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Abstract: All-fiber fourth and fifth harmonic generation from a single source is demonstrated
experimentally and analyzed theoretically. Light from a fully fiberized high power master os-
cillator power amplifier is launched into a periodically poled silica fiber generating the second
harmonic. The output is then sent through two optical microfibers that generate the third and
fourth harmonic, respectively, via four wave mixing (FWM). For a large range of pump wave-
lengths in the silica optical transmission window, phase matched FWM can be achieved in the
microfibers at two different diameters with relatively wide fabrication tolerances of up to +/-5
nm. Our simulations indicate that by optimizing the second harmonic generation efficiency and
the diameters and lengths of the two microfibers, conversion efficiencies to the fourth harmonic
in excess of 25% are theoretically achievable.
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1. Introduction

Harmonic generation involves the generation of new frequencies which are multiples of a fun-
damental frequency (FF) via nonlinear processes. Typically, harmonic generation is achieved
with the use of a variety of nonlinear crystals [1], where second/fourth harmonic generation
(SHG/FHG) is typically done by employing one/two second-harmonic-generating nonlinear
crystals and third/fifth harmonic generation (THG/5HG) is obtained by sum frequency gen-
eration between the fundamental/third harmonic frequency and the second harmonic frequency
[2–4]. These methods allow for the generation of wavelengths inaccessible by conventional
laser technology, and have widespread applications such as fiber Bragg grating inscription and
microscopy [5, 6].

Fiber lasers, while providing the possibility of high peak powers, good modal properties and
long interaction lengths, have generally only been employed as pump sources for harmonic
generation [7–10]. Due to the lack of inversion symmetry in silica, efficient SHG cannot be
observed in glass optical fibers, and it is only by using periodically poled silica fibers (PPSF) that
broadband and high average power SHG conversion processes have been demonstrated [11–18].
Indeed, SHG via PPSF with efficiencies of up to 45% have been observed recently, opening
the possibility of an all-fiber harmonic generation laser system [19]. The high nonlinearity of
optical microfibers (OMF) has been proposed for intermodal third harmonic generation [20–22],
but this experiences fundamental limitations imposed by detunings resulting from the intrinsic
roughness of the OMF surface [23]. PPSF have also been used in conjunction with OMFs to
achieve parametric amplification of ∼25 dB at the third harmonic (TH) wavelength [24].

Here, all-fiberized FHG and 5HG from a single fiberized Erbium doped fiber source is demon-
strated via a combination of quasi-phase-matched SHG and phase-matched four wave mixing
(FWM).

2. Fourth and fifth harmonic generation via four wave mixing

Previous schemes for broadband generation in optical fiber primarily relied on higher order
cascaded FWM, often working in conjunction with other nonlinear effects such as supercon-
tinuum generation or soliton fission [25–27]. In OMFs, FWM over a bandwidth of nearly an
octave has been demonstrated by pumping at the anomolous dispersion region with high power
pulses [28]. Moreover, the dispersion of a photonic crystal fiber (PCF) can be tailored to achieve
three seperate zero dispersion wavelengths (ZDWs) allowing for FWM to occur [29]. This ef-
fect has also been observed in OMFs, where a small signal at the third harmonic (TH) frequency
was parametrically amplified by tailoring the OMF dispersion to allow for phase matched FWM
to occur [24]. This same technique is exploited here in order to demonstrate FHG and 5HG.

All-fiberized FHG and 5HG is achieved using cascaded nonlinear processes including SHG,
THG and FWM. First, a high power pulsed near-IR Master Oscillator Power Amplifier (MOPA)
source is employed in conjunction with a PPSF for SHG. The TH wavelength generated as
a non-phase matched by-product of the SHG is parametrically amplified by an OMF with a
specific phase matching diameter (PMD) [24]. These three wavelengths are then employed in
another OMF to allow for FHG and 5HG via FWM.

2.1. Phase matching in OMFs

Efficient FWM requires the energy conservation and phase matching conditions to be satisfied.
The general FWM process with pumps at frequencies ω2 and ω3 generate signal and idler fre-
quencies at ω1 and ω4, respectively, as shown in Fig. 1.

The energy conservation and phase matching condition can be written as:

ω2 + ω3 = ω1 + ω4 (1)

β2 + β3 = β1 + β4 (2)
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Fig. 1. Schematic of FWM. In general, Δω1 = Δω3 � Δω2.

where βi is the propagation constant of the mode at frequency i. Equation (2) can also be
equivalently written as,

Δβ = β2 + β3 − β1 − β4 = 0 (3)

where Δβ is the FWM detuning due to phase mismatch. While this applies to any combina-
tion of optical fiber modes of the interacting wavelengths, only the fundamental HE11 mode is
considered here as it has the largest modal overlap.

