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ABSTRACT 

Semiconductor integrated circuits (IC) are found in all of today’s electronic devices. Low cost 
mass production has enabled electronics to revolutionize the way people live and work. One 
major operation in IC assembly is die sorting, where individual die is categorized by grade. 
The traditional vision-assisted pick-and-place die sorting approach has high accuracy but low 
throughput. In this research, a bulk die sorting approach through vision-assisted path planning 
is studied and implemented. The objective of this system is to provide accurate die 
classification through vision processing and high die sorting throughput with efficient path 
planning. The system hardware consists of two parts, motion XY-stage used for wafer planar 
translation and optical unit used for acquiring wafer images. Firstly, the wafer image is 
acquired using the image mosaicing method. Then, die classification is performed to obtain 
the positions of functional and non-functional dies. Subsequently, point and coverage path 
planning algorithms are applied to determine the optimum path for physical die sorting 
operation. Overall, the proposed system showed significant improvement in the wafer image 
quality, low mismatch of dies, and obtained the shortest traversal time and distance for 
clustering dies by using the combined heuristic cluster with nearest neighbour algorithm. The 
system showed that the best coverage path planning method is the back-and-forth filling using 
decelerate-reaccelerate motion in terms of processing time (1.6 s), traversal time (137.2 s) 
and XY-stage stresses. As a conclusion, through the integrated implementation of hardware 
and software encompassing wafer image acquisition, die classification and path planning, the 
die sorting system is capable of achieving accurate die sorting with high throughput. 
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1 INTRODUCTION 

Semiconductor manufacturing is a huge undertaking in terms of process steps and complexity. 
The entire manufacturing process involves upwards of 500 processing steps and takes up to 3 
months to complete. The complexities involved include different chip types, package types, 
customer specifications and scale of integration. The processing steps can be broadly divided 
into 4 parts: wafer fabrication, wafer probing, device assembly and device testing [1]. The 
device assembly, also known as device packaging, can be further divided into multiple discrete 
steps: wafer dicing, wafer cleaning, die sorting, die attach, wire bonding, mould 
encapsulation, tin plating and lastly trim and form. 

Die sorting is a major step in device assembly, which occurs after wafer dicing. It is the process 
of selecting and arranging the individual dies according to their grades [2]. This reduces waste 
from assembling sub-standard dies and assuring quality in the final product. The grade 
classification information is derived from wafer probing and wafer surface vision inspection. 
The information can be communicated either by black ink dots on the die surface or through 
inkless virtual wafer maps [3]. 

Traditionally, the die sorting step is combined with the die attach step. The vision and pick-
and-place system would process each individual die in turn [4]. In order to cover all dies on 
the wafer, the back-and-forth scanning approach is used [5]. The process has high accuracy 
but low throughput as each die is processed independently. The die sorting process can be 
sped-up significantly by decoupling it from the die attach step. Instead of processing each die 
individually, dies on the wafer can be processed together as the inspection and sorting costs 
are high. In this study, a bulk die sorting approach through vision-assisted path planning is 
proposed. The proposed die sorting system is divided into three parts: wafer image acquisition, 
die classification and sorting path planning. In wafer image acquisition, super-resolution wafer 
images are acquired using the image mosaicing method with vision-motion correction. In die 
classification, image processing techniques are used to segment, interpolate and classify dies 
from the wafer image. In sorting path planning, the point path planning algorithms are used 
for individual die sorting whereas the coverage path planning algorithms are used for bulk die 
sorting. 

2 MATERIALS AND METHODS 

2.1 System Hardware 

Semiconductor manufacturing at the leading edge of technology always require high speed 
and high accuracy of XY-stages in the range of microns for die bonding and wire bonding [6]. 
The mechanical XY-stage are motion stages that allow movement along the two major 
perpendicular axis (typically named X- and Y-axis), which is known as the serial structure. The 
other configuration is the parallel XY-stage where the mass and inertia is reduced [7]. The 
only drawback is limited stroke length. Besides that, precision XY Theta stages can also be 
found in industrial applications for high performance manufacturing [8]. 

