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Abstract�This study presents a Convolutional Neural 

Network (CNN) model to effectively recognize the presence of 

Gaussian noise and its level in images. The existing denoising 

approaches are mostly based on an assumption that the images to 

be processed are corrupted with noises. This work, on the other 

hand, aims to intelligently evaluate if an image is corrupted, and 

to which level it is degraded, before applying denoising 

algorithms. We used 12000 and 3000 standard test images for 

training and testing purposes, respectively. Different noise levels 

are introduced to these images. The overall accuracy of 74.7% in 

classifying 10 classes of noise levels are obtained. Our 

experiments and results have proven that this model is capable of 

performing Gaussian noise detection and its noise level 

classification. 

Keywords image!noise;!noise!detection;! convolutional!neural!

networks;!training;!Gaussian!noise.!!

I.  INTRODUCTION  

 Image noise is the presence of inaccurate intensity pixel 
value that does not reflect the true information of the image. In 
image processing, noise is a major contributor to the loss of 
useful signal or information in an image data. Therefore, image 
denoising has been an active research topic in the literature of 
image processing. The common noise types that may occur in 
images are Gaussian noise, Impulse noise, Poisson noise, 
Speckle noise and more [1]. These noises may be added to 
images during acquisition and transmission [2, 3].  

 Over the years, noise reduction techniques have been 
extensively studied. These studies focus on removing mainly 
the additive white Gaussian noise (AWGN) with standard 
deviation . Image denoising methods transformed from spatial 
domain filters, to transform domain filters, to learning based 
denoising methods [4]. Spatial domain filters include local 
filters [5, 6] and nonlocal mean filters [7, 8] while transform 
domain filters extend over curvelets [9], wavelets [10],  
principal components analysis [11] based filters and block 
matching and 3-D filtering method [12]. Sparse denoising 
model was proposed in [13] meanwhile [14, 15] applied 
adaptive learning on image denoising. 

 It is undeniable that these noise reduction or noise removal 
techniques are very effective as long as manual image de-
noising is concerned. However, they are designed based on one 
assumption, i.e. they presumed all the images to be processed 

are corrupted by Gaussian noise without considering that the 
images might possibly be noise-free. Almost all of them suffer 
in determining if the images are corrupted and therefore 
another processing step whereby the noisy images will have to 
be selected manually in advance. In view of these, an 
intelligent Gaussian noise and its level detection technique is of 
our main interest to automatically process the dataset. This is 
important because once the level of noise is identified from the 
given image, an appropriate filtering algorithm can then be 
used to denoise it and therefore a more promising denoising 
result can be expected. Some researchers have started to focus 
on high-density impulse noise detection [16] and Gaussian and 
Poissonian-Gaussian noise level estimation [17]. 

 Recently, many works conducted have proven that deep 
learning method can perform well in handling images. Among 
them, convolutional neural network (CNN) has been widely 
applied in fields like image deconvolution [18], image 
denoising [19, 20], vehicle type classification [21], face 
recognition [22] and many more. Researchers have focused 
CNN in dealing image dataset and [23] has proven to be able to 
outperform Markov random field (MRF) [24] in denoising 
natural image with less computational cost. Furthermore, [25] 
presented a breakthrough in utilizing CNN to classify multiple 
image noise types. Given sufficiently large volume of data, this 
deep learning technique is capable of learning the right features 
by itself [26], circumventing the challenges of feature 
extraction. Looking at the potential of CNN in processing 
image data, we are inspired to propose a CNN-based Gaussian 
noise level classification model that can recognize noise levels 
in more complicated environment. Therefore, this work targets 
to work indegraded images of noise levels with very small 
interval among each other, which makes it very challenging. 

II. GAUSSIAN NOISE LEVEL DETECTION 

A. Convolutional Neural Networks 

CNN is an end-to-end system, in which a digital image is 
its input and it gives its prediction as output. Mimicking both 
simple and complex cells in the primary visual cortex of the 
brain [22], neural network is formed by alternating 
convolutional and pooling layers, so as to extract features of 
low to high level.   
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B. Architecture of the Proposed Model 

