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Abstract

Background: Monogeneans are flatworms (Platyhelminthes) that are primarily found on gills and skin of fishes.
Monogenean parasites have attachment appendages at their haptoral regions that help them to move about the
body surface and feed on skin and gill debris. Haptoral attachment organs consist of sclerotized hard parts such as
hooks, anchors and marginal hooks. Monogenean species are differentiated based on their haptoral bars, anchors,
marginal hooks, reproductive parts’ (male and female copulatory organs) morphological characters and soft anatomical
parts. The complex structure of these diagnostic organs and also their overlapping in microscopic digital images are
impediments for developing fully automated identification system for monogeneans (LNCS 7666:256-263, 2012),
(ISDA; 457–462, 2011), (J Zoolog Syst Evol Res 52(2): 95–99. 2013;). In this study images of hard parts of the haptoral
organs such as bars and anchors are used to develop a fully automated identification technique for monogenean
species identification by implementing image processing techniques and machine learning methods.

Result: Images of four monogenean species namely Sinodiplectanotrema malayanus, Trianchoratus pahangensis,
Metahaliotrema mizellei and Metahaliotrema sp. (undescribed) were used to develop an automated technique for
identification. K-nearest neighbour (KNN) was applied to classify the monogenean specimens based on the extracted
features. 50% of the dataset was used for training and the other 50% was used as testing for system evaluation. Our
approach demonstrated overall classification accuracy of 90%. In this study Leave One Out (LOO) cross validation is
used for validation of our system and the accuracy is 91.25%.

Conclusions: The methods presented in this study facilitate fast and accurate fully automated classification of
monogeneans at the species level. In future studies more classes will be included in the model, the time to capture the
monogenean images will be reduced and improvements in extraction and selection of features will be implemented.
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Background
Parasitic organisms have categorical homogeneous
morphology, hence, pattern recognition techniques can
be used to identify them [1]. The monogenean species
are used in this study because they are worthy taxons
for investigation [2]. There might be around 25000 spe-
cies of monogenean in the world while barely 4000 of
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them are currently known [3]. Monogeneans are very
diversified in terms of morphology and they are the only
flatworm clade that have advanced adaptive radiation
[2], with the variation of structural designs in the attach-
ment organs [4], which are usually used for species
identification. In particular, the haptoral attachment
organ is characterized by sclerotized structures such as
anchors, bars, hooks, etc. The morphology of these or-
gans are usually unique to monogenean species [5] and
are used as diagnostic characters in taxonomy [6, 7].
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Automated classification of specimens’ images to their
corresponding species requires development of models
and methods that are able to characterize a specie’s
morphology and apply this knowledge for their recogni-
tion. Automated systems should be combined with data-
bases of images or text based information [8]. Primo
Coltelli et al. [9] believe that image acquisition is the
most important step in designing an automated system
and capturing images should be well-focused with less
complexity. The acquisition condition should be defined
clearly and kept equal for all images, later labelled by
expert taxonomists.
Automated systems may identify specimens at the spe-

cies, genus, family or order levels using image process-
ing, feature extraction and classification. Digital images
of species, especially microscopic images, usually exhibit
dust or other noise artefacts. Noise makes neighbouring
pixel values cluster [10], so it should be reduced by
image processing, in particular the smoothing methods
of filtering. It is important to know the prevalent types
of noise to be filtered so that it can be removed more
efficiently. Besides this, the aim of image processing in
the system is usually to transform digital images to a
standard pose [11] and achieving recognizable objects
on a uniform background, using segmentation. In order
to facilitate the segmentation step, image artefacts
should be removed and contrast as well as dynamic
range has to be improved. The goal is to identify and
classify objects of interest in digital images.
The performance of feature extraction and selection

techniques depends on the type of a system’s classifiers
and the quality of the data [12]. In order to achieve a
high performance classification, not all features are
required to be detected. If employed classifiers are
strong enough, even if some features are left undetected,
the method may yield successful results [13]. In KNN
classification, objects are classified according to majority
vote of their neighbours, with the objects being assigned
to the class which is most common amongst its k near-
est neighbours. In this classification method, objects
which are close to each other according to their features,
are likely to belong to the same pattern class [14]. The
neighbours are taken from a set of training samples
where the correct classification is known. For example
in identification of species of Gyroactylus genus in fish
ectoparasite [15], features that were extracted by Active
Shape Models (ASM) were implemented to create two
linear classifiers, Linear Discriminant Analysis (LDA)
and K-nearest neighbor (KNN), and two non-linear clas-
sifiers, Multilayer Perceptron (MLP) and Support Vector
Machine (SVM). KNN yielded the most ideal results
with a classification accuracy of 98.75%.
Many semi-automated systems have been developed for