The system hardware for the proposed die sorting system consists of motion XY-stage and 
vision optical system developed by a semiconductor industry. The motion XY-stage system is 
used for image acquisition and die sorting operation. It is a serially-connected linear XY-stage, 
driven by alternating current (AC) servo motors and controlled via computer. The motion 
hardware components and specifications are shown in Figure 1.  

Besides that, the vision optical system is used for image acquisition. In this system, the wafer 
object is illuminated by a diffused red coaxial lighting and imaged by a camera through an 
optical lens, as shown in Figure 2. It generates a frame rate of 100 frames/second through its 
GigE Vision interface [9 & 10]. Next, the optical lens used has a focal length of 35 mm with an 
adjustable Iris F-Stop range of between F1.6 to F22. 
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Figure 1: Motion Hardware Components 

 

 

Figure 2: Vision Hardware Configuration 

2.2 Wafer Image Acquisition 

Image mosaicing is used for creating large composite images, typically in super-resolution from 
lower resolution images where there is a need for high resolution and large field of view [11-
13]. In the image acquisition step, the complete wafer image with reference to the XY-stage 
coordinates must be captured. Image mosaicing technique is used here since a high resolution 
and large field of view image of the wafer is needed [11, 13]. The wafer's sub-segment images 
are taken in 2-dimension translational position offsets with overlaps between neighbouring 
images. Next, these sub-segment images are combined together to form a composite high 
resolution and large field of view image. 

There is minimal information content in the repeating die patterns of the sub-segment wafer 
images. This limits the application of mosaicing algorithm [14]. As a result, offline vision-
motion calibration is required to compensate for vision-motion misalignment. The offline 
calibration step is used to overcome the rotation and shift deviations, which are the main 
errors in this type of image mosaicking [11]. At the start of die sorting, lighting intensity 
calibration and lighting uniformity calibration is performed. Next, online image acquisition 
and mosaicing are performed. At the start of each die sorting cycle, the wafer's sub-segment 
images are taken in fixed positions of the motion system. Up to 9 by 9 images are acquired in 
the X- and Y-direction to cover the complete wafer including overlap. The image acquisition 
pitches are calculated by using Equations (1)-(3). 

#𝑖𝑚𝑎𝑔𝑒,𝑥 ≥
∅6-inch-wafer

𝐹𝑂𝑉𝑥
   or  #𝑖𝑚𝑎𝑔𝑒,𝑦 ≥

∅6-inch-wafer

𝐹𝑂𝑉𝑦
 (1) 
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Assuming square active field of view, 

#𝑖𝑚𝑎𝑔𝑒,𝑦 = #𝑖𝑚𝑎𝑔𝑒,𝑥 (2) 

𝑃𝑖𝑡𝑐ℎ𝑥 = 𝑃𝑖𝑡𝑐ℎ𝑦 =
∅6-inch-wafer

#𝑖𝑚𝑎𝑔𝑒,𝑥−1
=

∅6-inch-wafer

#𝑖𝑚𝑎𝑔𝑒,𝑦−1
 (3) 

where,  
∅6-inch-wafer is the diameter of 6-inch wafer  
𝐹𝑂𝑉𝑥 is the camera field of view in X direction   

𝐹𝑂𝑉𝑦 is the camera field of view in Y direction  

#𝑖𝑚𝑎𝑔𝑒,𝑥 is the number of images in X direction for acquisition  

#𝑖𝑚𝑎𝑔𝑒,𝑦 is the number of images in Y direction for acquisition  

𝑃𝑖𝑡𝑐ℎ𝑥 is translational pitch for image acquisition in X direction  

𝑃𝑖𝑡𝑐ℎ𝑦 is translational pitch for image acquisition in Y direction 

Since the wafer is circular shaped, three images at each of the four corners do not contain 
wafer information, thus those images are not captured, leaving 69 sub-segment images 
required to cover a complete wafer. The image acquisition uses the back-and-forth filling 
method, scanning in the main X-axis from left to right, while moving back-and-forth along the 
Y-axis, as shown in Figure 3. During image mosaicing, the sub-segment images are first 
compensated for uniformity using the generated second-order polynomial curved grey surface 
image. Next, the sub-segment images are corrected in rotation and slant in order to correlate 
the vision system pixel positions to the motion system physical positions. Subsequently, the 
sub-segment images are tiled according to their relative 2D position and image pitch in pixels. 
This generates the final complete wafer image for the subsequent image processing step.  