Two basic classifications are typically employed, depending on the configuration of the pump
wavelength. Degenerate FWM (DFWM) occurs when the two pump wavelengths are equal
(ωl = ωm), while non-degenerate FWM (NDFWM) occurs when the two pumps are not equal
(ωl � ωm). In both cases, the energy conservation condition in Eq. (1) can be easily satisfied
as any combination of pump wavelengths yields specific idler and signal wavelengths. The
phase matching condition in Eq. (2), on the other hand, may only be achieved by tailoring the
dispersion of the waveguide in order to compensate for the material dispersion of the interacting
modes at different wavelengths, achieved by varying the diameter in OMFs.

In the experiments, a FF wavelength of λFF = 1.55 μm is employed to generate a SH
wavelength at λSH = 0.775 μm, which is then employed to generate the TH, FH and 5H
wavelengths (λTH = 0.517 μm, λFH = 0.387 μm and λ5HF = 0.31 μm, respectively). Setting
λ1 = λFF , λ2 = λSH , λ3 = λTH , λ4 = λFH , and λ5 = λ5H , the detuning condition in Eq.
(3) can then be applied to these five interacting wavelengths for various DFWM and NDFWM
schemes satisfying the energy conservation condition in Eq. (1), depicted in Fig. 2. The PMD
for a particular FWM scheme occurs when Δβ = 0, as shown in Fig. 2(a) for the three FWM
schemes involving the generation of the FH wavelength and detailed in Table 1. From Fig.
2(b), no phase matching diameter was found to exist for the 5H wavelength. An analysis of the
wavelengths employed in [28] shows that while the OMFs were not operating at the PMD, the
phase mismatch is relatively small, thus could be ‘bridged’ by nonlinear phase shifts and result
in relatively broad cascaded FWM.

The phase matching calculation can then be generalized for FWM in OMFs with any set of
interacting wavelengths within the silica optical window (λ = 0.2−2.0 μm). The PMD for both
DFWM and NDFWM for various interacting wavelengths can then be calculated, as shown in
Fig. 3.

Interestingly, for both DFWM and NDFWM, there are nearly always at least one diameter for
which FWM phase matching occurs for any set of interacting wavelengths, potentially allowing
near arbitrary generation of wavelength. Therefore, Fig. 3(a) is a generalized result of those
recorded in [24]. Note, however, that as NDFWM has an unlimited combination of wavelengths
that satisfy Eqs. (1) and (2), Fig. 3(b) shows only the signal satisfying Δω1 = Δω2 = Δω3.

2.2. Experiments

The experimental demonstration was undertaken using the setup shown in Fig. 4(a). A fully
fiberized MOPA seeded by a continuous wave laser (Photonetics Tunics BT) operating in the
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Fig. 2. Evolution of detuning Δβ with OMF diameter for different FWM schemes for (a) FHG
and (b) 5HG for the wavelengths which are considered. The diameters at which Δβ = 0 are the
phase matching diameters for a particular FWM scheme.
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Fig. 3. FWM PMD in OMFs within the optical transmission window of silica for (a) degenerate
FWM (λ2 = λ3), where λ2 is the pump wavelength and λ1 is the signal wavelength; and (b)
non-degenerate FWM for a range of pumps λ2 and λ3. Here, the frequency difference is equal
(Δω1 = Δω2 = Δω3). As the OMF nonlinearity decreases significantly with increasing the OMF
size, d < 10 μm was chosen in order to achieve relatively high nonlinearity [30]. The left and
right plots in (a) and (b) show the two possible PMDs.

telecom C-band wavelength region (1530 − 1565 nm) was used as the FF pump source, and
generated pulses with duration τ = 5 ns, repetition rate f = 200 kHz and an average power
Pav = 300 − 800 mW, corresponding to a peak power Ppeak = 300 − 800 W. The pulses were
generated by an electro-optic modulator (EOM), with any inter-pulse amplified spontaneous
emission (ASE) being reduced by an acousto-optic modulator further along the MOPA chain.
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Table 1. Phase matching diameters (PMDs) for three different FWM schemes. d1 and d2 denote two separate
phase diameters

FWM type
Pump

Wavelength(s) (μm)

Generated
Wavelengths (μm)

PMD (μm)