identification of biological images in different levels. In
1996, the Dinoflagellate categorization (DiCANN) system,
based on neural networks [16] was developed. Subse-
quently, forensic identification of mammals according to
their single hair patterns under a microscope was investi-
gated by Moyo et al. [17]. Yuan et al. [18] discussed the
identification of rats up to the species level from images of
their tracks. Later the improvements in semi-automated
systems resulted in fully automated systems. Examples of
successful existing automated systems are the automated
Leafhopper Identification system (ALIS) [19], the Digital
Automated Identification System (DAISY) [20], the Auto-
matic Identification and characterization of Microbial
Populations (AIMS) [21], the Automated Bee Identifica-
tion System (ABIS) [22], BugVisux [23], automated identi-
fication of bacteria by use of statistical methods [10], an
automated identification system which estimates white-
flies, aphids and thrips densities in a greenhouse [24], Spe-
cies Identification, automated (SPIDA) [25], But2fly [26],
Automated Insect Identification through Concatenated
Histograms of Local Appearance (AIICHLA) [13], an
automated identification system for algae [9] and Auto-
mated identification of copepods [27]. In the work done
by Arpah et al. (2013) [28], illustration images of haptoral
bar of monogeneans were used in building a content
based image retrieval system. Contrary to the previous
study, in thecurrent study, we digitised microscopic speci-
men images to develop a monogenean species identifica-
tion technique.
Methods
The study’s approach followed the methodology which is
detailed as follows. Figure 1 shows the system workflow.
Data collection
Monogeneans were collected from gills of killed or cap-
tured specimens. The attached tissues were removed
using fine needles and placed on clean slides with a drop
of water under a coverslip. Later the water was removed
and four corners of coverslip were fixed. Subsequently,
specimens were cleared using Ammonium pirate glycer-
ine. Digital images of the hard anatomical structures of
the monogeneans were taken using a Leica digital
camera attached to Leica microscope at 40× magnifica-
tion. Recognition of monogeneans is based on shape and
size of their hard parts which are dorsal and ventral
anchors, bars, as well as their male and female compula-
tory organs [29]. Thus, accurate recognition of monoge-
neans is very much dependant on features which are
extracted from these parts. Our database consist of 23
species’ images, however in this study we randomly
picked 4 species : Sinodiplectanotrema malayanus,
Trianchoratus pahangensis, Metahaliotrema mizellei
and Metahaliotrema sp. (undescribed).



Fig. 1 System flowchart
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The modular image processing and analysis software
package used is QWin Plus, due to its versatile archi-
tecture, designed to solve demanding quantitative
analysis tasks. MATLAB R2013a was used to
pre-process and extract features from monogenean
digital images.
Preparation of slides of monogenean specimens
The slides of monogeneans used in this study were col-
lected by experts since 1996. Ammonium pirate
glycerine was applied to very old specimens’ slides to
prepare them for image acquisition. Broken and spoiled
specimens were discarded during this phase.
Image acquisition & database development
In this study, only the diagnostic parts of monogeneans
such as anchors, bars and copulatory organs were
considered for digitisation. In some slides soft parts of
specimens were damaged due to pressure of sliding dur-
ing preparation of slides and this resulted to a very
messy background for the selected organs which are the
hard parts. Such slides were avoided in digitization as
the hard parts were not easy to segment.
The quality of images depends on the model of micro-

scope, lenses and camera specifications. The resolution
of the captured images was 1044 × 772 pixels and all the
images were saved in Tagged Image File format (TIF).
All acquired images were indexed according to slide
tags. A total of 102 images were taken from four species’
and the best 80 were used in this study. According to
previous studies, [30, 31], we decided to use half of our
digital images for training and the other half for testing
the system. 10 images of each species were selected as
training set and 10 were used as testing set.
Image processing
Image processing in this study includes three essential
steps: 1. Image pre-processing, 2. Image segmentation
and 3. Feature extraction. Matlab R [32] was used as the
Image Processing Toolbox, installed on Intel(R) Xeon (R)
CPU E5-1620 v2 @ 3.70GHz, 16.00GB RAM, Windows 7
Professional (64-bit) to conduct this study.
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Background feature minimization is an important
pre-processing step in monogeneans classification.
Otherwise, soft part features of monogeneans could
mix with those from hard parts and the texture ana-
lysis will yield unreliable results. The image pre-
processing follows as:

1. Images were converted to intensity images.
2. Filtering intensity images with the average

correlation kernel of size 20 × 20.
3. Detecting the edge of the anchors and bars of

monogeneans.

