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When a structure is damaged, the dynamic characteristics of the structure will change. Generally, main 

components of a structural health monitoring system are (1) data collection approach including a network 

of sensors for collecting the response data and (2) an extraction technique to obtain information on the 

structural health condition. Data mining (DM) is one of the emerging data extraction techniques. DM can 

play an important role to find out the hidden patterns in databases. Generally, this sophisticated tool is 

employed to find the relationship between data in datasets. Models and patterns, which are obtained from 

DM process, are used to make predictions. In this study, frequency response function (FRF) measure-

ments obtained from experimental modal analysis of an intact and damaged composite girder deck are 

used as inputs for data mining to extract the principal components (PCs) of raw FRF data. Experimental 

modal analysis of the structure is carried out by exerting incrementally enhanced damage severity at spe-

cific location. Totally, 6 damage scenarios are considered with depth of 15 mm to 75 mm with the incre-

ment of 15 mm at the mid-span of the structure. In the modelling phase of DM process, principal compo-

nent analysis (PCA) is employed to train a model. The performance of the model is illustrated by compar-

ing the original FRFs and reconstructed FRFs with first 10 PCs. 
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1. Introduction 
In civil, mechanical and aerospace in-service structures, damage can occur with changing the 

structural properties (mass, stiffness or damping) and lading to change in the dynamic responses, 

such as natural frequencies, mode shapes, damping ratios and frequency response functions (FFRs). 

The propagation of damage can lead to out-of-service conditions. Therefore, structural health moni-

toring (SHM) is a significant tool to ensure structural safety, integrity and minimal maintenance [1], 

[2]. Visual inspections are common damage evaluation techniques. However, they are time consum-

ing, costly and inapplicable for continuous monitoring [3], [4]. Thus, a more accurate and faster 

method is needed to monitor structures for the occurrence, location and extent of damage.  

The main components of a SHM approach are a data collection approach including a network of 

sensors for collecting the response data and an extraction technique to obtain information on the 

structural health condition [5]. Significant knowledge can be extracted from raw databases after 

their creation by monitoring SHM system. New and emerging computing and information technol-

ogies such as knowledge engineering, evolutionary computing and data mining can play a signifi-

cant role in civil engineering. Therefore, civil engineers have slowly embraced computing and in-

formation technologies in the past decade [6]. Data mining is employed to analyse the raw datasets 

to find the most important relationship between data [7] and it presents a potential solution to SHM 

as a deeper data analysis approach [8]. Hence, data mining can be used as an extraction technique to 

obtain information on the structural health condition. 

Directly-measured FRF is one of the easiest dynamic responses to obtain in real-time. It only re-

quires a small number of sensors and straightforward in situ measurement. As modal parameters are 

indirectly-measured test data, they could be contaminated by measurement error and modal extrac-

tion error. In addition, modal parameters can provide smaller database in compare to FRF data [9]. 

For these reasons, it is more reliable to employ FRF as an input for data mining process. 
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This paper describes a data mining approach for the purpose of feature extraction and data reduc-

tion of FRF using principal component analysis (PCA) technique. The main focus of this paper is to 

illustrate the applicability of data mining for extraction the most important uncorrelated variables in 

FRF data obtained from experimental modal analysis of a healthy and damaged composite girder 

deck utilizing Cross-Industry Standard Process for Data Mining (CRISP-DM) model. 

2. Frequency response function 
Experimental modal analysis is used to identify damage by assessing structural responses before 

and after damage. FRF is the most important measurement of experimental modal analysis obtained 

from a data acquisition system. The time domain measured responses of structures are transformed 

into frequency domain utilizing Fast Fourier Transform (FFT). As shown in Fig. 1, FRF (H(ω)) is 

the ratio of the Fourier transform of output responses (X(ω)) to the Fourier transform of input exci-

tation (F(ω)) [10]–[12]. 

 
Figure 1: Black diagram of an FRF. 