Signal Idler d1 d2

(I) Degenerate 0.775 1.55 0.517 2.89 0.80

(II) Non-degenerate
0.775
0.517

1.55 0.387 1.72 0.79

(III) Degenerate 0.517 0.775 0.387 0.87 0.53

The use of the AOM in conjunction with two tunable spectral filters minimizes inter-pulse ASE
in both the temporal domain and the spectral domain, allowing the pump signal at the FF wave-
length to have an optical signal-to-noise ratio (OSNR) in excess of 40 dB at a pump power of
300 mW [19]. A SH wavelength was generated by splicing the MOPA output to a PPSF with a
total insertion loss of 1.7 dB. The PPSF, a twin-hole Germania doped fused silica fiber manu-
factured by Acreo Fiberlab and poled via the application of a positive voltage of 7.5 kV to both
liquid electrodes embedded in the two holes of the fiber for 120 minutes at a temperature of
300 ◦C, was then spliced to a pure silica fiber that was tapered to provide two OMFs. However,
as the final amplifier (Amp5 in Fig. 4(a)) is noisy, the maximum average output power of the
MOPA was also limited to approximately 380 mW corresponding to an initial average power of
approximately 4 mW at the SH wavelength as it was found that the power at the SH wavelength
decreases with any additional increase in pump power. The typical output spectrum from the
PPSF after the SHG process is shown in Fig. 4(b).

A 6 mm-long, 2.5 μm-diameter OMF (OMF1) was fabricated from the pure silica fibre using
the modified flame brushing method [30] to amplify the signal at the TH wavelength, generated
in the PPSF as a non-phase matched by-product of the SHG process. OMF1 had a diameter
close to the first PMD (d = 2.89 μm) and was fabricated whilst the MOPA source was turned
on to check the parametric amplification efficiency in real time. A pure silica core fiber (Z-
fiber, Sumitomo Electric) was chosen because standard telecom SMF-28 optical fibers exhibit a
significant absorption in the UV region [31,32]. However, the Z fibre still exhibited large losses
at wavelengths shorter than 300 nm, attributed to the oxygen-silica deficiency center, thereby
limiting the application to the near UV wavelength region [33].

In order to ensure that the PMD was achieved, OMF1 was spliced with a short pass filter
designed to have high losses (> 80 dB) only at the FF, and the output at the TH wavelength was
monitored whilst tapering. The tapering process was then stopped shortly after the PMD was
achieved as detailed in [24]. However, the OMF1 diameter was kept smaller than the optimum
PMD in order to ensure that the high power at the SH wavelength was not depleted. Table
1 shows that there are three PMDs near d ∼ 0.8 μm: d2 in schemes (I) and (II), and d1 in
scheme (III). The OMF diameter fluctuations related to fabrication imprecisions can be > ±50
nm, thus OMF1 has a large range of diameters along its length which comprise both PMDs
and thus involve both generation of the FH and TH wavelengths. As the purpose of the OMF1
was to boost the power of the TH wavelength, any energy transfer to the FH was undesirable.
Furthermore, initial experiments showed that no FH signal could be observed at d ∼ 0.8 μm
at the OMF1 output. The first PMD at d ∼ 2.89 μm was therefore chosen as the diameter of
OMF1. The output from the OMF1 is shown in Fig. 5.

The short pass filter was then removed and replaced with a filter with high losses at the
FF, SH and TH wavelengths (>45 dB, >35 dB and >15 dB, respectively) which was then
spliced to a broadband 3dB OMF coupler as described in [34], with one output connected to
an UV spectrometer (Ocean Optics USB4000) and the other output connected to a power meter
recording the power at 775 nm (Thorlabs S130C). This is to monitor any background signal
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Fig. 4. (a) Experimental setup for UV generation in OMFs. Five amplifiers (Amp#) were em-
ployed in the MOPA chain with the pulses carved by an electro-optic modulator (EOM) and an
acoustic optical modulator (AOM). Two spectral filters were employed in order to allow for an
OSNR of more than 40 dB at the output. The polarization in the chain is managed by three po-
larization controllers (PC). PPSF designates the periodically poled silica fiber. (b) Typical output
spectrum after SHG from the PPSF which is spliced to a shortpass filter with losses of > 40 dB
and > 70 dB at the SH and FF wavelengths, respectively.

during the tapering process as the UV spectrometer is sensitive to visible light and therefore
would register both the TH and SH signals.