After detecting the edges in the images, image seg-
mentation was performed where bars and anchors were
identified and segmented from unwanted particles in the
images:

1) The images were converted to binary images with
threshold of zero. After creating average filter, we
deduct the image from the filter. The result is an
intensity image which contains negative and
positive values. Therefore, pixels, greater than 0
will turn to 1 (white) and other pixels will turn
to 0 (black).
Fig. 2 Process in image pre-processing, edge detection and image segmen
Trianchoratus pahangensis, Metahaliotrema mizellei and Metahaliotrema sp.
2) Small particles (<1000 pixels) were excluded to
ensure only the bars and anchors are segmented for
feature extraction. Figure 2 shows the image
processing steps for four species.

3) Features were extracted from the shape
descriptors represented by the binary images of
the bars and anchors, using appropriate functions
in Matlab. The 10 features extracted were: Euler
number, perimeter, area, area density, perimeter
density, centre of bounding box, length of
bounding box, width of bounding box and
orientation of bounding box.

Feature selection
To increase the performance of KNN and decrease the
number of unnecessary features, Linear Discriminant
Analysis (LDA) was applied for feature selection. Practic-
ally, LDA as a feature dimensionality reduction
technique would be a pre-step for a typical classification
task. In LDA, first the d-dimensional mean vectors and
scatter matrices were computed. Next, to obtain the
linear discriminants the generalized eigenvalue problem
was solved. Then linear discriminants for the new
feature subspace was selected and finally the samples
were transferred onto the new subspace. The eigenvector
tation steps for four species of Sinodiplectanotrema malayanus,
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corresponding to a larger eigenvalue is more efficient in
capturing discriminative information of the sample [33].
Classification
We applied K-nearest neighbour (KNN) classifier to the
same training and test datasets. K-NN, as a non-parametric
classifier, identifies the test sample by a majority vote of its
neighbours which are assigned to the class that is most
common among its K nearest neighbours. The KNN par-
ameter was set to 10 in this study. The three selected fea-
tures obtained from the previous stage were used as input
to the KNN classifier. Four species of monogeneans were
used and the vectors of image labels were prepared accord-
ing to their features. Since the sample size is small in this
study we applied Leave-One-Out (LOO) and 10 fold cross
validation to assess how the results of our system
generalize to an independent data set.
Fig. 3 3D scatter plot with different features. a scatter plot with combinati
plot with combination of three features which are, area, area density, perim
are length of bounding box, width of bounding box and orientation of bo
FvLDA1, FvLDA2 and FvLDA3. The data were classified into 4 species: Sinod
Metahaliotrema mizellei (Mmi) and Metahaliotrema sp. (Mma)
Results
Feature selection
As a result of LDA, three embedding functions were cal-
culated for the feature vectors. Three features were se-
lected for training the K-nearest neighbour classifier.
The feature selection method increased the classification
results from 75 to 90%. Figure 3 demonstrates 3D scatter
plots of the classification result for 4 species with 10 ex-
tracted features and three features after LDA.
K-nearest neighbour (KNN) Training
KNN does not make any hypothesis on the underlying
data distribution. This is pretty useful in our case as the
data is from the real world. Generally practical data does
not follow the theoretical assumptions like for example
Gaussian mixtures or linearly separable. Non parametric
algorithms like KNN come to the rescue here. The
on of three features which are Euler number, perimeter, area (b) scatter
eter density (c) scatter plot with combination of three features which
unding box (d) scatter plot with combination of LDA selected features:
iplectanotrema malayanus (Sm), Trianchoratus pahangensis (Tp),
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trained model was constructed using 10 images of each
monogenean species. Basically we tried to find the k
nearest neighbour and do a majority voting. The best re-
sult with k = 10 nearest neighbours was 90%.

System evaluation
Images of four species of monogeneans namely Sinodi-
plectanotrema malayanus, Trianchoratus pahangensis,
Metahaliotrema mizellei and Metahaliotrema sp. were
used in this study. The performance of the system was
evaluated by comparing the output from the trained
model with the predicted result using the testing dataset
as the input. The testing dataset of monogenean images
was a new independent dataset not used for the training.
10 images of each species were used for testing the sys-
tem. The accuracy is calculated according to the confu-
sion matrix of the testing dataset. This means the sum
of correct prediction, divided by number of all data.
Based on our results, the technique presented in this
study was able to recognise and identify most of the
monogeneans correctly with an overall accuracy of 90%.
All Metahaliotrema mizellei specimens were identified
correctly; one specimen from Sinodiplectanotrema
malayanus was misidentified as Trianchoratus pahan-
gensis, two specimens of Trianchoratus pahangensis
were misidentified as Metahaliotrema sp. and one speci-
men from Metahaliotrema sp. was misidentified as
Trianchoratus pahangensis. Confusion matrix (Table 1)
demonstrates the classification result.