 

Figure 3: Wafer Sub-segment Image Acquisition Scanning Pattern: Back-and-Forth 

2.3 Die Classification 

Die classification is used to grade dies according to functional or non-functional (includes ink 
dies, pattern dies and edge dies) die categories, for subsequent die sorting operation. Before 
die classification can be performed, it is necessary to extract the die regions from the 
background. The region-based segmentation techniques are: thresholding, region growing, 
split and merge, clustering and statistical methods [15]. In this study, the most popular 
thresholding algorithm is used to convert the grey scale image into binary regions which 
contain dies [16]. After performing the thresholding step, candidate die regions are obtained. 
Due to the white-on-black nature of the light foreground dies on the dark background, the 
candidate die regions are separated and disconnected from one another. In addition to dies, 
other foreign regions of high grey level value are also selected. Nonetheless, their quantities 
are small and their geometrical sizes are different from the actual dies. In order to exclude 
them, the actual die length and width is first estimated by taking the median length and width 
of all thresholded regions. 
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Next, the die classification is performed. The functional die and ink die classification are 
performed based on the area hole and structure factor features. The maximum allowed area 
hole is used to define the largest dark patch on the die surface allowed and still remain as a 
functional die. This prevents miss-categorization due to minor stains on the die surface. 
Nonetheless, the maximum allowed area hole must be a value smaller than the smallest actual 
ink dot size, to prevent miss-categorization of actual ink dies as functional dies. Next, the 
structure factor feature was selected heuristically by comparing the list of available features 
between functional dies and ink dies. The structure factor feature is useful when the ink dot 
is off-centred, leading to a zero area hole.  

For the non-functional dies interpolation, the wafer orientation and die pitch information are 
required. For wafer orientation, the dark saw-street regions are first segmented, but with 
grey level range between 0 and the next grey level histogram minima. Next, through the 
morphology erosion operator, the horizontal and vertical saw-street regions are selected using 
long rectangular erosion structure elements, as illustrated in Figure 4. Using the longest 
horizontal and vertical saw-street regions, the die pitch in the horizontal and vertical direction 
is determined through one-dimensional edge-pair measuring of the dies along the selected 
saw-streets. Using the die length, die width, die horizontal pitch, die vertical pitch and wafer 
orientation information, a 3 by 3 dies structure element is generated. The interpolated dies 
that do no intersect the functional dies and ink dies represent the non-functional pattern dies, 
edge dies and empty dies. All non-functional dies can be found by repeatedly executing the 
dilation operation until no new non-functional die is introduced. These regions are then passed 
to the path planning step for planning the transducer route for the physical die sorting 
operation. 

 

Figure 4: Saw-street Segmentation 

2.4 Path Planning 

Path planning is important to minimize the travelling time and distance, which various 
optimization methods have been used in robotics and automation [17]. The physical die sorting 
operation is divided into two parts: individual die sorting and bulk die sorting. Individual 
sorting is used for high accuracy sorting, down to the single die control, which is suited for 
non-functional die sorting. In almost all cases, non-functional dies in a wafer occur in clustered 
but odd shapes, which require fine single die sorting capability. On the other hand, bulk sorting 
is used for high throughput sorting whereby the transducer is continuously scanned, which is 
suited for functional die sorting. In almost all cases, the functional dies in a wafer vastly 
outnumber the non-functional dies, hence requiring a faster sorting speed. 