A section of the Z-fiber between OMF1 and the shortpass filter was then tapered to fabricate
a second OMF (OMF2) from an initial diameter din = 125 μm to a final diameter d fin = 500
nm whilst being pumped by the MOPA source. The power at both the SH and the UV spectrum
was continuously monitored, and the polarization controllers (PCs) in the MOPA chain were
adjusted occasionally to compensate for thermal drifts. In order to ensure that the actual diame-
ter closely followed the predicted diameter of OMF2 over a significant distance, a length of 10
mm was selected, with the OMF2 profile carefully controlled to satisfy the adiabaticity criteria
in order to minimize losses [35]. The evolution of the UV spectrum with the OMF2 diameter is
shown in Fig. 6, where both the FH and the 5H wavelengths are presented.
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Fig. 5. Output spectrum from the OMF1 after a shortpass filter designed to remove radiation at
1.55 μm. The signal at the third harmonic wavelength (0.517 μm) has been enhanced by the
parametric amplification in OMF1 to more than -50 dBm from an initial signal of approximately
−65 dBm.

(A)
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(B)

Fig. 6. Output spectrum from the OMF2 after a shortpass filter designed to attenuate the FF, SH
and TH wavelengths. The detector is sensitive to visible light, which manifests as a broadband
background signal which varies slightly as the OMF is tapered. Tests with higher powers at the
SH and TH indicate that the signals at the SH and TH do not appear as narrowband radiation.
(A)-(F) represent the FH and 5H signals.

Figure 6 shows that initially, i.e. for large fiber diameters, there is no signal at neither the
FH nor the 5H wavelength. As the OMF2 diameter was reduced, a signal at the FH wavelength
appeared at the diameter of d(A) ∼ 1.64 μm. This diameter is smaller than the first predicted
PMD and was not associated to any significant energy transfer in simulations using the same
parameters. It is thought, therefore, that the observed signal might have been due to a combi-
nation of slight changes in the polarization state of the system and relatively low efficiencies.
This relatively weak signal first grew slightly before reducing in intensity as the OMF was ta-
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pered, since the segment of OMF2 at the PMD decreases as the tapering process evolves. This
is shown schematically in Fig. 7, and is due to the fact that the conversion process is dependent
on the interaction length. As shown in Fig. 7(a), no signal is discernible at the FH wavelength
before the OMF waist reaches the PMD. At the PMD, the efficiency increases dramatically
as the dispersion requirement 2 for efficient FWM is achieved, as shown in Fig. 7(b). As the
fiber is tapered further, diameter decreases, although due to the increase overall length of the
OMF, there is always a range of diameters in the transition region which are phase matched or
nearly phase matched, as shown in Fig. 7(c). However, as the process continues, an increasingly
larger proportion of the OMF becomes smaller than the phase matching diameter, causing the
observed gradual drop in the efficiency.

At d(B) ∼ 850 nm, however, a large increase in the signal at the FH wavelength was recorded,
corresponding to the first PMD from the second DWFM process (d1 in scheme (III) of Table
1) with the difference attributable to the detuning from self-phase modulation (SPM) and cross
phase modulation (XPM), as well as experimental errors in diameter estimation. Another large
spike was then observed at d(C ) ∼ 830 nm. Here, there is an increase in the overall background
across the entire wavelength range, suggesting that the PMD corresponding to the generation
of the TH is reached (d2 in scheme (I) of Table 1), as the CCD array of the spectrometer is
sensitive to visible light, scattered by the grating inside the spectrometer. This generation of
the TH wavelength simultaneously increasing the efficiency of FWM at the FH wavelength as
energy is transferred from both the FF and SH to the TH and then to the FH.
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Fig. 7. Schematic of the tapering process in the experiment. Here, d is the diameter of the OMF,
and dPMD is the phase matching diameter for FWM.

The next significant increase in the signal at the FH was recorded at d(D) ∼ 780 nm, probably
associated to the second PMD originating from the NDWFM process (d2 in scheme (II) of Table
1). The signal then gradually decreased before abruptly increasing again at d(E ) ∼ 670 nm, at
which point a small signal at the 5H (λ = 0.31 μm) was observed. This diameter does not
correspond to any PMD for either the FH or the 5H. In the case of the FH, however, simulations
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indicate that energy transfer occurs at approximately this diameter, probably due to the fact that
condition in Eq. (2) for the DFWM which produces the FH is nearly fulfilled and the small
phase mismatch may easily be bridged by nonlinear phase shifts due to SPM and XPM. The
fact that a signal could be observed at the 5H despite the detuning is not near the optimum
diameter (i.e. when Δβ is closest to 0) for any of the three FWM schemes shown in Fig. 2(b) is
due to the combination of relatively small phase mismatch and a relatively high power at the FH
wavelength, allowing NDFWM between the SH, TH, FH and 5H wavelengths to occur. This is
supported by the fact that as the OMF diameter is reduced, the signal at the 5H is also reduced
significantly. The next 5H signal observed at a diameter d(F ) ∼ 0.525 μm can similarly be
attributed to NDWFM between the SH, TH, FH and 5H as the Δβ is closest to 0 at this diameter.
However, there was no corresponding spike at the FH despite being close to the PMD.