Discussions
An automatic identification system for monogenean species
is proposed in this study. The system was trained using 40
images of four species and tested by another 40 images of
the same species. A total of 102 images were captured and
digitised, however 22 were eliminated due to noise and
overlapping of anchors and bars that might lead to mis-
classification [34, 35]. All captured images were stored in
an image database for easy retrieval by the classifier to
Table 1 Confusion matrix of testing dataset used for system
evaluation

Species Results Accuracy %

Sm Tp Mmi Mma

Sm 9 1 0 0 90

Tp 0 8 0 2 80

Mmi 0 0 10 0 100

Mma 0 1 0 9 90

Overall 90

The confusion matrices showing the classification of 4 species of
Monogeneans with k = 10
The data was classified into 4 species: Sinodiplectanotrema malayanus (Sm),
Trianchoratus pahangensis (Tp), Metahaliotrema mizellei (Mmi) and
Metahaliotrema sp. (Mma)
train and test the system. K-nearest neighbour was used
for detection of four species of monogeneans according to
their diagnostic parts. The accuracy of automated identifi-
cation in this study is 90%. Features such as Euler number,
perimeter, area, area density, perimeter density, centre of
bounding box, length of bounding box, width of bounding
box and orientation of bounding box were extracted from
anchors and bars of monogeneans. The overlapping of
bars and anchors of most sample images prevented good
feature extraction. Using LDA for feature selection, a new
feature vector with 3 features was established. The se-
lected features were given to KNN and as result Metaha-
liotrema mizellei specimens were identified correctly.
Mainly anchor and bar size in this species were totally dis-
tinct; one specimen from Sinodiplectanotrema malayanus
and also one specimen from Metahaliotrema sp. were
misidentified as Trianchoratus pahangensis. The shape of
anchor organs’ tail in Sinodiplectanotrema malayanus
species and size of anchors in Metahaliotrema sp. speci-
mens are similar to Trianchoratus pahangensis specimens.
Two specimens of Trianchoratus pahangensis were mis-
identified as Metahaliotrema sp. The anchors of these two
species are very similar in size and shape of their tails. The
features are very much dependent on the size and shape.
In the future, different image processing techniques will
be adopted to differentiate these two species. In some im-
ages anchors were separated and in some they were over-
lapping with other anchors and bars, therefore, this causes
turbulence in feature extraction.
We used the images to calculate the LOO and 10 fold

cross validation. The error rate from LOO cross validation
is 0.1 and the accuracy is 91.25%. We also divided all of
the digital images to 10 subset, one subset was held out as
training and the other sets were held out as testing set.
The error rate resulted for 10 fold cross validation is this
study is 0.1 and accuracy is 92.5%. The results from LOO
and 10 fold cross validation are better than KNN classifi-
cation. (Tables 1, 2 and 3).
In this study, only bars and anchors of monogeneans

were used as diagnostic organs for species identification.
In future studies marginal hooks and copulatory organs
Table 2 Confusion matrix of leave one out cross validation

Species Results Accuracy %

Sm Tp Mmi Mma

Sm 19 1 0 0 95

Tp 0 18 0 2 90

Mmi 0 0 20 0 100

Mma 0 4 0 16 80

Overall 91.25

The data was classified into 4 species: Sinodiplectanotrema malayanus (Sm),
Trianchoratus pahangensis (Tp), Metahaliotrema mizellei (Mmi) and
Metahaliotrema sp. (Mma)



Table 3 Confusion matrix of 10 fold cross validation

Species Results Accuracy %

Sm Tp Mmi Mma

Sm 19 0 1 0 95

Tp 0 18 2 0 90

Mmi 0 0 20 0 100

Mma 0 3 0 17 85

Overall 92. 5

The data was classified into 4 species: Sinodiplectanotrema malayanus (Sm),
Trianchoratus pahangensis (Tp), Metahaliotrema mizellei (Mmi) and
Metahaliotrema sp. (Mma)
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can be considered. Improving the image quality could
also yield better classification results.
Conclusions
Automated identification of monogenean species based on
haptoral organ images of monogeneans achieved an overall
accuracy of 90%. Image processing techniques were applied
to automatically extract features from microscope images
followed by KNN as the classifier. An automated identifica-
tion method will be useful for taxonomists and non-
taxonomists since sample processing time is reduced. The
enhancement of image acquisition to achieve better image
quality and improvement in feature extraction techniques
to accommodate large datasets covering more taxa is
planned for future work. In conclusion, the purpose of this
study is to develop a fully automated identification system
capable of identifying monogenean specimens. Eventually,
this study will be integrated into a digital biological ecosys-
tem published by the corresponding author [36]. This work
will also be extended to a species classification pipeline
which incorporates semantics using textual annotations
and image attributes.
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