The individual die sorting requires point path planning whereas the bulk die sorting requires 
coverage path planning. Path planning is performed to find the best path that minimize travel 
distance and time. Subsequently, the planned path is executed on the XY-stage while the 
transducer is actuated to perform the physical die sorting operation. 
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2.4.1 Point Path Planning 

For individual die sorting of non-functional dies, the motion system XY-stage needs to move 
each non-functional die to the transducer for sorting operation to occur. This problem which 
is known as the Travelling Salesman Problem required both of the XY-stage travel distance and 
time to be minimized. The number of non-functional dies on a wafer can be in the thousands 
range, depending on the die size and wafer fabrication process. There are many approximate 
algorithms for the Travelling Salesman Problem in the literatures [18 & 19]. In this study, two 
algorithms which are heuristic cluster algorithm and nearest neighbour algorithm are tested 
and compared.  

The heuristic cluster algorithm takes advantage of the concentrated spatial distribution of 
similar grade dies within a wafer [1]. Given a list of die positions, the adjacent dies are first 
clustered together to form die segments. The problem is then simplified to solving the 
Travelling Salesman Problem for traversing the die segments, instead of individual die 
positions. This greatly reduces the problem set size for the Travelling Salesman Problem. The 
nearest neighbour algorithm is a simple approximate algorithm for solving the Travelling 
Salesman problem [19]. It achieves local optimization of travel path, without regards to global 
optimality. The nearest neighbour algorithms work by selecting the initial XY-stage position 
as the first current position. Then, the nearest Euclidean distance position not yet visited is 
selected as the next current position. This is repeated until all die positions are traversed. 

The processing time and traversal time are measured using the computer's built-in time 
keeping system, as the point path planning algorithm is being executed and as the XY-stage is 
traversing the planned path during sorting. The travel distance (in mm) is calculated from the 
generated path distance (in pixels) using the distance per pixel ratio between the motion and 
vision system. The ratio used here is 45.7 μm per pixel. 

2.4.2 Coverage Path Planning 

The coverage path planning is used for high speed bulk functional die sorting. From the image 
processing die classification step, a coverage region is passed to the coverage path planning 
algorithm. The path planning algorithm is then used to find the shortest path to traverse the 
coverage region such that the transducer's contact area touches all points of the coverage 
region. Similar to the point path planning, the shortest traversal path in the coverage region 
problem would also lead to the shortest traversal time, which is important in this high speed, 
high throughput system. In the complete coverage problem, there are two main filling 
methods, which are back-and-forth [20] and spiral filling [21].  

In order to investigate these two methods, a study is devised to check the processing time, 
traversal time, torque exerted and power drawn for the back-and-forth and spiral filling 
methods. In addition, two motions between straight line segments types are investigated: 
continuous motion and decelerate-reaccelerate motion. For continuous motion, the XY-stage 
does not decelerate, stop and reaccelerate between straight line segments. This motion is 
fast, but the XY-stage experiences stresses during direction change at sharp corners between 
straight line segments. In contrast, for decelerate-reaccelerate motion, the XY-stage 
decelerates, changes direction and reaccelerates between straight line segments. For this 
motion, the XY-stage experiences minimal stress during direction change at sharp corners 
between straight line segments. However, this comes at the expense of lower motion speeds. 
Data are collected for two different wafers. 

The processing time and traversal time are measured using the computer's built-in time 
keeping system, as the coverage path planning algorithm is being executed and as the XY-
stage is traversing the planned path during sorting. The torque exerted and power drawn 
information are recorded from the motion system XY-stage's servo amplifiers. The root mean 
square (RMS) and maximum (MAX) values are extracted from the discrete time plot of the 
torque exerted and power drawn for the X and Y motor axis. 
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3 RESULTS AND DISCUSSIONS 

3.1 Die Classification 

The actual and algorithm-computed die classification count results are presented in Table 1. 
The die classification count is performed for 8 different wafers with different die sizes, non-
functional die distribution, and die cleanliness. For actual die classification count, the non-
functional die category is further divided into pattern die, ink die and empty die. From Table 
1, 60 mil die wafers have a total die count of 6428 while 37 mil die wafers have total die count 
of 16,538. These total die count is consistent irrespective of method (actual or algorithm-
computed), non-functional die distribution and wafer cleanliness. Besides that, the number of 
pattern dies for 60 mil and 37 mil die wafers are 11 and 18 respectively. For Wafer 2 (60 mil 
die size), the number of pattern dies is only 9 instead of 11, because the other 2 pattern dies 
are missing, and classified under the empty die label. 

