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ABSTRACT
Background: The monocled cobra (Naja kaouthia) is a medically important

venomous snake in Southeast Asia. Its venom has been shown to vary geographically

in relation to venom composition and neurotoxic activity, indicating vast diversity

of the toxin genes within the species. To investigate the polygenic trait of the venom

and its locale-specific variation, we profiled and compared the venom gland

transcriptomes of N. kaouthia from Malaysia (NK-M) and Thailand (NK-T)

applying next-generation sequencing (NGS) technology.

Methods: The transcriptomes were sequenced on the Illumina HiSeq platform,

assembled and followed by transcript clustering and annotations for gene expression

and function. Pairwise or multiple sequence alignments were conducted on the toxin

genes expressed. Substitution rates were studied for the major toxins co-expressed

in NK-M and NK-T.

Results and discussion: The toxin transcripts showed high redundancy (41–82%

of the total mRNA expression) and comprised 23 gene families expressed in NK-M

and NK-T, respectively (22 gene families were co-expressed). Among the venom

genes, three-finger toxins (3FTxs) predominated in the expression, with multiple

sequences noted. Comparative analysis and selection study revealed that 3FTxs are

genetically conserved between the geographical specimens whilst demonstrating

distinct differential expression patterns, implying gene up-regulation for selected

principal toxins, or alternatively, enhanced transcript degradation or lack of

transcription of certain traits. One of the striking features that elucidates the inter-

geographical venom variation is the up-regulation of a-neurotoxins (constitutes

∼80.0% of toxin’s fragments per kilobase of exon model per million mapped reads

(FPKM)), particularly the long-chain a-elapitoxin-Nk2a (48.3%) in NK-T but only

1.7% was noted in NK-M. Instead, short neurotoxin isoforms were up-regulated in

NK-M (46.4%). Another distinct transcriptional pattern observed is the exclusively

and abundantly expressed cytotoxin CTX-3 in NK-T. The findings suggested

correlation with the geographical variation in proteome and toxicity of the venom,

and support the call for optimising antivenom production and use in the region.
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Besides, the current study uncovered full and partial sequences of numerous toxin

genes from N. kaouthia which have not been reported hitherto; these include

N. kaouthia-specific L-amino acid oxidase (LAAO), snake venom serine protease

(SVSP), cystatin, acetylcholinesterase (AChE), hyaluronidase (HYA), waprin,

phospholipase B (PLB), aminopeptidase (AP), neprilysin, etc. Taken together,

the findings further enrich the snake toxin database and provide deeper insights

into the genetic diversity of cobra venom toxins.

Subjects Genetics, Molecular Biology, Toxicology, Zoology

Keywords Venom gland transcriptomics, Naja kaouthia, Monocled cobra, Three-finger toxins,

Toxin sequence, Snake venom, Geographical variation

INTRODUCTION
Snake venoms consist mainly of pharmacologically active components fine-tuned by

evolution against the physiological processes that maintain prey homeostasis (Calvete

et al., 2009; Casewell et al., 2013). Positive selection and repeated duplication have been

implicated in toxin genes of many lineages, reflecting the adaptive contribution of snake

venoms to fitness, and as a source of selective pressure that drives the predator–prey ‘arms

race’ coevolution (Margres et al., 2013). However, the origin of toxin genes has been

disputable and different mechanisms are available to explain the evolution of snake

venom (Casewell et al., 2014;Hargreaves et al., 2014; Reyes-Velasco et al., 2015). A common

perspective holds that the duplication of genes generating paralogous give rise to

multigene families following the ‘birth and death’ mode of evolution; where some

gene copies went through extensive neofunctionalisation at accelerated rates, while the

non-functional forms are gradually lost through degradation or transformed into

pseudogenes, a process of purifying selection that further preserves the useful toxin

arsenal (Casewell et al., 2013; Nei, Gu & Sitnikova, 1997; Sunagar et al., 2013; Sunagar &

Moran, 2015). The long evolutionary processes give rise to the extreme complexity of

snake venom, an ecologically critical phenotype of venomous snakes which also ramifies

into the treatment management of snakebite envenomation.

To date, snakebite envenomation remains a serious public health concern in many

developing and underdeveloped nations (Warrell, 2010). It is not only an occupational

hazard for the agricultural population but also becoming a public health issue due to the

encroaching of human activities into the habitat of venomous snakes (Jamaiah et al.,

2006). In Southeast Asia, cobra (Naja sp.) is a common cause of snakebites with life-

threatening outcomes: cobras are capable of injecting large amount of venom and the

venom generally contains potent neurotoxins that can paralyse the envenomed subjects in

minutes (Tan & Tan, 2015). Listed under category I of medically important venomous

snakes (Chippaux, 2010), the monocled cobra (Naja kaouthia) is a widespread species

found across the Eastern Indian subcontinent to most parts of Indochina (including the

Peninsular Malaya) and the southern part of China. Because of the vast geographical

distribution and the morphological variety, this species was previously given different

names in various geographical areas, resulting in a period of confusion whereby cobras in
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Southeast Asia were often indiscriminately labelled as Naja naja kaouthia, N. naja

sputatrix, N. naja siamensis, N. naja atra, etc. The current systematics based on molecular

phylogenetics has resolved the issue and clearly regarded the species of monocled

cobra as N. kaouthia (Wüster, 1996). The venom proteome of N. kaouthia had also

been studied to some extents over the years (Kulkeaw et al., 2007; Laustsen et al., 2015;

Vejayan, Khoon & Ibrahim, 2014). It is noteworthy that a recent study has provided a

global comparison on the proteomic details of N. kaouthia venoms from three different

Southeast Asian regions (Malaysia, Thailand and Vietnam) qualitatively (profiling

protein subtypes) and quantitatively (addressing relative abundances of the proteins)

(Tan et al., 2015d). Substantial venom variations were noted across the geographical

samples; notably the Thai N. kaouthia venom contains a much higher amount of

long-chain neurotoxin (LNTX, ∼33%) as compared to the Malaysian (∼4%) and the

Vietnamese specimens (not detected), respectively. The proteomic variation was further

demonstrated at functional levels through studies on venom lethality, neuromuscular

depressant activity and immunological neutralisation using antivenom (Tan et al., 2016a,

2016b). The molecular diversity and the genetic variability of the toxins in the venom,

however have not been comprehensively investigated.

To gain a deeper insight into the geographical variation of N. kaouthia venom, we

applied a comparative transcriptomic approach of the venom glands to delineate the

genetic variability of the cobra. De novo assembled venom gland transcriptomes of

N. kaouthia from Malaysia (NK-M) and Thailand (NK-T) were investigated (the

transcriptomes are natural features) using next-generation sequencing (NGS) technology

at the Illumina platform, imparting a paired-end approach as previously described

(Aird et al., 2013; Rokyta et al., 2012; Tan et al., 2015a). It is hoped that by correlating

the transcriptomic findings to its proteome and to the biological activities of the venom,

the study will propel the understanding of the spectrum and the molecular diversity

of the venom genes in this species.

METHODS
Snake venom gland preparation
The adult N. kaouthia specimen from Malaysia was captured from the northern region

of Peninsular Malaya and the specimen from Thailand was captured from the southern

region near Bangkok, Thailand. Snake venom milking was carried out prior to tissue

harvesting to stimulate the transcription process, and the snake was allowed to rest

for four days to maximise the transcription (Rotenberg, Bamberger & Kochva, 1971).

Following euthanasia, the venom glands were swiftly removed and sectioned into

dimensions of < 5�5 mm before preserving them in a RNAlater� (Ambion, Texas, USA)

solution at a 1:10 volume ratio. The solution was allowed to permeate the tissues at 4 �C
overnight before transferring to -80 �C for storage until further use. The tissue

collection for research purposes was conducted in accordance with the protocol and

guidelines approved by the Institutional Animal Use and Care Committee (IACUC) of

the University of Malaya, Malaysia (approval number: #2013-11-12/PHAR/R/TCH).
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Total RNA extraction and mRNA purification
The dissected venom gland tissues were submerged and homogenised in a 1 ml glass

homogeniser with TRIzol solution (Invitrogen, Carlsbad, CA, USA) under sterile

conditions. This was followed by the addition of 20% chloroform, centrifugation and

RNA-free DNAase I treatment to separate RNA from cellular debris and residual DNA.

The isolated RNAwas then pelleted with isopropyl alcohol and washed with 75% ethanol.

Polyadenylated mRNA (poly(A)+ mRNA) was subsequently purified from 20 mg of total

RNA using oligo (dT) magnetic beads as per the (Illumina, San Diego, CA, USA)

manufacturer’s instructions. Two rounds of poly(A)+ mRNA isolation were performed.

cDNA library construction and sequencing
Enriched poly(A)+ mRNA isolated from the total venom gland RNA was used for cDNA

construction. Following purification, the mRNA isolated was fragmented in standard

buffers containing divalent cations (Zn2+) into short fragments, which acted as templates

for cDNA synthesis. Random hexamer-primer (N6) was used to synthesise the first-strand

cDNA, followed by second-strand cDNA synthesis with the double-stranded cDNA as

input material, using second strand buffers, dNTPs, RNase H and DNA polymerase I.

Short fragments were purified with QIAquick PCR extraction kit (Qiagen, Valencia, CA,

USA) and resolved with EB buffer for end repair and the addition of single adenine

nucleotide to aid in the subsequent ligation of the Illumina adaptors, which contain a

single thymine (T) base overhang at their 3′ ends. Following the ligation of sequencing

adaptors, these short fragments of cDNA were PCR-amplified and electrophoresed on

a 1.5–2% TAE agarose gel. From the electrophoretic agarose gel, suitable fragments

(200–700 nt) were selected as templates for subsequent PCR amplification. During the

QC steps, an Agilent 2100 Bioanalyzer and ABI StepOnePlus Real-Time PCR System

were used in quantification and qualification of the sample library. Sequencing of the

PCR-amplified library of each sample was accomplished separately in a single lane on the

Illumina HiSeqTM 2000 platform (Illumina, San Diego, CA, USA) with 100-base-pair,

paired-end reads.

Raw sequence data and filtering
Sequenced data from Illumina HiSeqTM 2000 were transformed by base calling into

sequence data, called the raw data or raw reads and were stored in FASTQ format. Prior to

the transcriptome assembly, a stringent-filtering process of raw sequencing reads was

carried out. The reads with more than 20% bases having a quality score of Q < 10,

sequences containing more than 5% of ambiguous nucleotides or those containing

adaptor sequences were removed with an in-house filter programme (Filter_fq, BGI),

yielding clean data or clean reads.