3. Feature extraction data mining process 
Data mining is the analysis of datasets to discover the relationships, new correlations, trends and 

to extract the useful data in the form of patterns [13]–[15]. Data mining has different tools such as 

Knowledge Discovery in Databases (KDD), SEMMA, Cross-Industry Standard Process for Data 

Mining (CRISP-DM) ,etc. [16]. The most widespread application amongst the tools is CRISP-DM 

[17]. It was presented by a group which consist the firms of NCR System Engineering Copenhagen 

from USA and Denmark, Daimler Chrysler AG from Germany, SPSS Inc. from USA and OHRA 

Verzekeringen en Bank Groep B.V from Netherlands [18], [19]. As shown in Fig. 2, this model has 

six stages which are business understanding, data understanding, data preparation, modelling, eval-

uation and deployment. 

 
Figure 2: CRISP-DM data mining procedure [18], [20]. 
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3.1 Business understanding 
This phase emphases on understanding the project objectives and requirements from a business 

perspective, then converting this knowledge into a data mining problem definition and a preliminary 

plan designed to achieve the objectives [19], [21]. Overall business objective of this research is to 

detect damage in a composite girder deck structure. The model consists of three steel beams and a 

slab. Figure 3 illustrates the experimental setup of the structure in the laboratory. Also, a schematic 

diagram of the experimental test setup of the structure is demonstrated in Fig. 4. The length of the 

structure is 3200 mm. The dimensions of the beams include the flange width of 75 mm, section 

depth of 150 mm and thickness of 7 mm and 5 mm for the flange and web, respectively. The 

Young’s Modulus of the steel is 2.1*10
11

 kg/m
2
, with Poisson’s ratio of 0.3 and density of 7,850 

kg/m
3
. The dimension of the slab includes the width of 1200 mm, the depth of 100 mm, and length 

of 3200 mm. The main purpose of this study is to extract the features of FRF data in the composite 

girder deck utilizing data mining. 

 
Figure 3: Experimental setup of the specimen. 

 

Figure 4: Schematic diagram of the experimental setup. 

3.2 Data understanding 
This stage starts with an initial data collection and proceeds with activities in order to get famil-

iar with the data [22]. Focus is on feature extraction of measured FRF data using data mining. 

Therefore, experimental modal analysis was carried out to collect the FRFs of the intact and dam-

aged structure. Measured FRFs generate a dataset for data mining process. The arrangement of the 

accelerometers was chosen to have 15 points in three sets between supports. Firstly, experimental 

modal test was implemented utilizing undamaged structure as a reference. Then, a number of dam-

age scenarios were produced by introducing five damage severities at mid span of the structure, as 

shown in Fig. 5. The damage severities with 5 mm width and depth of 15-75 mm with the incre-

ment of 15 mm were gradually induced for each severity. Finally, the result of the modal testing is 

used as dataset for data mining. FRFs are measured 15 positions, as shown in Fig. 6. 
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Figure 5: Location and severities of damage. 

 

 
Figure 6: Accelerometers positions. 

3.3 Data preparation 
This stage covers all activities to construct the final dataset from the initial raw data. The final 

dataset is used for the modelling step. Different tasks of data preparation step include the selection 

of data including attribute selection and tabulate the data, the cleaning of data, the construction of 

data, the integration of data, the formatting of data, and transformation of data for modelling step 

[23]. The FRF data containing 3201 spectral lines from the test structure with undamaged case and 

different damaged cases are shown in Fig. 7 for both healthy and damaged cases.  

 
Figure 7: Undamaged and different damaged states of FRF at position number 8. 

3.4 Modelling 
In this stage, selected data mining modelling technique is applied to database. Steps of this phase 

consist of the selection of data mining technique, the generation of test design, the creation of mod-

els and assessment of models [18], [23].  Principal component analysis (PCA), which is one of the 

statistical data mining techniques, is used for feature extraction and data reduction of FRF data. 

3.4.1 Principal component analysis of FRF data 

One of the popular multivariate statistical method is principal component analysis which gener-

ally applied to compress multidimensional datasets with correlated variables to smaller dimensions 
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of uncorrelated variables to find features in the dataset [24], [25]. This is because of the fact that a 

small set of uncorrelated variables is much easier to understand and employ in future analysis than a 

large dataset of correlated variables.  