Table 1: Actual and algorithm-computed die classification count 

Wafer 
Number 

Remark 
Total 
die 

count 

Actual die count 
Algorithm-computed 

die count 

Functional 
Non-Functional 

Functional 
Non-

Functional Pattern Ink Empty Total 

1 
60 mil, 

Standard 
6428 6417 11 0 0 11 6417 11 

2 
60 mil, Ink 

Dot 
6428 6390 9 24 5 38 6390 38 

3 
60 mil, Ink 

Dot 
6428 5501 11 916 0 927 5501 927 

4 
60 mil, 
Stained 

6428 6416 11 1 0 12 6411 17 

5 
37 mil, 

Standard 
16548 16530 18 0 0 18 16530 18 

6 
37 mil, Ink 

Dot 
16548 16069 18 454 7 479 16069 479 

7 
37 mil, Ink 

Dot 
16548 16459 18 71 0 89 16459 89 

8 
37 mil, 
Stained 

16548 16530 18 0 0 18 16446 102 

Next, the error between the algorithm-computed and actual die classification count is 
presented in Table 2. The total error is presented as the absolute difference between the 
actual and algorithm-computed functional die count whereas the error percentage is 
presented as the percentage ratio of die count error to the actual total wafer die count. From 
the results, the error is zero for standard and inked dot wafers, for both 60 mil and 37 mil die 
size wafers. There is an error of 5 dies (0.1%) for Wafer 4 and 84 dies (0.5%) for Wafer 8. Both 
Wafer 4 and Wafer 8 are wafers with stains on the die surface. Nonetheless, in all cases, only 
the actual functional dies are misclassified as non-functional dies by the computing algorithm. 
None of the non-functional dies are misclassified as functional die. 

3.2 Point Path Planning 

The processing time, traversal time and travel distance for the different point path planning 
algorithms are presented in Table 3 and Table 4 respectively. From Table 3, the processing 
time for all the wafers and algorithms are almost identical, which is around 2.5 to 2.6 seconds, 
except for the heuristic cluster algorithm and combined algorithm for Wafer 2 which obtained 
3.7 seconds. Besides, the traversal time for default path is the longest compared to the other 
point path planning algorithms for all three wafers. For all paths, the traversal time is the 
longest for Wafer 2 (1064 dies), followed by Wafer 3 (58 dies) and the shortest is for Wafer 1 
(16 dies). The nearest neighbour algorithm produces the shortest traversal time for Wafer 1 
and Wafer 2 whereas the combined heuristic cluster with nearest neighbour algorithm 
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produces the shortest traversal time for Wafer 3. The travel distance results showed a similar 
pattern as the traversal time.  

 

Table 2: Error between algorithm-computed and actual die categorization count 

Wafer 
Number 

Remark 

Actual Algorithm-computed 
Error 

Functional 
Non-

Functional 
Functional 

Non-
Functional Total,  

ϵTotal 

Percent,  

ϵPercentage 

1 Standard 6417 11 6417 11 0 0.0% 

2 Ink Dot 6390 38 6390 38 0 0.0% 

3 Ink Dot 5501 927 5501 927 0 0.0% 

4 Stained 6416 12 6411 17 5 0.1% 

5 Standard 16530 18 16530 18 0 0.0% 

6 Ink Dot 16069 479 16069 479 0 0.0% 

7 Ink Dot 16459 89 16459 89 0 0.0% 

8 Stained 16530 18 16446 102 84 0.5% 

 

Table 3: Processing time for point path planning algorithms 

Wafer 
Number 

Number of non-
functional Dies 

Processing Time (s) 