De novo transcriptome assembly
De novo ‘shot-gun’ transcriptome assembly was carried out with the short reads-

assembling programme, Trinity (version release-20121005) (Grabherr et al., 2011). Three

independent software modules, i.e. Inchworm, Chrysalis and Butterfly, comprised the
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Trinity programme and were sequentially applied to process the large volumes of RNA-seq

reads. In brief, this was based on the algorithm of de Bruijn graph construction which

began by aligning k-mers (k = 25), and reads with a certain length of overlap were joined

to form linear contigs. The reads were mapped back onto contigs, and by referring to

paired-end reads, contigs from the same transcript as well as the distances between

them were determined. The contigs were then partitioned into clusters, each of which

carried a complete set of de Bruijn graphs (representing the transcriptional complexity at

a given gene or locus). The graphs were independently processed to obtain full-length

transcripts for alternatively spliced isoforms and to tease apart transcripts that

corresponded to paralogous genes.

Transcript clustering
The transcript sequences generated through Trinity were called Unigenes. Unigenes

from the transcriptome assembly were further processed for sequence splicing and

redundancy removing with TGI clustering tools (TGICL) version 2.1 to acquire non-

redundant (NR) transcripts at the longest possible length. The transcripts were then

subjected to family clustering, which resulted in two classes of transcripts: (a) clusters,

with a prefix CL and the cluster ID behind as contig; (b) singletons, whose ID was simply

left with a prefix of Unigene. In each cluster, there were several transcripts with sequence

similarities among them being >70%; while the singletons ‘Unigenes’ lack overlapping

with other fragments at the given stringency. The value 70% was used to categorise the

assembled sequences based on similarity; sequences similar to each other (may or may not

be homologous as having >90% similarity) were grouped under a cluster comprising

various contigs.

In the following step, the transcript Unigenes were aligned by BLASTx to protein

databases in the priority order of NCBI NR, with a cut-off E < 10-5. Proteins with

the highest ranks in the BLASTx results were referred to determine the coding region

sequences of the Unigenes, followed by translation into amino acid sequences (using

the standard codon table). Hence, both the nucleotide sequences (5′–3′) and amino

sequences of the Unigene-coding regions were acquired. Transcript Unigenes unaligned

to any of the protein databases were analysed by software named ESTScan (Iseli,

Jongeneel & Bucher, 1999) to determine the nucleotide sequence (5′–3′) direction and

amino sequence of the predicted coding region. The length of sequences assembled was a

criterion for assembly success. To remove redundancy from each cluster, the longest

sequence in each cluster was chosen as the transcript, meanwhile the length of scaffold

was extended based on overlapping sequences using Phrap assembler (release 23.0)

(http://www.phrap.org). The distributions of the lengths of contigs, scaffolds and

Unigenes were calculated. The N50 length statistics was set at N50 > 500 for

assembly success.

Functional annotation of the transcripts
The process retrieved proteins with the highest sequence similarity with the given

transcript along with their protein functional annotations, recorded in Data S1.
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Annotation of the transcripts provides information about the mRNA expressions

(see below) and the putative protein functions. For functional annotation, the generated

transcript sequences were aligned by BLASTx to protein databases NR (cut-off E < 10-5).

Expression annotation of the transcripts
To determine the transcript abundances for the identified genes, the FPKM method

(Mortazavi et al., 2008) was used, computed using the RNA-seq by the expectation

maximisation (RSEM) tool incorporated in the assembly programme, Trinity (Li &

Dewey, 2011). The formula is shown below:

FPKM of gene A ¼ 106C

N L=103
;

where FPKM is set to be the expression of gene A, C to be the number of fragments (i.e.

reads) that uniquely aligned to gene A, N to be the total number of fragments (i.e. reads)

that uniquely aligned to all genes and L to be the base number in the coding sequence

(CDS) of gene A. The FPKM method is able to eliminate the influence of different

gene length and sequencing discrepancy on the calculation of gene expression.

Venom gland transcript classification based on toxinology
Data S1 (from BLAST analyses) was further studied to determine which transcripts

(Unigenes) could be identified as ‘toxin,’ ‘non-toxin’ and ‘unidentified’ categories.

Keywords were used in search-and-find of the subject description for each toxin match.

In view that the final translated toxin products are proteins in nature, the encoded

amino acid sequences were subjected to a BLASTp search to ascertain homology with

the latest known NCBI NR protein database restricted to the taxon Serpentes (as of

1 June 2016). Minute expression of highly similar/conserved sequences exclusive to

Viperidae (vipers and pit vipers) detected by the sensitive assay were excluded from

the current study for possibility of trace contamination. Transcripts for cellular proteins

and house-keeping genes were categorised into ‘non-toxins’ while those without

significant hits/matches were classified as ‘unidentified.’ The relative expression (FPKM)

of BLAST-annotated venom gland transcriptomic Unigenes (percentage of the three

categories), the relative abundance and the diversity of various toxins in percentage of

(i) total protein-encoding transcripts and (ii) total toxin-encoding transcripts were

determined.

Redundancy of gene families
In addition, the redundancy of genes was assessed by dividing the transcriptional activity

level or transcript reads (FPKM) with the total number of transcripts within a cluster

or a group of genes. High redundancy indicates high expression level of a gene group.

Sequence alignments
The amino acid sequences used for sequence comparison/alignments with the sequences

obtained in this study were retrieved from the UniProtKB database (http://www.uniprot.

org/). Multiple sequence alignment was performed with MUSCLE program (Edgar, 2004)
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using Jalview software v2.9 (Waterhouse et al., 2009). Pairwise sequence alignment

was performed on the full-length co-expressed toxin-encoding transcripts between the

two specimens with Mutalin� software (Corpet, 1988). Together with the annotated

sequences, sequence comparisons were carried out and compiled in Data S3.

Codon alignment and determination of substitution rates
The toxins nucleotide CDSs were retrieved from the nucleotide assembly file and aligned

(Data S4). The non-synonymous (Ka) and synonymous (Ks) substitution rates per site

(Ka/Ks) of the co-expressed transcripts were calculated using the ‘KaKs_Calculator 2.0’

(Wang et al., 2009a, 2009b, 2010). This programme implements several candidate models

of codon substitution in a maximum likelihood framework. We used the approximate

method, MYN method (a modified version of the Yang–Nielsen method) to estimate Ka

and Ks value with default parameters. The findings were tabulated in a table available in

the file of Data S4.

Availability of supporting data
Sequence data from the venom gland transcriptome of the two NK-M and NK-T have

been deposited in National Centre for Biotechnology Information (NCBI) Sequence

Read Achieve (http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi) under Bioproject:

PRJNA302200 (AC ID: SRP066203) (NK-M: SRR2917658; NK-T: SRR2917657) (http://

www.ncbi.nlm.nih.gov/sra/SRP066203).

RESULTS AND DISCUSSION
Transcriptome assembly
Illumina HiSeq 2000 sequencing was employed to sequence the transcriptome of the

venom gland of two NK-M and NK-T and the data statistics were summarised as in

Table 1. In NK-M, Trinity (Grabherr et al., 2011) created 145,538 contigs (N50 = 588),

connected to form 73,451 Unigenes (N50 = 1,139); while in NK-T, 125,435 contigs

(N50 = 547) were created and connected to form 69,840 Unigenes (N50 = 876). BLASTx

alignment (E < 10-5) between the Unigenes and sequences in the NCBI NR protein

database yielded 32,137 and 33,004 annotated Unigenes for NK-M and NK-T,

respectively (Data S1). After filtering low-frequency transcripts (defined as below 10

FPKM), the assemblies were reduced and categorised into ‘unidentified,’ ‘non-toxin’ and

‘toxin’ groups (Table 1), with the ‘toxin’ group entailed the classical-venom-component

proteins with neurotoxic/haemotoxic/cytotoxic properties as well as putative toxins

hitherto described (Aird et al., 2013; McGivern et al., 2014; Tan et al., 2015a). Although

the ‘toxin’ group, accounted for only 64 and 66 transcripts (out of more than 60,000

transcripts) in the venom gland transcriptomes of NK-M and NK-T, respectively,

the expressions of these toxin genes were distinctly high, charting 41.2% (NK-M) and

82.0% (NK-T) of the total expression (FPKM). In a few elapid snakes, toxin gene

expression levels have been shown to be in the range of 30–80% of total transcription

(for instance, 35.3% in Ophiophagus hannah (Tan et al., 2015a); 45.8% in Micrurus

fulvius (Margres et al., 2013); 70% in Naja atra (Jiang et al., 2011)). It appears that the
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rate of the overall toxin gene transcription may vary from snake to snake (perhaps

affected by the condition of the snake and the time of tissue sampling), however,

the relative expression of the different toxin genes is stable and can be studied

compatibly between the snakes. Meanwhile, the ‘unidentified’ and ‘non-toxin’

transcripts in both transcriptomes exhibited much lower expression levels in spite of

their very large number of genes (Fig. 1). The toxin genes were expressed at a high

redundancy in the venom glands of both NK-M (6311.78 FPKM/transcript) and

NK-T (22901.34 FPKM/transcript), respectively, compared to the non-toxin transcripts

(68.18 FPKM/transcript in NK-M and 95.06 FPKM/transcript in NK-T), supporting

the finding of extremely high expression of venom genes within a restricted set of

families (Data S1). Overall, approximately 58.8% and 18.0% of the total FPKM

in NK-M and NK-T, respectively, are unrelated to envenomation. Most of these are

housekeeping genes associated with cellular metabolisms and hence transcribed at

lower FPKM levels.

Complexity of the toxin transcripts
The identified toxin transcripts from the venom glands of N. kaouthia from Malaysia

(NK-M, 64 partial and complete transcripts, 41.2% of the total FPKM) and Thailand

(NK-T, 66 partial and complete transcripts, 82.0% of the total FPKM) comprise 24 gene

families, with 23 families identified for each specimen while 22 of them were co-expressed

in both (Fig. 1). The fact that the 22 gene families were co-expressed in both NK-M

and NK-T venom glands indicates that the toxin gene pool of NK-M and NK-T is

Table 1 Overview of the output statistics. The sequencing and the assembly quality of the venom gland

transcriptomes of Malaysian (NK-M) and Thai Naja kaouthia (NK-T).

NK-M NK-T

Total raw reads 56,859,800 59,932,334

Total clean reads 53,663,062 55,186,018

Total clean nucleotides (nt) 4,829,675,580 4,966,741,620

Q20 percentage 98.28 98.31

N percentage 0.00 0.00

GC percentage 45.84 45.75

Contigs created 145,538 125,435

Total length (nt) 50,843,599 40,514,499

Mean length (nt) 349 323

N50 588 547

Unigenes/transcripts assembled 73,451 69,840

Total length (nt) 51,961,752 39,063,742

Mean length (nt) 707 559

N50 1139 876

Unigenes/transcripts assembled (FPKM > 10) 11,819 4,461

Unidentified 5,725 1,576

Non-toxin 6,030 2,819

Toxin 64 66
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largely conserved. Of these, 15 protein gene families were newly detected at the

transcriptional level of N. kaouthia by the present work; these include Kunitz-type serine

protease inhibitor (KSPI), natriuretic peptide (NP), neprilysin, snake venom C-type

lectin/lectin-like protein (snaclec), phosphodiesterase (PDE), aminopeptidase (AP), snake

venom serine protease (SVSP), waprin, phospholipase B (PLB), 5′nucleotidase (5′NUC),

dipeptidylpeptidase-IV (DPP-IV), coagulation factor (CF), acetylcholinesterase (AChE),

hyaluronidase (HYA) and insulin-like growth factor (IGF). Some of these toxins were

detected in the recent global profiling of N. kaouthia venom (Laustsen et al., 2015;

Tan et al., 2015d), and is in agreement with the previous enzymatic study that has

clearly detected PDE, protease, 5′NUC, AChE and HYA activities in N. kaouthia venom

(Tan & Tan, 1988).