The approximate maximum average output power at the FH, after accounting for transmission
losses, was PFHmax

∼ 8 − 10 nW at d ∼ 0.8 μm, corresponding to an efficiency of ∼ 2 × 10−8.
The low efficiency may be attributed to the low power at the SH and TH wavelengths as well
as the fact that the OMF waist was not uniform, which therefore limited energy transfer. This
is extremely low when compared to the state-of-the-art technology, where FHG efficiency in
excess of 50% has been shown to be achievable by employing cavity-enhanced SHG and FHG
with nonlinear crystals [36]. Indeed, commercially available single-pass FHG devices typically
have conversion efficiencies in excess of 10%. Therefore, in order to ascertain whether it is
possible to achieve reasonable efficiencies with this method, a full theoretical treatment of FWM
energy transfer for harmonic generation is undertaken, which shall also allow an investigation
on the any fundamental limitations of FWM in OMFs.

3. Theory and simulation

The greatest issue in the experimental demonstration above is the power of the pump wave-
lengths at the SH and TH wavelengths. The low SHG efficiency limited the amount of power
which can be transferred to the TH wavelength, thereby limiting the overall UV generation
efficiency. However, SHG with PPSF has been shown to be very efficient, with the highest con-
version efficiency being 45% [19]. Therefore, this section investigates the theoretical efficiency
of the THG and FHG processes in OMFs.

3.1. Efficiency calculations

The equations governing the transfer of energy in FWM processes are well known and have
been widely employed [37]. A fully vectorial description of FWM in high contrast waveguides
such as OMFs has been derived by employing the Lorentz reciprocity theorem [38]. Following
this, the sum of the electric and magnetic fields of four interacting wavelengths of k , l ,m and n
can be expressed as,

˜E(r, ω) =
∑

v=k ,l ,m ,n

Av

Fv (r, ωv )√
Nv

ei (βv z−ωv t ) + c.c. (4)

˜H(r, ω) =
∑

v=k ,l ,m ,n

Bv

Gv (r, ωv )√
Nv

ei (βv z−ωv t ) + c.c. (5)

where ωv is the frequency, βv is the propagation constant, Av and Bv are the amplitude of the
electric and magnetic fields, and Fv (r, ωv ) and Gv (r, ωv ) are the electric and magnetic modal
field distributions which satisfy the normalization relation,

Nμ =
1
4

∫

[Fμ (r, ω) × G∗
μ (r, ω) + Fμ (r, ω) × G∗

μ (r, ω)] · ẑdA (6)
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Only terms which are energy conserving (Eq. (1)) are considered, with terms corresponding
to phase matching (Eq. (2)) retained as they are dependent on the geometry of the waveguide.
Any fast rotating terms (e.g. ei (βα−βσ )z , e−i (ωα−ωσ )t ) are neglected as the coupling is assumed
to be small. The vectorial FWM equation for wavelength l can then be written as,

∂Al (z, t)
∂z

= − αl
2

Al + γl

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

Θl |Al |2 Al +
∑

p=m ,n ,k

Θlp (2|Ap |2 Al )

+Θklmn[2(Ak An A∗
m )]e−i (βl+βm−βk−βn )z

}

(7)

where,

γl = i

(

ε0
μ0

)

2πn(2) (ωl )n2(ωl )

3λl
(8a)

Θl =

∫

2|Fl |4 + |F2
l
|2

√

N4
l

dS (8b)

Θlp =

∫ |Fl · F∗
p |2 + |Fp |2 |Fl |2 + |Fl · Fp |2

√

N2
l

N2
p

dS (8c)

Θklmn =

∫

(Fk · Fn )(F∗
l
· F∗

m )√
Nk Nl NmNn

dS (8d)

αl is the loss, λl is the wavelength at frequency ωl , n(ωl ) is the linear refractive index, n(2) (ωl )
is the nonlinear refractive index, and ε0 and μ0 are the permittivity and permeability of free
space, respectively. For generality, n(ωl ) and n(2) (ωl ) have been left with an explicit depen-
dence on the frequency. Note that the modal integrals in Eq. (8) are calculated only over the
region where the nonlinear material is present. This takes account of the fact that significant
fractions of the mode may propagate beyond the core region and therefore do not contribute to
the conversion process.