Default 
Heuristic 
Cluster 

Algorithm 

Nearest 
Neighbour 
Algorithm 

Combined Heuristic 
Cluster with Nearest 
Neighbour Algorithm 

1 16 2.6 2.6 2.6 2.6 

2 1064 2.5 3.7 2.5 3.7 

3 58 2.6 2.6 2.6 2.6 

 

Table 4: Traverse time and distance for point path planning algorithms 

Wafer 
Number 

Number of 
non-

functional 
Dies 

Default 
Heuristic Cluster 

Algorithm 

Nearest 
Neighbour 
Algorithm 

Combined Heuristic 
Cluster with Nearest 
Neighbour Algorithm 

Time Distance Time Distance Time Distance Time Distance 

1 16 24.8 652.9 23.1 531.7 20.9 360.7 20.9 362.8 

2 1064 899.1 16525.8 741.4 9941.8 615.5 3345.2 650.9 4267.1 

3 58 54.1 1016.6 49.0 711.6 49.7 495.0 45.4 489.0 

Among the three point path planning algorithms, the nearest neighbour algorithm produces 
the shortest traversal time and distance for Wafer 1 and Wafer 2, whereas the combined 
heuristic cluster with nearest neighbour algorithm produces the shortest traversal time and 
distance for Wafer 3. The nearest neighbour algorithm works better than the other two 
heuristic cluster type algorithms for Wafer 1 and Wafer 2 because these 2 wafers do not 
contain clustering non-functional dies. In contrast, the combined heuristic cluster with nearest 
neighbour algorithm works best for Wafer 3 due to the clustering nature of its non-functional 
dies. In fact, the heuristic cluster algorithm is also better than the nearest neighbour algorithm 
for Wafer 3 in terms of shorter traversal time. For Wafer 3, the heuristic cluster algorithm has 
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a smaller traversal time but greater travel distance than the nearest neighbour algorithm. 
Although not substantiated, this could be attributed to the several long travel distances 
between points for Wafer 3 using the heuristic cluster algorithm, which allows it to accelerate 
to higher speeds, hence reducing its traversal time. In contrast, most travel distance between 
points for Wafer 3 using the nearest neighbour algorithm are of moderate lengths. Overall, 
the nearest neighbour algorithm is the best point path planning algorithm for non-clustering 
non-functional dies whereas the combined heuristic cluster with nearest neighbour algorithm 
is the best point path planning algorithm for clustering non-functional dies 

3.3 Coverage Path Planning 

The processing time, traversal time, RMS torque, MAX torque, RMS power and MAX power for 
coverage path planning algorithms using back-and-forth and spiral filling methods as well as 
continuous and decelerate-reaccelerate motion types are presented in Table 5, which is the 
average of two runs with different wafers. The RMS torque, MAX torque, RMS power and MAX 
power parameter values are given independently for the X and Y motor axis. 

Table 5: Results for coverage path planning 

Filling Method Back-and-forth Spiral 

Motion Type Continuous Decelerate-Reaccelerate Continuous Decelerate-Reaccelerate 

Processing Time (s) 1.7 1.6 4.0 3.9 

Traverse Time (s) 117.6 137.2 138.2 312.0 

RMS Torque (%) 
X 5.62 4.37 8.30 7.96 

Y 7.58 6.66 7.13 6.64 

MAX Torque (%) 
X 41.41 14.61 16.43 16.28 

Y 39.12 11.08 15.99 10.77 

RMS Power (%) 
X 0.41 0.15 0.83 0.22 

Y 0.93 0.71 0.70 0.18 

MAX Power (%) 
X 3.90 2.09 1.85 1.23 

Y 4.05 1.50 1.47 0.96 

From Table 5, the processing time for the coverage path planning using the spiral filling 
method (3.9s to 4.0s) is longer than the back-and-forth filling method (1.6s to 1.7s). Next, the 
traversal time for the decelerate-reaccelerate motion type is longer than the continuous 
motion type for both the back-and-forth and spiral filling method. Overall, the traversal time 
for the back-and-forth filling with continuous motion has the shortest traversal time of 117.6 
seconds. This is followed by the back-and-forth filling with decelerate-reaccelerate motion 
(137.2s) and spiral filling with continuous motion (138.2s). The longest traversal time is 
produced by the spiral filling with decelerate-reaccelerate motion at 312.0 seconds. 