Figure 1 Abundance of transcripts expressed (FPKM, %) in the venom glands ofNaja kaouthia from (a) Malaysia, NK-M; (b) Thailand, NK-T.

Toxins transcripts accounted for 41.2% (NK-M) and 82.0% (NK-T) of the total FPKM, respectively. Three-finger toxin (3FTx) is the most abundant

toxin family expressed in the two venom glands (NK-M, 86.8%; NK-T, 97.0% of toxin FPKM). Abbreviations: 3FTx, three-finger toxin; L, long-

chain; S, short-chain; NC, non-conventional; CRISP, cysteine-rich secretory protein; CVF, cobra venom factor; PLA2, phospholipase A2; SVMP,

snake venom metalloproteinase; NGF, nerve growth factor; KSPI, Kunitz-type serine proteinase inhibitor; NP, natriuretic peptide; snaclec, C-type

lectin/lectin-like protein; LAAO, L-amino acid oxidase; PDE, phosphodiesterase; AP, aminopeptidase; SVSP, snake venom serine protease;

PLB, phospholipase-B; 5′NUC, 5′nucleotidase; DPP-IV, dipeptidylpeptidase-IV; CFs, coagulation factor; AChE, acetylcholinesterase and

IGF, insulin-like growth factor.
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A total of 63 and 62 NR toxin transcripts were derived from NK-M and NK-T venom

glands, respectively (Table 2). Of these, 28 (NK-M) and 27 (NK-T) encoded full-length

protein-encoding transcripts (defined here as >90% coverage to the protein-encoding

region of the annotated protein sequences) (Tables 3 and 4). These encompass most of

the medically relevant toxins of cobra venoms, including neurotoxins (LNTXs, long

neurotoxins; SNTXs, short neurotoxins), cytotoxins (CTXs) and phospholipases A2

(PLA2s) of various isoforms; hence, the species-specific database established herein

represents a valuable depot of bioinformation for further structural and functional

studies. It was noted that sequencing of full-length protein-encoding transcripts of several

larger venom components was hardly achieved in the current study, probably because

Trinity, although a top-performing assembler good at estimating transcript isoforms,

has limitations in capturing complete transcript sequences (Honaas et al., 2016). To

obtain complete sequences of all genes, we suggest that the current assembly algorithm

can be revised with possibly the incorporation of newer programming software in the

future. On the other hand, it is also noted that the application of BLASTx search against

NR database yielded limited matches to N. kaouthia-specific sequences due to the small

database available for this species (Data S2A and S2B; Table 5). As outlined in the

methodology, the annotation for most of the transcripts was based on sequence homology

to toxins of closely related taxa available in the current repository. This first de novo

transcriptomic study for N. kaouthia has successfully uncovered numerous novel toxin

sequences and the data is expected to contribute significantly to enriching the species

database (Data S3).

The transcriptomes of both NK-M and NK-T venom glands were extremely biased

towards three-finger toxin (3FTxs) expressions (86.8%, NK-M; 97.0%, NK-T, in total

FPKM of toxins). Similarly high expression levels of 3FTX genes above 80% to >90% of

total toxin expression were reported previously from the venom gland transcriptomes of

Table 2 Overview of the numbers of toxin transcripts, full-length sequences and co-expressed toxin

genes from the venom gland transcriptomes of Malaysian (NK-M) and Thai Naja kaouthia (NK-T).

NK-M NK-T

1. Toxin transcripts 64 66

2. Non-redundant toxin transcriptsa 63 62

3. Protein annotated from non-redundant toxin transcriptsb 49 51

4. Full-length coverage transcript from non-redundant toxins transcriptsc 28 27

5. Non-redundant toxin transcripts co-expressed in both NK-M and NK-T (according to

protein accession ID)d

–Total non-redundant toxins transcriptse 46 43

–Total protein subtypes annotatedf 36 36

Notes:
a Number of toxins transcripts excluding the redundant transcripts.
b Number of annotated protein from the non-redundant toxins transcripts (one or more transcripts could be annotated
to same protein ID).

c Non-redundant toxins transcripts with full-length coverage (>90%) to the protein-encoding region of the annotated
protein ID.

d Non-redundant toxins transcripts co-expressed in the venom gland transcriptome of both NK-M and NK-T.
e Number of non-redundant toxins transcripts co-expressed in both NK-M and NK-T.
f Number of annotated proteins from the non-redundant toxins transcripts.
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Table 3 List of full-length transcripts (37 in total) obtained from the venom gland transcriptomes of Malaysian Naja kaouthia (NK-M).

Protein

family

Code Protein ID Annotated

accession

(UniProt/NCBI)

Species A. acid

(fall in

mature chain)

Mature chain

of accession

ID

Coverage

(mature

chain)

Coverage

(%)

3FTx NKM_FTX01 Alpha-elapitoxin-Nk2a P01391 N. kaouthia 71 71 1–71 100

NKM_FTX05 Cobrotoxin P60770 N. atra 62a 62 22–83 100

NKM_FTX06 Cobrotoxin-c P59276 N. kaouthia 61 61 1–61 100

NKM_FTX07 Short neurotoxin SNTX11 Q2VBP1 O. hannah 56a 57 22–77 98.25

NKM_FTX09 Neurotoxin homolog NL1 Q9DEQ3 N. atra 65a 65 22–86 100

NKM_FTX10 Cytotoxin 5 Q98961 N. atra 60a 60 22–81 100

NKM_FTX11 Cardiotoxin 7 Q91996 N. atra 62a 62 17–83 100

NKM_FTX12 Muscarinic toxin-like

protein 2

P82463 N. kaouthia 62 65 1–62 95.38

NKM_FTX13 Muscarinic toxin-like

protein 3 homolog

A8N286 O. hannah 65a 65 22–86 100

NKM_FTX14 Weak tryptophan-

containing neurotoxin

P82935 N. kaouthia 65 65 22–86 100

NKM_FTX15 Three finger toxin-like Q27J50 L. muta 73a 73 21–93 100

PLA2 NKM_PLA01 Acidic phospholipase A2 1 P00596 N. kaouthia 119 119 28–146 100

vNGF NKM_NGF01 Nerve growth factor beta

chain

A59218 N. kaouthia 116 116 131–246 100

KSPI NKM_KPI01 Protease inhibitor P20229 N. naja 57 57 1–57 100

NKM_KPI02 Kunitz-type protease

inhibitor 1

V8N7R6 O. hannah 488a 481 26–506 100b

Snaclec NKM_SCL01 C-type lectin BFL-1 Q90WI8 B. fasciatus 137a 137 22–158 100

NKM_SCL02 C-type lectin BFL-2 Q90WI7 B. fasciatus 137a 137 22–158 100

Cystatin NKM_CYS01 Hypothetical protein

L345_15265

V8NBS6 O. hannah 81a 74 1–74 100

NKM_CYS02 Cystatin E3P6P4 N. kaouthia 115 115 27–141 100b

LAAO NKM_LAO01 L-amino-acid oxidase A8QL58 N. atra 495a 430 20–449 100b

Vespryn NKM_VES01 Thaicobrin P82885 N. kaouthia 190 108 1–108 100b

PDE NKM_PDE01 Phosphodiesterase U3FAB3 M. fulvius 836a 836 18–853 100

SVSP NKM_SSP01 Serine protease harobin Q5MCS0 H. curtus 223a 232 34–265 96.12

Waprin NKM_WAP01 Scuwaprin-a B5G6G8 O. scutellatus

scutellatus

51a 51 22–72 100

PLB NKM_PLB01 Putative

phospholipase B 81b

F8J2D3 D. coronoides 518a 518 36–553 100

DPP-IV NKM_DPP01 Venom

dipeptidylpeptidase-IV

A6MJH7 P. australis 753a 753 1–753 100

AChE NKM_ACE01 Acetylcholinesterase Q92035 B. fasciatus 551a 578 29–579 95.33

IGF NKM_IGF01 Insulin-like growth

factor II

V8NR69 O. hannah 161a 161 25–185 100

Notes:
B, Bungarus; D, Drysdalia; H, Hydrophis; L, Lachesis; M, Micrurus; N, Naja; O, Ophiophagus/Oxyuranus; P, Pseudechis.
a Novel protein newly reported for the Naja kaouthia species.
b Possesses sequence variance to the annotated sequence.
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the Chinese cobra (N. atra, 95.8%) and Malaysian king cobra (O. hannah, 84.9%)

(Jiang et al., 2011; Tan et al., 2015a). This is consistent with the dominance of 3FTx

proteins in N. kaouthia venom from both localities and these toxins constitute the key

Table 4 List of full-length transcripts (44 in total) obtained from the venom gland transcriptomes of Thai Naja kaouthia (NK-T).