Equation 7 is the general vectorial equation describing FWM with continuous wave (CW)
or quasi-CW pump sources. Here, the first and second terms correspond to SPM and XPM,
respectively. The third term is the energy transfer term corresponding to NDFWM between
ωk , ωl , ωm andωn . This equation may therefore be applied for any set of wavelengths satisfying
Eq. (1) by selecting and adding the relevant terms. For instance, in the specific case whereΔω1 =

Δω2 = Δω3, two additional terms corresponding to two DFWM scenarios may be introduced for
when ωl is the pump (Θkllm) and the signal (Θlmmn). As there are no assumptions made on the
modal distribution of the interacting wavelengths, this set of equations may also be applied for
intermodal FWM. However, only the fundamental HE11 mode will be considered here for the
four interacting waves, as it gives the highest overlap between their respective field distributions.

The efficiency of the conversion process is theoretically calculated for the SH, TH and FH
wavelengths in sections 3.2 and 3.3, excluding the 5H wavelength to simplify the analysis.
Therefore, the pump wavelengths for the FWM process are chosen to be at the SH and TH wave-
lengths (0.775 μm and 0.517 μm, respectively), with the idler and signal at the FH wavelength
(0.387 μm) and at the FF wavelength (1.55 μm), respectively. The OMF losses are assumed to
be negligible [30].

3.2. Degenerate FWM for third harmonic generation

Equation 7 is employed to estimate the efficiency of the conversion process for OMFs with
diameters close to the PMD. Simulations were undertaken with parameters similar to a MOPA
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source operating at 1.55 μm working in conjunction with a PPSF, generating the SH wavelength
at 0.775 μm with parameters given in [19] in order to achieve the best theoretical efficiency from
realistic sources. Calculations were done with a quasi-CW pulsed laser with a peak power of
approximately PpeakFF = 1 kW at the MOPA output. The power is limited to 1 kW in order
to allow for comparison with the theoretical results of intermodal THG in OMFs [20]. Assum-
ing a loss of 0.5 dB at the FF after the conversion process, this translated to a peak power of
approximately PpeakFF = 534 W at the FF and PpeakSH = 400 W at the SH wavelength after
the PPSF. A small signal at the TH wavelength with a peak power of PpeakTH = 1 × 10−9 W
generated from non-phase matched sum frequency generation was also included. This was then
propagated through a straight ideal OMF with a diameter close to the PMD for scheme (I) in Ta-
ble 1, and the fraction of power in each wavelength (Υl = Pl/Ptotal , where l is the wavelength)
was calculated. Note that the final value of Υl may be interpreted as the overall efficiency (η) of
the energy transfer from the FF to wavelength l. Figure 8 shows the calculated Υl of the DFWM
scheme (I) in Table 1 for an OMF with a length of 10 cm around the two PMDs, d � 2.89 μm
and d � 0.80 μm. The variation in the nonlinear refractive index n(2) was extrapolated from [39]
with the UV resonance set at 1.45 × 105 cm−1.

ϒ
T

H
ϒ

T
H

Fig. 8. Calculated fraction of total power, ΥTH, at the idler (TH) wavelength (λTH = 0.517 μm)
for the DFWM detailed by scheme (I) in Table 1. The power at the signal (λFF = 1.55 μm) and
pump wavelengths (λSH = 0.775 μm) is set at PFF = 534 W and PSH = 400 W, respectively.
Two PMDs around (a) d1 = 2.886μm and (b) d2 = 0.799 μm are used.

Efficiencies in excess of 30% are predicted with a 2-3 cm long OMF, lower than the value
(> 80%) calculated for ideal intermodal THG in OMFs [20]. This is because the power transfer
is limited by the fraction of power in the SH wavelength, and therefore cannot exceed 35% here
as there is also a small transfer of power back to the FF. However, the range of diameters at
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which efficient FWM occurs is relatively large. For instance, it is possible to achieve theoretical
efficiencies in excess of 15% with a 1 cm OMF at d1 ± 5 nm, while the same efficiency can be
achieved with a 3 mm OMF at d2 ± 3 nm. This relatively large tolerance in the PMD is due to
the rate at which dephasing from the ideal phase matching condition occurs as described by Eq.
(2). The dephasing rate is dependent on the slope of the change in the normalized propagation
constant of the interacting wavelength as exemplified by Fig. 2(a). A consequence of this is the
dephasing rate is much less pronounced at larger diameters, increasing the diameter range at
which phase matching can occur. Notably, this large diameter range at which efficient energy
transfer occurs theoretically overcomes fundamental limitations imposed by frozen-in surface
waves - whose variation in the diameter is of the order of 1 nm - which limits the efficiency of
THG in OMFs to η < 1% [23]. The oscillating behaviour of ΥTH around the PMD is similar
to that observed in [40], and can be explained from the fact that the small phase mismatch
limits total energy transfer though relatively high efficiencies can still be achieved for diameters
slightly above or below the PMD.

