors. 
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Table 7. Comparison of Ganoderma lucidum optimization using submerged-liquid 

fermentation with the literature. 

Optimization 

method 

Cultivation 

mode 

Initial 

pH 

Glucose 

concentration 

(g/L) 

Agitation 

(rpm) 

EPS 

(g/L) 

IPS 

(g/L) 

Biomass 

(g/L) 

Reference 

Response 

surface 

methodology  

Shake Flask  4 26.5 100 2.64 1.52 5.19 Current 

study 

Taguchi’s 

orthogonal 

array 

Shake Flask  6.5 12.1 160 0.420 NA 18.70 [23] 

Orthogonal 

matrix  

Shake Flask  − 50 150 1.723 NA 7.235 [24] 

*
NA = Not available, EPS = Exopolysaccharide, IPS = Intracellular polysaccharide. 

4. Conclusions 

The wild-cultivated Malaysian medicinal mushroom G. lucidum strain QRS 5120 was 

successfully identified using morphological and biomolecular methods. Using response surface 

methodology in a submerged-liquid fermentation, maximum mycelial biomass (5.19 ± 0.6 g/L) and 

EPS (2.64 ± 0.6 g/L) were obtained under optimized conditions of initial pH 4, 26.52 g/L glucose 

concentration and 103 rpm. On the other hand, maximum IPS production (1.57 ± 0.3 g/L) was 

obtained under optimized conditions of initial pH 4, glucose concentration 40.45 g/L and agitation 

103 rpm. In addition, in order to maximise all three responses together, i.e. biomass, EPS and IPS 

(5.19 g/L, 2.64 g/L and 1.52 g/L respectively), the optimised conditions were initial pH 4, glucose 

concentration at 26.5 g/L and 100 rpm. It was found that by using the optimised conditions, the 

biomass, EPS and IPS production could be maximized. The initial pH could significantly affect 

biomass, EPS and IPS production in comparison to glucose concentration and agitation rate. The 

current work is suitable to be applied for other type of fungal fermentation for efficient EPS, IPS and 

biomass production. 
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