Protein

family

Code Protein ID Annotated

accession

(UniProt/NCBI)

Species A. acid (fall

in mature

chain)

Mature chain

of Accession

ID

Coverage

(mature

chain)

Coverage

(%)

3FTx NKT_FTX07 Short neurotoxin SNTX11 Q2VBP1 O. hannah 56a 57 22–77 98.25

NKT_FTX08 Neurotoxin homolog NL1 Q9DEQ3 N. atra 65a 65 22–86 100

NKT_FTX12 Cardiotoxin 7 Q91996 N. atra 62a 62 22–83 100

NKT_FTX13 Muscarinic toxin-like

protein 2

P82463 N. kaouthia 62 65 1–62 95.38

NKT_FTX16 Three finger toxin-like

precursor

Q27J50 L. muta 73a 73 21–93 100

CRISP NKT_CRP02 Cysteine-rich venom

protein kaouthin-2

P84808 N. kaouthia 207 213 26–232 97.18

PLA2 NKT_PLA01 Acidic phospholipase A2 1 P00596 N. kaouthia 119 119 28–146 100

vNGF NKT_NGF01 Nerve growth factor beta

chain precursor

A59218 N. kaouthia 116 116 131–246 100

KSPI NKT_KPI01 Protease inhibitor NACI Q5ZPJ7 N. atra 57a 57 25–81 100

NKT_KPI02 Protease inhibitor B2BS84 A. labialis 229a 232 21–252 98.71

NKT_KPI03 Kunitz-type protease

inhibitor 1

V8N7R6 O. hannah 488a 481 26–506 100b

Neprilysin NKT_NEP01 Neprilysin-like XP_007436944 P. bivittatus 672a 672 77–748 100

Snaclec NKT_SCL01 C-type lectin BFL-1 Q90WI8 B. fasciatus 137a 137 22–158 100

NKT_ SCL03 C-type lectin BFL-2 Q90WI7 B. fasciatus 137a 137 22–158 100

Cystatin NKT_CYS01 Hypothetical protein

L345_15265

V8NBS6 O. hannah 81a 74 1–74 100b

NKT_CYS02 Cystatin E3P6P4 N. kaouthia 115 115 27–141 100

LAAO NKT_LAO01 L-amino-acid oxidase A8QL58 N. atra 495a 430 20–449 100b

Vespryn NKT_VES01 Thaicobrin P82885 N. kaouthia 190 108 1–108 100b

PDE NKT_PDE01 Phosphodiesterase U3FAB3 M. fulvius 836a 836 18–853 100

SVSP NKT_SSP01 Serine protease harobin Q5MCS0 H. curtus 223a 232 34–265 96.12

Waprin NKT_WAP01 Scuwaprin-a B5G6G8 O. scutellatus

scutellatus

48a 51 25–72 94.12

PLB NKT_PLB01 Putative phospholipase B

81b

F8J2D3 D. coronoides 518a 518 36–553 100

5′NUC NKT_NUC01 Snake venom 5′nucleotidase B6EWW8 G. brevicaudus 524a 524 41–564 100

DPP-IV NKT_DPP01 Venom

dipeptidylpeptidase-IV

A6MJH7 P. australis 753a 753 1–753 100

AChE NKT_ACE01 Acetylcholinesterase Q92035 B. fasciatus 578a 578 29–606 100

HYA NKT_HYA01 Hyaluronidase A3QVN2 E. ocellatus 426a 426 24–449 100

IGF NKT_IGF01 Insulin-like growth

factor I isoform X2

XP_007420002 P. bivittatus 168a 155 1–155 100b

Notes:
A, Austrelaps; B, Bungarus; D, Drysdalia; E, Echis; G, Gloydius; H, Hydrophis; L, Lachesis; M, Micrurus; N, Naja; O, Ophiophagus/Oxyuranus; P, Pseudechis/Python.
a Novel protein newly reported for the Naja kaouthia species.
b Possesses sequence variance to the annotated sequence.
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Table 5 Overview of the families and subtypes of toxin genes in the venom gland transcriptomes of Malaysian (NK-M) and Thai Naja
kaouthia (NK-T).

Protein

family

Subtype Accession/species NK-Mb, %

(non-redundant

transcript)

NK-Tb, %

(non-redundant

transcript)

Three-finger toxin (3FTx) 86.84 (15) 97.03 (16)

LNTX 1.68 (4) 48.32 (3)

Alpha-elapitoxin-Nk2a P01391 (N. kaouthia)a 1.52 (1)c 48.32 (2)

Hypothetical protein L345_18084 V8N212 (O. hannah) – 0.00 (1)

Long neurotoxin-like OH-31 Q53B55 (O. hannah)a 0.16 (3) –

SNTX 46.43 (5) 22.71 (6)

Cobrotoxin P60770 (N. atra)a 16.45 (1)c 3.53 (1)

Cobrotoxin-c P59276 (N. kaouthia)a 14.46 (1)c 18.38 (2)

Short neurotoxin SNTX11 Q2VBP1 (O. hannah)a 12.44 (1)c 0.67 (1)c

Cobrotoxin-b P80958 (N. atra) 2.37 (1) –

Neurotoxin homolog NL1 Q9DEQ3 (N. atra)a 0.71 (1)c 0.12 (1)c

Neurotoxin-like protein NTL2 Q9W717 (N. atra) – 0.01 (1)

CTX 29.01 (2) 20.54 (3)

Cytotoxin 3 P01446 (N. atra) – 18.35 (1)

Cytotoxin 5 Q98961 (N. atra)a 27.20 (1)c 1.17 (1)

Cardiotoxin 7 Q91996 (N. atra)a 1.81 (1)c 1.02 (1)c

MTLP 0.72 (2) 0.47 (1)

Muscarinic toxin-like protein 2 P82463 (N. kaouthia)a 0.71 (1)c 0.47 (1)c

Muscarinic toxin-like protein 3 homolog A8N286 (O. hannah) 0.01 (1)c –

WTX 9.01 (2) 4.97 (3)

Weak tryptophan-containing neurotoxin P82935 (N. kaouthia)a 9.00 (1)c 4.12 (1)

Probable weak neurotoxin NNAM2 Q9YGI4 (N. kaouthia) – 0.85 (1)

Three finger toxin-like Q27J50 (L. muta)a 0.01 (1)c 0.00 (1)c

Cysteine-rich secretory protein (CRISP) 4.03 (5) 0.31 (5)

Kaouthin-2 P84808 (N. kaouthia)a 2.10 (2) 0.11 (1)c

Natrin-1 Q7T1K6 (N. atra)a 1.41 (2) 0.20 (3)

Natrin-2 Q7ZZN8 (N. atra) 0.52 (1) 0.01 (1)

Cobra venom factor (CVF) 2.19 (4) 0.06 (2)

Cobra venom factor Q91132 (N. kaouthia)a 2.19 (4) 0.06 (2)

Phospholipase A2 (PLA2) 1.80 (2) 1.54 (1)

Acidic phospholipase A2 1 P00596 (N. kaouthia)a 1.79 (1)c 1.54 (1)c

Phospholipase A2 GL16-1 Q8JFB2 (L. semifasciata) 0.01 (1) –

Snake venom metalloproteinase (SVMP) 1.62 (6) 0.18 (10)

Zinc metalloproteinase-disintegrin atragin D3TTC2 (N. atra) 1.03 (2) 0.03 (1)

Haemorrhagic metalloproteinase-disintegrin

kaouthiagin

P82942 (N. kaouthia) 0.53 (3) –

Carinatease-1 B5KFV1 (T. carinatus) 0.06 (1) 0.01 (1)

Zinc metalloproteinase-disintegrin NaMP A8QL59 (N. atra) – 0.01 (4)

Nigrescease-1 B5KFV8 (C. nigrescens) – 0.04 (1)

(Continued)
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Table 5 (continued).

Protein

family

Subtype Accession/species NK-Mb, %

(non-redundant

transcript)

NK-Tb, %

(non-redundant

transcript)

Zinc metalloproteinase-disintegrin cobrin Q9PVK7 (N. kaouthia) – 0.05 (1)

Zinc metalloproteinase-disintegrin atrase-A D5LMJ3 (N. atra) – 0.02 (1)

Zinc metalloproteinase mocarhagin Q10749 (N. mossambica) – 0.02 (1)

Nerve growth factor (NGF) 1.04 (1) 0.10 (1)

Nerve growth factor beta chain A59218 (N. kaouthia)a 1.04 (1)c 0.10 (1)c

Kunitz-type serine protease inhibitor (KSPI) 0.63 (2) 0.25 (3)

Protease inhibitor P20229 (N. naja) 0.61 (1)c –

Protease inhibitor NACI Q5ZPJ7 (N. atra) – 0.24 (1)c

Kunitz-type protease inhibitor 1 V8N7R6 (O. hannah)a 0.02 (1)c 0.00 (1)c

Protease inhibitor B2BS84 (A. labialis)a – 0.01 (1)c

Natriuretic peptide (NP) 0.56 (2) 0.12 (2)

Natriuretic peptide Na-NP D9IX97 (N. atra)a 0.54 (2) 0.12 (2)

Neprilysin 0.37 (3) 0.01 (1)

Neprilysin-like XP_007436944 (P. bivittatus)a 0.37 (3) 0.01 (1)c

Snake venom C-type lectin/lectin-like protein (snaclec) 0.31 (4) 0.12 (2)

C-type lectin BFL-1 Q90WI8 (B. fasciatus)a 0.29 (1)c 0.12 (1)c

C-type lectin BFL-2 Q90WI7 (B. fasciatus)a 0.02 (1)c 0.00 (1)c

Venom C-type lectin mannose binding

isoform 2 variant 1

D2YVL4 (C. nigrescens) 0.00 (1) –

C-type lectin isoform 3 H8PG91 (P. nigriceps) 0.00 (1) –

Cystatin 0.19 (4) 0.05 (5)

Hypothetical protein L345_15265 V8NBS6 (O. hannah)a 0.14 (1)c 0.04 (1)c

Cystatin E3P6P4 (N. kaouthia)a 0.02 (1)c 0.00 (1)c

Cystatin-C V8NX38 (O. hannah)a 0.02 (1) 0.00 (1)

Hypothetical protein L345_15526 V8NB07 (O. hannah) 0.00 (1) 0.00 (1)

Hypothetical protein L345_14827 V8NCS2 (O. hannah) – 0.00 (1)

L-amino-acid oxidase (LAAO) 0.12 (1) 0.02 (1)

L-amino-acid oxidase A8QL58 (N. atra)a 0.12 (1)c 0.02 (1)c

Vespryn 0.12 (1) 0.11 (1)

Thaicobrin P82885 (N. kaouthia)a 0.12 (1)c 0.11 (1)c

Phosphodiesterase (PDE) 0.11 (2) 0.01 (1)

Phosphodiesterase U3FAB3 (M. fulvius)a 0.11 (2)c 0.01 (1)c

Aminopeptidase 0.03 (2) 0.01 (2)

Aminopeptidase N B6EWW5 (G. brevicaudus)a 0.02 (1) 0.01 (2)

Aminopeptidase B V8N861 (O. hannah) 0.01 (1) –

Snake venom serine protease (SVSP) 0.03 (1) 0.01 (1)

Serine protease harobin Q5MCS0 (H. curtus)a 0.03 (1)c 0.01 (1)c

Waprin 0.01 (1) 0.00 (1)

Scuwaprin-a B5G6G8 (O. scutellatus

scutellatus)a
0.01 (1)c 0.00 (1)c
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venom principles that are important biologically (in predation) and medically (in

envenomation) (Tan et al., 2015d). In NK-M, other toxins transcripts include coding

cysteine-rich secretory proteins (CRISPs, 4.03%), cobra venom factor (CVF, 2.19%),

PLA2s (1.80%), snake-venom metalloproteinases (SVMPs, 1.62%), nerve growth factors

(NGFs, 1.04%) and 17 protein families that were expressed at very low abundance (<1%):

KSPIs, NPs, neprilysin, snacles, cystatins, L-amino acid oxidases (LAAOs), vespryn, PDEs,

APs, SVSPs, waprins, PLBs, 5′NUCs, DPP-IV, CFs, AChE and IGFs (Fig. 1). Similarly, the

expression of other toxin genes in NK-T venom gland is relatively suppressed: while PLA2s

transcripts charted 1.54% FPKM, and those of the other 21 families are all expressed

at a level below 1% FPKM. Table 5 shows the comparative gene expression profile of

NK-M and NK-T venom glands. The sequences and parametric details of the transcripts

were sorted according to gene families and compiled in Data S2A and S2B.

