A New Technique for Multi-Oriented Scene Text Line Detection and Tracking in Video

Wu, L. and Shivakumara, P. and Lu, T. and Tan, C.L. (2015) A New Technique for Multi-Oriented Scene Text Line Detection and Tracking in Video. IEEE Transactions on Multimedia, 17 (8). pp. 1137-1152. ISSN 1520-9210

Full text not available from this repository.
Official URL: http://dx.doi.org/10.1109/TMM.2015.2443556

Abstract

Text detection and tracking in video is challenging due to contrast, resolution and background variations, and different orientations and text movements. In addition, the presence of both caption and scene texts in video aggravates the problem because these two text types differ in characteristics significantly. This paper proposes a new technique for detecting and tracking video texts of any orientation by using spatial and temporal information, respectively. The technique explores gradient directional symmetry at component level for smoothing edge components before text detection. Spatial information is preserved by forming Delaunay triangulation in a novel way at this level, which results in text candidates. Text characteristics are then proposed in a different way for eliminating false text candidates , which results in potential text candidates. Then grouping is proposed for combining potential text candidates regardless of orientation based on the nearest neighbor criterion. To tackle the problems of multi-font and multi-sized texts, we propose multi-scale integration by a pyramid structure, which helps in extracting full text lines. Then, the detected text lines are tracked in video by matching the subgraphs of triangulation. Experimental results for text detection and tracking on our video dataset, the benchmark video datasets, and the natural scene image benchmark datasets show that the proposed method is superior to the state-of-the-art methods in terms of recall, precision , and F-measure.

Item Type: Article
Uncontrolled Keywords: Delaunay triangulation; Multi-oriented video text detection; Multi-sized text detection; Text detection; Text tracking
Subjects: Q Science > QA Mathematics > QA75 Electronic computers. Computer science
Divisions: Faculty of Computer Science & Information Technology
Depositing User: Ms. Juhaida Abd Rahim
Date Deposited: 26 Sep 2018 04:51
Last Modified: 26 Sep 2018 04:51
URI: http://eprints.um.edu.my/id/eprint/19428

Actions (login required)

View Item View Item