The MAX torque and MAX power values for the back-and-forth filling with continuous motion 
is the largest amongst all filling method and motion type combinations, at 41.41 % for MAX 
torque X-axis, 39.12 % for MAX torque Y-axis, 3.90 % for MAX power X-axis and 4.05 % for MAX 
power Y-axis. Between the spiral filling with continuous motion and back-and-forth filling with 
decelerate-reaccelerate motion, the back-and-forth filling with decelerate-reaccelerate 
motion has lower RMS torque (4.37% for X-axis, 6.66% for Y-axis), MAX torque (14.51% for X, 
11.08% for Y) and RMS power (0.15% for X, 0.71 for Y) but higher MAX power (2.09% for X and 
1.50% for Y) compared to the spiral filling with continuous motion. For back-and-forth filling 
using both continuous and decelerate-reaccelerate motion, the RMS torque and RMS power is 
larger for Y-axis compared to X-axis. Overall, the smallest combined RMS power drawn is the 
spiral filling with decelerate-reaccelerate motion at 0.22 % for RMS power X-axis and 0.18 % 
for RMS power Y-axis. 
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The decelerate-reaccelerate motion is less useful for the spiral filling method because the 
spiral filling has fewer sharp changes in direction between its straight line segments, unlike 
the back-and-forth filling method. With respect to the continuous motion, the decelerate-
reaccelerate motion reduces the RMS power and MAX power only slightly, but at the expense 
of a large increase in traversal time. This large increase in traversal time could be attributed 
to the many straight line segments approximated from the smooth continuous spiral path, 
which lead to increased decelerate and reaccelerate motion behaviour. 

The spiral filling is best coupled with the continuous motion whereas the back-and-forth filling 
is best coupled with the decelerate-reaccelerate motion. The spiral filling with the continuous 
motion method's good performance with short traversal time and moderate XY-stage stress 
agrees with the work by researchers [21-22]. Besides that, the back-and-forth filling with the 
decelerate-reaccelerate motion method also produces good coverage path planning 
performance. The graphical traversal path for Wafer 1 using back-and-forth and spiral filling 
methods is shown in Figure 5. 

 

Figure 5: Coverage Path Planning Traverse Path for Wafer-1 

Overall, the back-and-forth filling with decelerate-reaccelerate motion is the best coverage 
path planning algorithm investigated, in terms of processing time (1.6 s), traversal time (137.2 
s) and XY-stage stresses (RMS torque: 4.37% (X), 6.66% (Y); MAX torque: 14.61% (X), 11.08% 
(Y); RMS power: 0.15% (X), 0.71% (Y); MAX power: 2.09% (X), 1.50% (Y)). The back-and-forth 
filling with decelerate-reaccelerate motion has an advantage over the spiral filling with 
continuous motion because it can accelerate to higher speeds along its long straight line 
segments to reduce traversal time and decelerate to lower speeds around sharp corners to 
reduce mechanical stresses. 

4 CONCLUSION 

A bulk die sorting system for the semiconductor industry based on vision-assisted path planning 
is developed. The system achieves accurate die classification through vision image processing 
and maintains high die sorting throughput via efficient path planning. In this system, high 
resolution wafer images are acquired through image mosaicing. Then, image processing based 
die segmentation and classification is used to grade dies based on the wafer image. Using the 
die classification results, die sorting path planning is performed, followed by execution of the 
physical die sorting operation. For future works, the XY-stage can be upgraded into a XY Theta 
stage with 3 degrees of freedom (DOF), in the X-, Y- and theta- direction. This will improve 
die sorting accuracy by allowing the wafer main axis to be mechanically aligned to the X- and 
Y- linear stages as well as the sorting transducer, hence overcoming wafer mounting rotational 
variations. Besides that, nature-inspired classification algorithms such as neural network can 
be investigated to improve the classification robustness, taking into account possible region 
distortion by the stain marks. 
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