Co-expression of toxin genes between NK-M and NK-T
Table 2 shows the key comparison of the venom gland transcriptomes between NK-M

and NK-T (also see Data S2A, S2B, S3 and Table 5 for details). Among the NR toxin

transcripts, 46 and 43 transcripts from NK-M and NK-T venom glands, respectively,

Table 5 (continued).

Protein

family

Subtype Accession/species NK-Mb, %

(non-redundant

transcript)

NK-Tb, %

(non-redundant

transcript)

Phospholipase B (PLB) 0.01 (1) 0.01 (1)

Putative phospholipase B 81b F8J2D3 (D. coronoides)a 0.01 (1)c 0.01 (1)c

5′nucleotidase (5′NUC) 0.01 (2) 0.02 (1)

5′nucleotidase A6MFL8 (D. vestigiata)a 0.00 (1) –

Snake venom 5′nucleotidase F8S0Z7 (C. adamanteus) 0.00 (1) –

Snake venom 5′nucleotidase B6EWW8 (G. brevicaudus)a – 0.02 (1)c

Dipeptidylpeptidase-IV (DPP-IV) 0.01 (1) 0.00 (1)

Venom dipeptidylpeptidase-IV A6MJH7 (P. australis)a 0.01 (1)c 0.00 (1)c

Coagulation factor (CF) 0.01 (1) 0.00 (0)

Coagulation factor X isoform 1 V8PHG1 (O. hannah) 0.01 (1) –

Acetylcholinesterase (AChE) 0.00 (1) 0.01 (1)

Acetylcholinesterase Q92035 (B. fasciatus)a 0.00 (1)c 0.01 (1)c

Hyaluronidase 0.00 (0) 0.01 (2)

Hyaluronidase A3QVN2 (E. ocellatus)a – 0.01 (2)c

Insulin-like growth factor (IGF) 0.01 (1) 0.00 (1)

Insulin-like growth factor II V8NR69 (O. hannah)a 0.00 (1)c –

Insulin-like growth factor I isoform X2 XP_007420002

(P. bivittatus)

– 0.00 (1)c

Notes:
The number in bracket represents the number of non-redundant transcript.
A, Austrelaps; B, Bungarus; C, Crotalus/Cryptophis; D, Demansia/Drysdalia; E, Echis; G, Gloydius; H, Hydrophis; L, Lachesis/Laticauda; M, Micrurus; N, Naja;
O, Ophiophagus/Oxyuranus; P, Parasuta/Pseudechis/Python; T, Tropidechis.
a Toxin transcripts used in the sequence comparative study of NK-M and NK-T (Data S3 and S4).
b Level of expression in percentage (%) by FPKM (fragments per kilobase of exon model per million mapped reads).
c Transcript with full-length protein-encoding region coverage (>90%) to the mature chain of annotated protein ID.
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were found to encode the same 36 toxins (Table 2). Of these, selected transcripts with at

least 50% coverage of protein-encoding region were compared for sequence similarity

(NK-M, 40 transcripts; NK-T, 36 transcripts) (Data S3). In total, 33 pairs of transcripts

(including redundancy of allelic variation) encoding 32 different toxin genes were

analysed, which encoded 18 of the 24 protein families of toxins (Data S3). The results

revealed that most of the transcripts encoding the same toxin are highly conserved

between NK-M and NK-T, with only minor divergence at their amino acid sequences

(Data S3). Out of the 33 pairs of sequence comparison (at amino acid level), 29 pairs were

either identical or with <2% divergence; two transcripts varied by 2–10%. Only two

transcripts are found to exhibit >10% variation in their amino acid sequences. In theory,

the three-dimensional structure of protein is expected to change markedly beyond the

‘twilight zone’ when the amino acid sequence deviates by >30% (Bordoli et al., 2009;

Khor et al., 2015). The findings are indicative of a high degree of conserved CDSs in

the toxin genes of NK-M and NK-T, and this is supported by results from nucleotide

substitution analyses (Data S4), where the nucleotide CDSs of the co-expressed genes were

analysed using simple substitution rates analyses program, KaKs_Calculator 2.0. Of note,

by analysing the nine pairs of toxins which showed variable sequences, there are no

significant findings on positive selection as the mean for genetic differences between

the two geographical cobras. The observed sequence conservation in the genes hence

may be a result of purifying selection, and the genes are constrained to engage in highly

specific interactions with the conserved proteins. Nonetheless, the expression patterns of

the conserved genes vary remarkably between NK-M and NK-T, implying complex

regulatory processes that the result in the up-regulation of gene-encoding certain toxins,

or alternatively, enhanced transcript degradation or lack of transcription that reflects

pseudogenisation of certain traits. Variation in the final gene products, i.e. venoms

between NK-M and NK-T is indeed conspicuous, where key a-neurotoxins differ

remarkably in their relative protein abundance between the two geographical venoms

(Tan et al., 2015d). In the present study, the large differences in the principal toxin

expression between NK-M and NK-T were most likely the result of directional selection,

potentially due to local selective pressures and/or coevolution with distinct prey

populations or species. Adaptive expression variations have been well documented in

animals including venomous snakes, where the expression variability has been shown to

account for the differences in venom function, particularly intraspecific venom function

(Lamichhaney et al., 2015, 2016; Margres et al., 2016; Zhang & Reed, 2016).

The clustering of other expressed genes as ‘toxins’ in this study generally follows

the conventional ‘toxin’ classification from previous reports (Aird et al., 2013; Jiang

et al., 2011; Margres et al., 2013; Rokyta et al., 2012). However, it is worthwhile to

note that the expression of those ‘lesser’ gene families in the venom gland could well be

by physiological default to some extent, as demonstrated by the expression of venom

gene homologues across different tissues of non-venomous snakes (Hargreaves et al.,

2014; Reyes-Velasco et al., 2015), and the equivocal functionality of these ‘toxins.’

Presumably, the genes were present along the continuum of a toxin-recruitment

model, but have been maintaining at a nearly neutral, intermediate landscape, that is
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likely a result of purifying selection. For instance, SVMP and SVSP, typical viperid

haemotoxins, are still expressed but at low levels in the venom glands of NK-M

and NK-T. This phenomenon of relatively lower expression of SVSP and SVMP in

elapids (<5%, in comparison to the levels of 20–30% in the viperid-venom gland

transcriptomes) has also been shown in several other elapid-venom gland

transcriptomes (Casewell et al., 2009; Correa-Netto et al., 2011; Jiang et al., 2011;

Junqueira-de-Azevedo et al., 2015; Margres et al., 2013; Tan et al., 2015a).

Correlation between transcriptome and proteome
Of the 24 toxin gene families expressed in N. kaouthia venom gland, only 13 were

reported at the protein level as shown in a recent comparative proteomic study

(detectable proteins being 3FTx, PLA2, CRISP, SVMP, LAAO, CVF, KSPI, NP, PDE,

5′NUC, vespryn, snaclec and NGF) (Tan et al., 2015d). This shows that a relatively

large number of putative toxins were never or only translated and secreted into the

venom gland in a minute amount. Several studies have shown that there is no positive

correlation between levels of venom-gene expression and protein abundance (Durban

et al., 2011; Tan et al., 2015a); although some other studies showed conflicting results

(Aird et al., 2013; Casewell et al., 2014; Rokyta, Margres & Calvin, 2015), presumably

because of the complex regulation processes governing the mRNA half-life, translation

and protein maturation (Vogel & Marcotte, 2012). Admittedly, the issue of correlation

between transcriptome and proteome is a complex one (Li, Bickel & Biggin, 2014), as

the analysis of the individual gene expression could be further affected by practical

factors, e.g. the time span between venom collection and gland tissue harvesting. In this

study, the venom glands were sampled four days after venom milking as a way to

maximise the yield of total mRNA (Rotenberg, Bamberger & Kochva, 1971), although the

different genes might be expressed at different rates.

Three-finger toxins
Three-finger toxins typically constitute the main bulk of toxins in elapid venoms, in

particular venoms of the cobras, king cobra and some sea snakes (Tan et al., 2015b; Tan &

Tan, 2015). The mini-proteins fold in a similar pattern, with three b-stranded loops

extending from a central core containing four to five conserved disulphide bridges

(Hedge et al., 2009). In spite of the structural similarity, 3FTxs exhibit a wide range of

pharmacological activities and they are conventionally classified further into different

subtypes (Chanda et al., 2013; Kini & Doley, 2010). The orthologues of 3FTx genes may

have been existent in the ancestral state prior to the divergence of different caenophidian

lineage and venom-gene expansion (Reyes-Velasco et al., 2015), but adaptation and

differential expression pattern follow in the different lineages over long evolutionary time.

While 3FTx genes are highly expressed (>80%) in most elapids such as king cobra

(Tan et al., 2015a; Vonk et al., 2013) and the monocled cobra as shown here, some studies

have reported the transcription of 3FTx genes (albeit at very low levels) in the venom

gland of some viperids and colubrids (Aird et al., 2013; Pawlak et al., 2006; Rokyta

et al., 2012), or even in the rictal gland of python (Reyes-Velasco et al., 2015), but
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generally there is lesser isoform variability in these species. Our transcriptomic

results showed that 3FTxs were highly and diversely expressed in both N. kaouthia venom

glands, with a total of 15 and 16 transcripts identified in NK-M and NK-T, respectively.

These transcripts were further classified into long-chain (L-3FTx, represented by LNTX:

NK-M, four transcripts; NK-T, three transcripts), short-chain (S-3FTx, including

SNTX, CTX and muscarinic toxin-like proteins (MLTPs): NK-M, nine transcripts; NK-T,

10 transcripts) and non-conventional (NC) 3FTxs (NC-3FTx, including weak toxins

(WTXs): NK-M, two transcripts; NK-T, three transcripts), according to the classification

system based on the number and position of disulphide bonds (Kini & Doley, 2010)

(Data S2A and S2B; Fig. 2).

Altogether, a total of 11 and five full-length 3FTx transcripts were uncovered for NK-M

and NK-T, respectively (Data S2A and S2B). Among these 3FTx transcripts, seven and

four novel sequences were identified for NK-M and NK-T, respectively (Tables 3 and 4).