It should be noted, however, that while the diameter range for phase matching is larger at
d1, the rate of energy transfer is much higher at d2, as the effective nonlinearity at d2 is signifi-
cantly higher as a result of a smaller diameter. Therefore, there is a trade-off between the PMD
tolerance and the rate at which energy transfer occurs.

3.3. Non-degenerate FWM for fourth harmonic generation

The generated signal from the DFWM described above in section 3.2 is then employed for
NDFWM, where the signal and idler wavelengths are given by the FF and FH wavelengths at
1.55 μm and 0.387 μm, respectively, and the pump wavelengths are given by the SH and TH
wavelengths at 0.775 μm and 0.517 μm, respectively.

As the FWM process transfers energy from the two pump wavelengths to the signal and idler
wavelengths, the pump wavelengths need to contain significant fractions of the total power.
Therefore, the scheme employed in section 2.2 whereby two OMFs are used for efficient FWM
is employed, OMF1 being used to boost the power at the TH wavelength as described above
and OMF2 to investigate FHG. First, the power at the TH wavelength was amplified by OMF1
at d ∼ 2.89 μm at a length of 7 mm to produce similar levels of power at the SH and TH.
This produces output powers at the FF, SH, TH and FH, of PFF = 588.1 W, PSH = 168.0 W,
PTH = 189.1 W and PFH = 0.8 mW, respectively. The small signal at the FH is due to non-phase
matched transfer of energy from the TH to the FH which has a power fraction of ΥFH ∼ 10−7.
This is propagated through OMF2 which has a length of 10 cm and a diameter close to the PMD
at d1 = 1.72 μm and d2 = 0.79 μm, as specified by scheme (II) in Table 1. The evolution of
ΥFF, ΥTH and ΥFH at the PMD d � 1.72 μm is shown in Fig. 9.

Final efficiencies over 25% at the FH wavelength are theoretically possible with short OMFs
(∼ 1 cm) over a relatively broad diameter range of d ≥ 4nm, though due to the transfer of
power between the four interacting wavelengths, the final efficiency cannot exceed 28% and
the fraction of power in the FH oscillates significantly. Substantial energy transfer in the TH at
d ∼ 1.726 − 1.730 μm can also be observed in Fig. 9(b), where the energy is not transferred to
the FH but to and from the SH via DFWM between the FF, SH and TH as evidenced by the same
behaviour in ΥFF in Fig. 9(c). This is not predicted by Eq. (2), but is a result of the interaction
between the SPM, XPM and transfer terms in Eq. (7). Interestingly, the total change in ΥFF is
relatively small (∼ 0.06) as compared to the FH and TH. Physically, this can be explained by
the fact that the photons at the TH and FH wavelengths have three and four times the energy
of the photons at the FF wavelength, respectively. Therefore, in the generation of the idler and
signal photons during the FWM process, more energy is transferred to the shorter wavelengths
as a result of energy conservation, resulting in the difference in ΥFF, ΥTH and ΥFH.

The evolution of ΥFH at OMF diameters around d ∼ 0.79 μm with the same input power is
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Fig. 9. Evolution of the fraction of total power (Υl ) in the (a) FH wavelength (0.387 μm), (b)
TH wavelength (0.517 μm) and (c) FF wavelength (1.550 μm) around the PMD d � 1.72 μm.
The total peak power (including loss) is approximately 1 kW.