The architecture of the CNN to carry out Gaussian noise 
level detection is as shown in Fig. 1. The architecture starts 
with taking an image degraded with a certain level of Gaussian 
noise as input. It will then convolve with convolutional filters 
(or convolutional kernels) in the convolutional layers to obtain 
low-level features. These filters will be trained repeatedly in 
the backpropagation process to obtain a set of filters that would 
result in the best recognition performance. Because the output 
of a convolutional layer is always many times larger than its 
input, a pooling layer is often needed to downsample the 
sample feature map. This is to cut down the computational 
cost, time and complexity. A set of output feature map is 
produced at this stage, and will then become the input of the 
second convolutional and subsampling layers. Note that for 
both of the downsampling layers, max pooling is implemented 
so that the maximum feature response of that region is selected 
[27]. Next, in order to extract higher level features to more 
precisely represent the image data, two convolution layers are 
placed. Then, a Rectified Linear Unit (RELU) activation layer 
is placed between these two convolution layers, contributing to 
the nonlinearity to speed up training process [28]. The final 
layer is a fully-connected layer in which softmax classier is 
utilized to classify the images based on the class that has the 
maximum response.  

III. EXPERIMENTS & RESULTS  

A. Experiments 

Standard test images such as Barbara, Cameraman, House, 
Lena, Mandril and Monarch which are used in this model are 

as shown in Fig. 2. The images are added with different levels 
of Gaussian noise using the method from LPG-PCA [11]. Each 
level of noise is considered as a class, from noise-free, to  of 
10, 20, 30, 40, 50, 60, 70, 80 and 90. There are a total of 12000 
training images being used to train the model by understanding 
the characteristics of noise level while 3000 testing images to 
validate the model. To increase the learning efficiency, all 
training and testing sets are formed by six different standard 
testing images. The learning rate of the model is 0.01. From 
Fig. 3, it can be seen that the degree of images being corrupted 
by Gaussian noise is affected by the  of the noise. The noise 
added from class to class is insignificant that even it is hard to 
distinguish visually. In our work, we implement our CNN by 
using MatConvNet [29]. The specified parameters of each 
CNN network layer are explained in detail in Table I. 

 

 

Fig. 2 Standard test images for training and testing purposes. 
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Fig. 3 Mandril images of (i) noise free, and corrupted by Gaussian level with  of (ii) 10, (iii) 20, (iv) 30, (v) 40, (vi) 50, (vii) 60, (viii) 70, (ix) 

80, (x) 90. 

Fig. 1 Architecture of the proposed model.
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TABLE I PARAMETERS OF EACH CNN NETWORK LAYER. 

Layer  Operation Stride Kernel Size 

1.  Input - - 

2.  Convolution 1 5×5×20 

3.  Max Pooling 2 2×2 

4.  Convolution 1 5×5×50 

5.  Max Pooling 2 2×2 

6.  Convolution 1 4×4×500 

7.  RELU Activation - - 

8.  Convolution 1 2×2×10 

9.  Softmax Loss - - 

 

B. Results and Analysis 

We used 100 epochs and minibatch size of 100 images to 

train the model. To speed up the training process, we employ 

graphic processing unit (GPU) and it is able to complete a 

training cycle within 15 minutes. As illustrated in Fig. 4, two 

validation parameters are utilized i.e. top1err and top5err in 

both training and validation process. top1err is the error in 

misclassifying test images into the actual one label whereas 

top5err is the error when the predicted class does not fall 

among the top five labels that would most probably be the 

actual class. It is noticeable that both errors are lower in 

training than that in testing. These classification errors 

decrease across the training epochs, especially in the first 25. 

The testing error for top1err and top5err are 25.3% and 0%, 

respectively, showing that the overall accuracy is 74.7%.  

 

 
Fig. 4 Training curve for noise level detection. 

 

IV. CONCLUSION 

In this work, we present a method for detecting Gaussian 
noise and classifying its level using CNN. From the 
experimental results, it is feasible to implement the approach to 
detect the level of Gaussian noise, if there is any, present in the 
images so as to further apply suitable filters to the images. In 
view of the fast development of multimedia technology, this 
model is important as massive images need to be processed 
rapidly and intelligently. The implementation of the method 
eliminates the needs to have human handpicking the data that 
does not require further processing. The future work will 

include statistical technique optimization using data adapting 
filters generation in solving multiple noise types classification 
and noise level detection. It is feasible to design a model that 
could accurately identify multiple classes form by Gaussian 
noise, Impulse noise, Periodic noise, Speckle noise and Poisson 
noise.  
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