The CDSs of the 11 3FTx genes that were found co-expressed in both NK-M and NK-T

were largely conserved, implying that these paralogous sequences have been maintained

by evolution despite potential allopatric subspeciation (Data S4). Although the genetic

divergence is lacking within the 3FTxs, the expression levels of a-neurotoxin genes

are noted to vary substantially between NK-M and NK-T (Fig. 1; Table 5). In the NK-M

venom gland, S-3FTxs are the dominantly expressed transcripts, whereas in the

NK-T venom gland, L-3FTxs are much more abundantly expressed (Table 5). The

findings suggest that the transcription of certain toxin genes may have been selectively

suppressed or the up-regulation in other toxin transcripts. A more specific example is the

expression of the LNTX, a-elapitoxin-Nk2a (UniProtKB: P01391), a well-investigated

long neurotoxin from Thai N. kaouthia venom. This unique LNTX gene was found to be

co-expressed in both NK-M and NK-T (NKM_FTX01, NKT_FTX01 and NKT_FTX02)

but vary significantly between the two at the expression level. While a-elapitoxin-Nk2a

accounts for 48.3% of toxin gene expression in the NK-T venom gland, its expression

is extremely low in the NK-M venom gland, contributing a mere 1.7% of total toxin

transcripts. The marked difference in the expression level of this toxin in the respective

venom gland of NK-Tand NK-M is consistent with its abundance in the venom proteome

of NK-T and NK-M (33.3% and 3.9% of total venom protein, respectively) (Tan et al.,

2015d). On the other hand, SNTXs are the most abundantly expressed among the

transcripts of short-chain 3FTxs (22.68% and 46.39% of toxin gene expression in NK-T

and NK-M, respectively), followed by CTXs/cardiotoxins (CTXs, 20.52% and 28.99% in

NK-T and NK-M, respectively), whereas MLTPs are expressed at a much lower level in

both (MTLPs, 0.47% and 0.71%, respectively in NK-T and NK-M) (Table 5). In contrast

to LNTX, SNTXs were expressed at a relatively higher level in NK-M (46.39%) than in

NK-T (22.68%). This distinct expression of SNTX was, however, not reflected in the

minor difference in SNTX content of the two venoms (4.2% and 7.7% of total venom

proteins in NK-M and NK-T, respectively) (Tan et al., 2015d).

The SNTX transcripts NKM_FTX05 and NKT_FTX06 show amino acid sequence

identical to cobrotoxin from N. atra (UniProtKB: P60770), whereas NKM_FTX06,

NKT_FTX04 and NKT_FTX05 have amino acid sequences identical to cobrotoxin-c
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(UniProtKB: P59276) from N. kaouthia (Meng et al., 2002; Yang, Yang & Huang,

1969). It is interesting to note that all three cobrotoxins annotated (the former two

transcripts, and NKM_FTX08 that is homologous to cobrotoxin-b; UniProtKB: P80958)

Figure 2 Multiple sequence alignment of three-finger toxin (3FTx) transcripts from the venom gland transcriptomes of NK-M and NK-T.

(A) Malaysian N. kaouthia 3FTxs were aligned to show disulphide bonding. (B) Thai N. kaouthia 3FTxs were aligned to show disulphide bond-

ing. (C) 3FTxs were aligned and compared to sequences from the annotated public database sequence. Black, disulphide bond loops; blue,

additional disulphide bond of S-3FTxs; red, additional disulphide bond of L-3FTxs; green, critical residues of S-3FTx; #, toxins co-expressed in the

NK-M and NK-T; ^, toxin transcripts expressed in either source.
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have been previously reported in the venom of N. kaouthia from Yunnan, China

(Meng et al., 2002; Qiumin et al., 2002), indicating that the cobrotoxin-encoding

gene is well conserved in N. kaouthia from distant geographical regions. These SNTXs

are highly lethal a-neurotoxins in rodents although some studies suggested that

cobra venom SNTXs exhibit a weaker affinity towards the nicotinic acetylcholine

receptor (nAChR) as compared to LNTXs, due to the lack of the fifth disulphide bridge

in its structure (Barber, Isbister & Hodgson, 2013; Servent et al., 1997, 2000). The

weaker affinity of SNTX towards nAChR, however, does not compromise its lethal

potency (having compatible LD50 with LNTX), but has important practical concern

as its poor antigenicity is a contributing factor to low neutralisation efficacy of

antivenom against SNTX-predominated venoms (Leong et al., 2015; Tan et al.,

2015b, 2016a).

Structurally resembling the SNTXs, CTXs are basic proteins with hydrophobic three-

finger loops that can interact with the phospholipid bilayer of cell membranes, thereby

mediating cytotoxic effect (Feofanov et al., 2005; Konshina et al., 2011; Osipov et al., 2008;

Tan & Tan, 2016). CTX genes are highly expressed in N. kaouthia venom glands, with

transcripts constituting 28.99% and 20.52% of the total toxin FPKM in NK-M and NK-T,

respectively. Overall, transcripts highly homologous to three different CTX genes were

detected: CTX-3 (UniProtKB: P01446), CTX-5 (UniProtKB: Q98961) and CTX-7

(UniProtKB: Q91996). Transcript NKT_FTX10, coding CTX-3, was solely expressed in

NK-T transcriptome at a significant level (18.35%), representing a potential unique

biological marker from the venom gland transcriptome of NK-T. Besides, NKM_FTX10

and NKT_FTX11, expressed respectively by NK-M and NK-T, are homologous to CTX-5

but sequence variation is noted between the two geographical variants. Meanwhile,

NKM_FTX11 and NKT_FTX12, co-expressed in both NK-M and NK-M venom glands,

exhibit identical sequences to CTX-7 (reported from N. atra), indicating that this CTX

gene is relatively well-conserved within N. kaouthia from Thailand and Malaysia as well

as the Taiwanese N. atra (Data S3; Table 5; Fig. 2C).

The current transcriptomic study also reveals the expression of MTLPs and WTXs,

two subgroups of venom neurotoxins, which have not been extensively investigated.

MTLPs were reported to have low affinity towards muscle and neuronal-type receptors

(nAChRs) (Kukhtina et al., 2000), while WTXs are weak antagonist to cholinergic

receptors and non-lethal to mice by intravenous route, up to 10 mg/kg (Utkin et al., 2001a,

2001b). MTLP is the least expressed 3FTxs in the venom glands of both NK-M (two

transcripts, 0.71%) and NK-T (one transcript, 0.47%) (Data S3; Table 5). In contrast,

the expression levels of WTXs are relatively higher (NK-M, 9.01%; NK-T, 4.97%),

with weak tryptophan-containing neurotoxin (UniProtKB: P82935) being the most

abundant within this subgroup. The weak neurotoxin was suggested to dose-dependently

suppress the orientation–exploration and locomotion activities, as well as to cause

weak neurotropic effects in rodents, possibly involving both nicotinic and muscarinic

acetylcholine receptors (Mordvintsev et al., 2007). However, its relevance to the

pathogenesis of cobra envenomation in human remains to be further elucidated.
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Phospholipase A2

A total of two and one PLA2 transcripts were identified from NK-M and NK-T

venom glands respectively. Among these, NKM_PLA01 and NKT_PLA01 are the

predominantly expressed forms of PLA2 and they are homologous to Group-IA acidic

PLA2-1 (UniProtKB: P00596) isolated from the venom of N. kaouthia from Thailand

(Joubert & Taljaard, 1980) (Fig. 3). From the sequence obtained, NKT_PLA01 was

identical to the previously reported sequence (UniProtKB: P00596), while NKM_PLA01

is highly homologous with only one amino acid differing between the two, at the

non-functional-critical site (Data S3; Fig. 3). Snake venom PLA2 commonly exists in

multiple isoforms and exhibits great diversity in biological properties (Kini, 2003),

however, it has not been easy to pinpoint the residues or segments of PLA2 that govern

the pharmacological effects (Doley, Zhou & Kini, 2009). In agreement with the

proteomic study and purified toxin characterisation (Tan et al., 2015d, 2016a), the

predominant form of PLA2 in N. kaouthia venom is the acidic, enzymatic PLA2, shown

with conserved Asp-49 residue in the current study. The acidic Asp-49-PLA2, however,

was not lethal in mice even at a dose of >10–20 times of the median lethal dose of whole

venom (Tan et al., 2016a). This is consistent with the report of non-toxic property of

various acidic-type PLA2s isolated from the venoms of Indian N. kaouthia (Joubert &

Taljaard, 1980) and Pakistani N. naja (Wong, Tan & Tan, 2016), but diverged markedly

from the highly lethal, neutral/basic venom PLA2s characterised for other Southeast

Asian cobras including Naja sumatrana and N. sputatrix (Leong et al., 2015; Tan &

Arunmozhiarasi, 1989). The acidic PLA2s hence may serve a secondary role of ancillary

function, for instance, potentiating the toxic actions of other venom components,

including CTXs/cardiotoxins (Gasanov, Dagda & Rael, 2014), SVMPs (Bustillo et al.,

2015) and weak neurotoxin (Mukherjee, 2010) to enhance tissue damages which are

crucial for prey digestion but clinically deleterious as it complicates local tissue necrosis.

On the other hand, although the mRNA level of the predominant form of PLA2 was

relatively low (∼2%) within the venom gland, the PLA2 protein content in N. kaouthia

venom is disproportionately higher (12–14% of total venom proteins) (Laustsen et al.,

2015; Tan et al., 2015d). A possible explanation for this is that the mRNA of the PLA2

may have longer half-life, and thus a low mRNA level is sufficient to produce the

necessary PLA2 protein (Vogel & Marcotte, 2012).

Figure 3 Multiple sequence alignment of phospholipase A2 (PLA2) transcripts from the venom gland transcriptomes of NK-M and NK-T in

comparison to PLA2 sequences of representative venomous snakes. Red, conservative disulphide bonds; black, additional disulphide bond;

blue, residues of pancreatic loops; #, toxins co-expressed in the NK-M and NK-T; ^, toxin transcripts expressed in either source.
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Cysteine-rich secretory protein
Although the role of CRISP in the pathogenesis of snake envenomation remains

unclear, its occurrence in a wide range of snake venoms indicates that it may play a

certain role in the predator envenomation strategies (Sunagar et al., 2015). In view of the

protein’s limited diversity and little evidence of gene duplication, it has been suggested

that the CRISP gene family is functionally conserved across most lineages (Vonk et al.,

2013). The current study showed that five CRISP transcripts obtained from each of

the NK-M and NK-T venom gland were all highly homologous to sequences of known

snake venom CRISPs (Fig. 4). Of these, the major CRISP transcript in NK-M venom

gland was annotated to kaouthin-2 (UniProtKB: P84808), a protein that has been isolated

from N. kaouthia venom (unspecified geographical origin) (Osipov et al., 2005), whereas

natrin-1 (UniProtKB: Q7T1K6) (Jin et al., 2003), a CRISP isolated from N. atra

venom (Kunming, China) was highly expressed in the NK-T venom gland (Data S2A

and S2B; Table 5). Even though there are substantial variations in the amino acid

sequences between kaouthin and natrin, the two CRISPs were reported to exhibit similar

pharmacological activities such as antagonizing the calcium-activated (KCa) channel,

voltage-gated potassium channel (Kv) and calcium release channel/ryanodine receptor

(RyR) (Chang et al., 2005; Wang et al., 2006). Although the CRISPs were expressed in a

range of 2–4% of total venom proteins in N. kaouthia venom samples (Laustsen et al.,

2015; Tan et al., 2015d), the mRNA levels differ by 10-fold between NK-M (4.03%)

and NK-T (0.32%) (Table 5). The protein expression of CRISPs also appears to

undergo complex regulation, as multiple proteomic studies uncovered only the presence

of natrin-type CRISP in the venoms of N. kaouthia from Malaysia and/or Thailand

(Kulkeaw et al., 2007; Laustsen et al., 2015; Tan et al., 2015d). From the literature, the

previous reported kaouthin-type CRISP was isolated and sequenced from N. kaouthia of

an unknown geographical source (Osipov et al., 2005).