shown in Fig. 10(a). The final efficiency can be seen to be > 30%, but the range of diameters
at which phase matching occurs is relatively small, as DFWM between the FF, SH and TH
occurs at d ∼ 0.795 μm. To investigate the effect that the proportion of power in each pump
wavelength has on efficiency, the output power of the OMF 1 is varied by selecting a length
of 2 mm. This short length did not allow for large transfers of energy between the interacting
wavelengths, therefore the fraction of power in the TH is quite small, producing approximately
ΥSH ∼ 39% and ΥTH ∼ 3%. Using this as an input for OMF2, the evolution of ΥFH is calculated
for diameters around d ∼ 0.79 μm, as shown in Fig. 10(b). It is immediately apparent that
while the overall efficiency has decreased to ∼ 17%, the most efficient energy transfer occurs
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at d ∼ 0.795 μm, which is near the PMD for DFWM between the FF, SH and TH wavelength.
This is due to the fact that the TH wavelength is quite weak, and at this diameter, there is
considerable transfer of energy from the SH to the TH, which is then further transferred to the
FH, as the phase mismatch is relatively small. This is significant as in practice OMF fabrication
error is typically > ± 6 nm and it might be more practical to have a large mismatch in the input
pump powers in order to have higher overall efficiency at this PMD. Finally, the proportion of
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Fig. 10. Evolution of the fraction of total power (Υl ) in the FH wavelength (0.387 μm) around
the phase matching diameter d ∼ 0.79μm for three initial power fractions, ΥSH : ΥFH , of
(a) 17% : 20%, (b) 39% : 3.0% and (c) 0.6% : 33%. The total peak power (including loss) is
approximately 1 kW.

the power in the TH wavelength is increased such that the proportion of power of the SH and
TH wavelengths are ΥSH ∼ 3% and ΥTH ∼ 34%, respectively, by selecting a length of 20 mm
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for OMF1. The evolution ΥTH in OMF2 over a length of 10 cm is shown in Fig. 10(c). In this
scheme, the final efficiency at the FH is the lowest (≤ 5%), as most of the energy transfer is
from the TH back to the SH. Therefore, this scheme is not preferred for transferring energy
from the FF to the FH wavelength.

The evolution of the energy transfer is therefore significantly dependent on the fraction of
power in each wavelength, and for large imbalances in the fraction of power, the main movement
of energy transfer is typically from wavelengths with higher powers to those with lower powers.
However, the multiharmonic generation process is potentially efficient, if fabrication errors can
be kept smaller than 6 nm.

This model is then employed to estimate the efficiency of the FWM FH wavelength genera-
tion with the input power given by the output of OMF1. It was discovered that the maximum
efficiency possible was ΥFH ∼ 1.8 × 10−6, corresponding to a maximum output power of
PFH ∼ 460 nW. This large discrepancy is likely due to the large fabrication error, which in
this case was possibly > ± 50 nm, thereby significantly reducing the power transfer to the FH.
The fact that the diameter range at which efficiency phase matching occurs is quite small may
also contribute to the relatively low efficiency. This may be improved by optimizing both the
pump parameters and the fabrication methods to reduce fabrication error. Furthermore, due to
the relatively small diameter tolerance of the FWM process at dPMD ∼ 0.8 μm, it may be more
advantageous to fabricate long OMFs at the other wider PMD d ∼ 1.7 μm despite the lower
effective nonlinearity to allow for better conversion to the FH wavelength. Finally, efficiency of
this process can be significantly increased by improving the efficiency of the SHG process or
by employing more powerful coherent sources at the pump wavelengths.

4. Conclusion

In conclusion, all-fiberized fourth and fifth harmonic generation from a single source is demon-
strated by employing a high power MOPA source working in the telecom C-band in conjunction
with a PPSF and two OMFs. Phase matching in the two OMFs was achieved by exploiting the
tailorable dispersion characteristics of OMFs to compensate for material dispersion of the in-
teracting wavelengths. Calculations indicate that there are two PMDs for FHG, though there
are no diameters at which 5HG will be phase matched. An experimental demonstration was
undertaken, where it was shown that the FH wavelength is generated near the theoretical PMD,
while the 5H wavelength appears at diameters for which the ‘gap’ in phase matching between
the interacting wavelengths is small enough to be bridged by other nonlinear effects.

Simulations with a high power pulsed source at 1.55 μm working in conjunction with a PPSF
to generate a SH wavelength at 0.775 μm with an efficiency of 40% indicate the efficiency
of parametric amplification at the TH can be in excess of 15% for a relatively broad range of
OMF diameter. This broad diameter at which energy transfer occurs transcends the limitation
imposed by random dephasing due to frozen-in surface waves, which have been suggested to
limit the efficiency of intermodal THG in OMFs to η ∼< 1%. Using two OMFs, FWM over
a wavelength range of over 1200 nm with efficiencies of more than 25% were theoretically
predicted. In practice, the PMD will need to be considered carefully, as the fraction of power
in each wavelength is crucial in determining the direction of energy transfer, and relatively
inefficient transfer of energy is possible if the phase matching points between different FWM
schemes overlap with one another. Notably, these simulations show that all-fiber multiharmonic
generation may be efficient if the fabrication error is not too large.
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