PCA is applied here to extract the features of measured FRF data. Using an orthogonal projec-

tion, this can be achieved by transforming the original set of correlated variables (FRF measurement 

data) in an N-dimensional space to a new set of uncorrelated variables, the so-called PCs, in a P-

dimensional space which are ordered so that the first few PCs remain most of variation presented in 

all of the original FRFs (P < N). Therefore, using all raw FRF data, form matrix H=[hij(ω)]M×N, 

which has M rows of (spectral lines for each frame of FRF curve in frequency domain) FRFs and N 

frequency (measurement) points. The‖autoscaling‖ of FRF matrix (H) is implemented to have zero 

mean variables and to have a unit variance by standard deviation. The mathematical theory behind 

the feature extraction of FRF using PCA is described as follows [26]–[28]: 

The mean response of the j-th column is expressed as: 

 ̅  
 

 
∑   

 

   

 (1) 

The corresponding standard deviation Sj is: 

   √∑       )   ̅ )
 
   

 

 
 (2) 

To obtain a response variation matrix  ̃, an element hij(ω) of the FRF matrix H=[hij(ω)]M×N can 

be replaced by: 

 ̃    )  
     ̅ 

  
 (3) 

Using the response variation matrix, the covariance matrix [C]M×N , which is a square matrix, 

can be defined as follows: 

         ̃  
   

   ̃    (4) 

According to the definition, the PCs are the eigenvalues λi and the correlated eigenvectors Ψi of 

the covariance matrix: 

   {  }    {  } (5) 

The first PC, which includes the highest eigenvalue and its corresponding eigenvector, represents 

the direction and amount of maximum variability in the original raw FRF data. The next PC, which 

is orthogonal to the first principal component, illustrates the second most important contribution 

from the original raw FRF data, and so on. 

The projection matrix [A]M×N of the response variation matrix H
~

 on the N PCs is written as: 

         ̃  )           (6) 

The projection matrix [A] and the eigenvector matrix [Ψ] can be partitioned into two sub-

matrices with K principal components (related to the important features) and (N-K) principal com-

ponents (related to the uncertainty and noise), respectively. 
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3.4.2 Feature extraction of FRF data 

There are totally 90 FRFs, including 15 to each damage scenario. The number of lines are 3201 

lines which from 0 Hz to 1000 Hz. Therefore, a 3201 × 90 matrix is formed. Equation (5) was used 

to extract the PCs of the FRF matrix. As shown in Fig. 8 and Table 1, it is observed that the per-

centage of variance of the first 10 principal components from the covariance matrix is 83.77% of 

total FRF values. 

 
Figure 8: Percentage of variance of PCs of FRF data. 

Table 1: Percentage of the first 10 principal components 

Principal 

Components 

PC 

(1) 

PC 

(2) 

PC 

(3) 

PC 

(4) 

PC 

(5) 

PC 

(6) 

PC 

(7) 

PC 

(8) 

PC 

(9) 

PC 

(10) 

Percentage 52.799 8.17 5.82 4.33 3.72 2.85 2.46 1.50 1.11 1.02 

3.5 Evaluation 
In this stage the extracted features of FRFs obtained from PCA are compared with original raw 

FRFs to be certain it properly achieves the main purpose of data mining modelling. Comparison of 

the raw and compressed FRFs with the first 10 PCs in healthy and 75 mm damage state are shown 

in Figs. 9 and 10, respectively. 

 
Figure 9:Raw and compressed FRFs of healthy state using 10 PCs. 

 
Figure 10: Raw and compressed FRFs of damaged state using 10 PCs. 
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3.6 Deployment 
Feature extraction of FRFs is not the end of the project. The reconstructed FRF data can be used 

as an input data instead of raw FRF data in the feature plan to develop a robust damage detection 

system. Therefore, de-noising methodology based on PCA can be employed for dimensionality re-

duction and noise elimination of FRF data. 

4. Conclusion 
This paper presents a data mining-based damage identification technique using frequency re-

sponse functions measurements obtained from experimental modal analysis of a composite girder 

deck structure in healthy and damaged states. To the best knowledge of the authors, Cross-Industry 

Standard Process for Data Mining (CRISP-DM) model is derived for the first time in structural 

damage identification domain. Consequently, the following conclusions can be written: 

 The results indicate the applicability of data mining for the purpose of data reduction of FRF. 

 PCA technique can be successfully applied for extraction of the most important uncorrelated 

variables in FRF data obtained from experimental modal analysis.    
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