Cobra venom factor
Cobra venom factor as a non-lethal protein resembles the complement C3 proteins

structurally and functionally. Nevertheless, its pathogenic role in snake envenomation

has been attributed to increasing vascular permeability and blood flow, thus facilitating

venom toxins distribution (Vogel & Fritzinger, 2010). In the present study, four and two

partial CVF transcripts were detected from NK-M and NK-T venom glands, respectively.

Figure 4 Multiple sequence alignment of cysteine-rich secretory protein (CRISP) transcripts from the venom gland transcriptomes of NK-M

and NK-T in comparison to CRISP sequences of other venomous snake. Black, differentiate PR-1 domain/hinge region/cysteine-rich domain;

#, toxins co-expressed in the NK-M and NK-T; ^, toxin transcripts expressed in either source.
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Although the CVF sequences are incomplete, the assembly of these partial transcripts

provides full coverage to the annotated protein (UniProtKB: Q91132) when aligned.

Sequence alignment shows that the CVF transcripts from NK-T are identically matched

to the CVF isolated from N. naja siamensis (UniProtKB: Q91132), however the

N. siamensis could be a misnomer of N. kaouthia from Thailand during the time of data

depositing (Data S3). While the CVF transcripts from NK-T are identical to the

N. siamensis CVF, the sequence of CVF transcripts from NK-M on the other hand differs

by 2–10% (Data S3), representing sequence variation probably associated with

geographical differences of the species. Although variations were noted, it is likely that

the novel CVF from NK-M is functionally similar to the annotated CVF-Q91132, as the

variations detected are rather minor and not selection-driven (Data S4).

Snake venom metalloproteinase
Snake venom metalloproteinases are proteases usually found in abundance in viper

and pit viper venoms (Tan et al., 2015c; Tang et al., 2016). This multi-locus gene protein

family encodes various protease subtypes that exhibit different pharmacological

activities, most of which are associated with haemorrhage and coagulopathy (Fox &

Serrano, 2008, 2009; Markland & Swenson, 2013). In the present study, multiple

SVMP transcripts were assembled from the venom glands of N. kaouthia, and these

transcripts encode three and seven different subtypes of SVMPs for NK-M and

NK-T, respectively (Table 5). The longer transcripts from NK-M (NKM_SMP01

and NKM_SMP02) and NK-T (NKT_SMP01) were partially matched to zinc

metalloproteinase-disintegrin atragin (UniProtKB: D3TTC2) of N. atra (Data S3).

The annotated SVMPs genes in this study encode class P-III SVMPs, consistent with

the finding as demonstrated at the proteomic level by multiple studies (Kulkeaw

et al., 2007; Laustsen et al., 2015; Tan et al., 2015d). SVMPs presumably play a rather

minor role in the pathogenesis of cobra envenomation in view of its minute content

in the venom.

Vespryn
Thaicobrin is another putative toxin that has been isolated from N. kaouthia venom. Even

though the protein was structurally characterised two decades ago, its toxic properties and

pathogenic role in envenomation have not been fully investigated. The amino acid

sequence available from the depository consists of only the mature chain. The present

study, however, unmasked the sequences of the signal peptide and pro-peptide region

(Data S3; Fig. 5). Sequencing successfully yielded a full-length vespryn transcript

containing 190 amino acids from both NK-T and NK-M venom glands, with the mature

chain being identically matched to the previously reported Thaicobrin (UniProtKB:

P82885). Thaicobrin is highly homologous to ohanin isolated from O. hannah venom

(Fig. 5), and it is likely that the two proteins exhibit similar pharmacological activities,

i.e. inducing hyperalgesia and hypolocomotion, which may contribute to subduing of

the prey (Pung et al., 2005, 2006). In contrast to ohanin which is abundant in the

Malaysian king cobra venom (Tan et al., 2015a), Thaicobrin exists at a very low amount,
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both in terms of protein content (Tan et al., 2015d) and gene expression as shown in the

present study (∼0.1% of total toxin FPKM).

L-Amino acid oxidase
The present study detected the presence of one and eight LAAO transcripts from the

venom glands of NK-M and NK-T, respectively. Among these, NKM_LAO01 and

NKT_LAO01 reveal a complete sequence with 514 amino acids length (Table 5). These

transcripts comprise the three well-defined domains of LAAO and are highly homologous

to LAAO reported from other cobras in particularN. atra (UniProtKB: A8QL58) (Pawelek

et al., 2000) (Data S3; Fig. 6). The present study is the first report to reveal the full

sequence of N. kaouthia LAAO (Data S3; Fig. 6), after the previous reported LAAO

for N. naja kaouthia specimen (unspecified origin, Japan Snake Institute) with solely

N-terminal sequence (38 amino acid residues) (Sakurai et al., 2001). Multiple sequence

alignment shows the snake venom LAAO sequences appear to be highly conserved across

different lineages (Fig. 6) and it is noteworthy that the sequence of the major LAAO

from NK-M and NK-T venom glands are completely identical (Data S3 and S4). Again,

considering that the snake venom LAAO is well conserved and found in the venoms

of many lineages, it is most likely evolving under strong purifying selection. LAAO

transcripts constitute only about 0.1% of total toxin mRNA, and about 1% of total venom

proteins (Tan et al., 2015d). This is another enzyme of low abundance and minimal

mutation in most snake venoms, consistent with its rather conserved ancillary function

(Du & Clemetson, 2002; Tan et al., 2015e).

Nerve growth factor
The present study revealed a NGF transcript (complete sequence with 246 amino acid

residues) in the venom glands of both NK-M and NK-T, respectively (Data S2A and S2B).

The sequence is fully matched to the ‘nerve growth factor beta chain precursor’ (accession

number A59218, protein information resources – PIR) isolated from N. kaouthia venom

(Selby, Edwards & Rutter, 1987) (Data S3). This older repository was subsequently

replaced by a shorter curated sequence (UniProtKB: P61899) identified from the same

species with 116 amino acid residues covering only the mature chain of the NGF. To

date, the role of NGF in the toxic action of snake venom remains unconfirmed. However,

it has been suggested that the protein may play a role in preventing the autolysis of

metalloproteinase auto-digestion as well as to exert cytotoxic and apoptosis-inducing

effects (Lavin et al., 2009). Also NGF has also been shown to induce histamine release

and may contribute to the hypotensive effect of the venom (Stempelj & Ferjan, 2005).

Figure 5 Multiple sequence alignment of vespryn (Thaicobrin) transcripts from the venom gland transcriptomes of NK-M and NK-T in

comparison to vespryn sequences of representative venomous snakes. Blue, novel signal peptide/propeptide region; black, three conserved

LDP, WEVE and LDYE motif of B30.2-like domains containing protein; #, indicates the toxins co-expressed in the NK-M and NK-T.
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In the current study, the expression of NGF genes in the venom gland of NK-Tand NK-M

is low and is in keeping with the minor content of this protein in the venom (<1%)

(Tan et al., 2015d).

Other minor toxin transcripts expressed in venom gland
Recent proteomics studies of N. kaouthia venom revealed the presence of several

protein families that exist in low abundance, including KSPI, NP, PDE, 5′NUC and snaclec

(Tan et al., 2015d). Results of the current N. kaouthia transcriptome confirmed the

presence of the above-mentioned protein-encoding genes in both NK-M and NK-T

venom glands (Data S2A and S2B; Table 5). All these genes were expressed at a very

low level, congruent with their minor composition of the venom proteins.

Two and three KSPI transcripts (all with full sequence) were reported in the venom

glands of NK-M and NK-T, respectively. Of these, one gene was co-expressed in NK-M

and NK-T, and their sequences were aligned for comparison in Data S3. The most

abundantly expressed KSPI isoforms in the venom gland of NK-M (NKM_KPI01) and

NK-T (NKT_KPI01) is found to be different (Fig. 7). The respective sequences of NK-M

and NK-Tare highly homologous to serine protease inhibitors reported from other cobra

species: N. naja (UniProtKB: P20229) for NK-M transcript, and N. atra (UniProtKB:

Q5ZPJ7) for NK-T transcript (Shafqat et al., 1990; Zhou et al., 2004) (Fig. 7).

In this study, partial NP transcripts were also identified and annotated to NPs reported

from N. atra (UniProtKB: D9IX97) (Fig. 8). The venom-derived NP has been shown

to induce rapid relaxation of phenylephrine-precontracted rat aortic strips, and to

stimulate cGMP production, inducing hypotension in experimental rats (Zhang et al.,

2011). It has been reported that most of the NPs found in elapid venoms are of the

atrial-NP (ANP), or B-type NP (BNP) which do not have the bradykinin-potentiating

peptide (BPP) domain and the part of the linker sequence (Zhang et al., 2011). This is

largely consistent with the major NP transcripts found in this study and the ANP and BNP

detected at the protein level of N. kaouthia venom (Tan et al., 2015d). The present

study also detected PDE transcripts in NK-M and NK-T venom glands at very low level

of gene expression (<0.01%). Among these, one PDE subtype was co-expressed (also

most highly expressed) in both NK-M and NK-T venom glands, and exhibits full-length

sequence coverage (NKM_PDE01 and NKT_PDE01) (Data S2A and S2B; Table 5). The

two full-length protein-encoding transcripts were identical (Data S3), and are highly

homologous to the annotated sequence reported for M. fulvius (UniProtKB: U3FAB3).

The pathogenic role of PDE may be shaped towards the potentiation of venom-induced

Figure 6 Multiple sequence alignment of L-amino acid oxidase (LAAO) transcripts from the venom gland transcriptomes of NK-M and NK-T

in comparison to LAAO sequences of representative venomous snakes. Black, FAD-binding domains; red, substrate-binding domains; blue,

helical domains; green, novel C-terminal FAD-binding domain; #, toxins co-expressed in the NK-M and NK-T; ^, toxin transcripts expressed in

either source.
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hypotension and paralysis through the release of purines (Aird, 2002, 2005; Dhananjaya &

D’Souza, 2010).

Snake venom snaclecs are typical toxins present in viper or pit viper venoms

(Arlinghaus & Eble, 2012; Du & Clemetson, 2009). Recent venomic studies showed that

snaclecs are not exclusive to viperid venoms—for instance, the presence of snaclecs as a

minor protein component has been shown in N. kaouthia venom (Laustsen et al., 2015;

Tan et al., 2015d) and this is well supported by their gene expression in this present

study. A total of four different snaclecs subtypes were detected in both NK-M and NK-T

venom glands, with NKM_SCL01 and NKT_SCL01 being the most highly expressed

(<0.3%) (Table 5). The two snaclec transcripts were identical, with sequence homologous

to C-type lectins-BFL-1 (UniProtKB: Q90WI8) of Bungarus fasciatus (Data S3). Snaclecs

are considered ‘haemotoxic’ toxins for their ability to disrupt platelet functioning

(Clemetson, 2010); this effect is however less important in N. kaouthia envenoming in

this region as thrombocytopaenia attributable to its bite has never been reported.

Novel transcripts detected only at transcriptomic level
The transcriptomic study further identified 11 putative toxin families comprising a

total of 16 and 16 toxin transcripts, respectively, in the venom gland of NK-M and NK-T.

These include cystatin, SVSP, AChE, HYA, CF, PLB, waprin, neprilysin, AP, DPP-IV and

IGF. Most of these toxin families have not been reported in cobra venom, presumably

due to their very low level of protein expression; while at the transcriptional level, only a

Figure 8 Pairwise sequence alignment of natriuretic peptide (NP) transcripts from the venom gland

transcriptomes of NK-M and NK-T in comparison to the annotated NP sequences. Green, consensus

sequence; red, sequence diversification; black, mismatched sequences.

Figure 7 Pairwise sequence alignment of Kunitz-type serine protease inhibitor (KSPI) transcripts

from the venom gland transcriptomes of NK-M and NK-T in comparison to the annotated KSPI

sequences. Green, consensus sequence; red, sequence diversification; black, mismatched sequences.
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single cystatin transcript of N. kaouthia (Thailand) has been reported from an earlier

cloning study (Richards et al., 2011). The cystatin transcript, deposited as UniProtKB:

E3P6P4, is identical to transcripts NKM_CYS02 and NKT_CYS02 uncovered in this study

(Data S3). Among the four additional cystatin-like transcripts sequenced in the current

study, three of which were co-expressed in NK-M and NK-T (Data S2A, S2B and S3;

Table 5). Of note, NKM_CYS01 and NKT_CYS01 from NK-M and NK-T, respectively,

are the most highly expressed cystatin transcripts and possess novel sequence that is

unique from the annotated protein (Data S3). Although the actual role of cystatin remains

equivocal, it was suggested that its protease inhibition properties may contribute to the

stability of toxin proteins in the venom glands (Richards et al., 2011).

Snake venom serine proteases are generally involved in venom-induced consumptive

coagulopathy (Serrano & Maroun, 2005). There is one full-length protein-encoding SVSP

transcript detected in both NK-M and NK-T venom glands (transcripts NKM_SSP01

and NKT_SSP01). Both of the transcript from NK-M and NK-Tare highly homologous to

the SVSP-harobin (UniProtKB: Q5MCS0) from Hydrophis curtus (Fig. 9). However,

none of the proteases were detected in the venom proteome (Tan et al., 2015d), indicating

that the proteins were either not translated or exist at very low level, consistent with

the negative finding of coagulopathy in N. kaouthia envenomation.

Acetylcholinesterase (Ahmed et al., 2009) and HYA (Tu & Hendon, 1983) are two

well-investigated snake venom enzymes, yet their content in snake venom is usually

very low and often undetectable in venom proteome, although the enzymatic activities

have been detected in various cobra venoms (Tan & Tan, 1988). In the present study,

transcripts of the two enzymes were reported from N. kaouthia venom glands, supporting

the expression of the proteins in N. kaouthia venom. Importantly, the full sequences

of AChE were unveiled in the venom gland transcriptomes of NK-M (NKM_ACE01)

and NK-T (NKT_ACE01), with identical sequences observed (Data S3). This is also the

first report of N. kaouthia AChE sequence (as well as the complete sequence in Naja

species), which are homologous to the AChE (UniProtKB: Q92035) reported from

B. fasciatus (Data S3). On the other hand, HYA gene expression was detected in NK-T

Figure 9 Pairwise sequence alignment of snake venom serine protease (SVSP) transcripts from the

venom gland transcriptomes of NK-M and NK-T in comparison to the annotated SVSP sequences.

Green, consensus sequence; red, sequence diversification; black, mismatched sequences.
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venom gland, with full-length protein-encoding transcript (NKT_HYA01) obtained.

The HYA transcript (NKT_HYA01) representing the first reported sequences of HYA of

N. kaouthia as well as in Naja species and share 84% homology with HYA from Echis

ocellatus (UniProtKB: A3QVN2) (Fig. 10). HYA gene, a relatively less investigated

venom enzyme family, is likely well-conserved across many lineages of Elapidae and

Viperidae as a result of purifying selection.

It is interesting to note that the CF X transcript was also detected (albeit at very low

abundance) in N. kaouthia venom gland transcriptomes, even though N. kaouthia venom

is not known to exhibit procoagulant activity. Another protein family of the putative

toxin is PLB; this is an ‘emerging’ snake venom enzyme with little characterisation, only

detected recently in many snake venoms through the high-resolution mass spectrometry

technique. Complete sequence for PLB from both NK-M and NK-T venom glands

was also obtained in the present study. The transcripts (NKM_PLB01 and NKT_PLB01)

with higher expression show sequences that are highly homologous to PLB-81b isolated

from Drysdalia coronoides (Chatrath et al., 2011) (Data S3). This is also the first report of

PLB sequence in Naja species though the activity has been reported in N. naja venom

(Shiloah, 1974).

Waprins with little known toxic properties have not been extensively reported.

The current study first reported the detection of waprins at the transcriptional level in

Naja species (one transcripts in NK-M and NK-T venom glands, FPKM < 0.01%).

The transcripts, with full amino acid sequences, were annotated to Scuwaprin-a

(Oxyuranus scutellatus scutellatus) (Data S3; Fig. 11). Neprilysin-like protein is a novel

metalloendopeptidase that has a wide range of functional targets in the regulatory

processes of natriuretic and vasodilatory neuropeptides (Turner, Isaac & Coates, 2001).

It has been reported as putative toxins in the saw-scaled viper and king cobra (Casewell

et al., 2009; Tan et al., 2015a; Vonk et al., 2013), though its role in the pathogenesis of

envenomation has not been established. In this study, neprilysin-like transcripts were

detected in both venom glands. The transcripts are identical between the both

Figure 10 Pairwise sequence alignment of hyaluronidase transcript from the venom gland

transcriptome of NK-T in comparison to the annotated hyaluronidase sequence. Green, consensus

sequence; red, sequence diversification; black, mismatched sequences.
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samples, while the one from NK-T shows a full sequence. This represents a novel full

amino acid sequence of neprilysin-like protein in Naja species, which shares a high

degree of homology to the neprilysin identified from Python bivittatus (Data S3;

Table 5). The finding may reflect the presence of venom gene orthologues in the

ancestral genome prior to the expansion and diversification of various snake lineages

(Reyes-Velasco et al., 2015).

The present study also showed the presence of several transcripts encoding APs (two

subtypes), dipeptidylpepidase-IV (one transcript each sample, with full sequence) and

IGFs (one transcript each sample, with full sequences). These can at best be considered

as putative toxins as the functionalities of these proteins have not been rigorously

established. APs are exo-metalloproteases that function in the physiological maintenance

of the blood pressure (Vaiyapuri et al., 2010), while DPP-IV is a highly glycosylated serine

protease that may counteract the hypertensive response in the envenomed prey by

destroying hypertensive peptidyl hormones (Aird, 2008). The level of expression of

these three putative toxins was very low (<0.03%) and the expressed proteins were not

detectable even with the use of highly sensitive nano-LCMS/MS technique (Tan et al.,

2015d), although some authors reported the presence of AP protein in certain snake

venoms (Faiz et al., 1996; Gasparello-Clemente & Silveira, 2002). For N. kaouthia, full

sequences of DPP-IVand IGF were available from the present study and these are the only

ones reported from the venom gland transcriptomes of Naja species thus far.

CONCLUSION
This study set to elucidate the venom gland transcriptomes of N. kaouthia from two

different geographical origins: Malaysia and Thailand. The findings demonstrated

the unique expression patterns of toxin-encoding gene transcripts with high redundancy

in comparison to the non-toxin genes. A total of 22 venom gene families were

co-expressed in both NK-M and NK-T venom glands (out of the 24 families identified),

with 15 gene families reported for the first time in N. kaouthia at transcriptional level.

Comparatively, the expressions of venom genes in NK-M and NK-T were generally

comparable while being dominated by 3FTxs. Inter-locale variations were remarkable

in the magnitude of gene expression, for example, NK-T transcriptome is dominated

by LNTX expression, whereas NK-M is dominated by SNTX; CTX-3 was exclusively

expressed in NK-T, whereas CTX-5 is the most abundantly expressed CTX gene in

Figure 11 Pairwise sequence alignment of waprin transcripts from the venom gland transcriptomes

of NK-M and NK-T in comparison to the annotated waprin sequence.Green, consensus sequence; red,

sequence diversification; black, mismatched sequences.
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NK-M. Despite the variation of the toxin subtype expressed between the both NK-M

and NK-T, the findings support the role of particular gene expression pattern in

moulding the venom repertoire, possibly driven mainly by strong purifying selection

within the same population although the variations appeared not supported by selection

analysis in the current study. Also the study has greatly enriched the venom sequence

database for Naja species and revealed the complete amino acid sequence of more than

30 venom proteins, many of which are novel having not been reported previously.

Together, the results will contribute to better understanding the biological and clinical

implications of N. kaouthia venom variations in this region.

LIST OF ABBREVIATIONS
NK-M Malaysian N. kaouthia

NK-T Thailand N. kaouthia

3FTx three-finger toxin

L long chain

S short chain

NC non-conventional

CRISP cysteine-rich secretory protein

CVF cobra venom factor

PLA2 phospholipase A2

SVMP snake venom metalloproteinase

NGF nerve growth factor

KSPI Kunitz-type serine proteinase inhibitor

NP natriuretic peptide

snaclec C-type lectin/lectin-like protein

LAAO L-amino acid oxidase

PDE phosphodiesterase

AP aminopeptidase

SVSP snake venom serine protease

PLB phospholipase-B

5′NUC 5′nucleotidase

DPP-IV dipeptidylpeptidase-IV

CF coagulation factor

AChE acetylcholinesterase

IGF insulin-like growth factor

FPKM fragments per kilobase of exon model per million mapped reads.
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