
SMAS: A solution-based multi-agent system for improving problem solving skills in
computer programming

Danial Hooshyar1, Rodina Ahmad2, Mohd H. N. M. Nasir3*

Dept. of Software Engineering, Faculty of Computer Science and Information Technology, University of Malaya, Kuala
Lumpur, Malaysia

*Corresponding author: hairulnizam@um.edu.my

Abstract

In this research, a solution-based multi-agent system (SMAS) is proposed, which benefits from a novel automatic text-
to-flowchart conversion approach in order to improve students’ problem solving skills. The aim is to introduce the early
stages of learning programming (CS1). By using SMAS, students can focus on solution designing activities in the form
of flowchart development more than on language and syntax. Ultimately, an experimental study is devised to assess
the success of SMAS as a tool to aid students with problem solving activities and learning computer programming. In
total, 30.4% of problems that were left unresolved in previous sessions were solved by students in the control group,
whereas 69.7% of previously unresolved problems were solved by students in the experimental group who used SMAS.
Therefore, the use of SMAS in practice is supported, as the results indicate considerable gains for the experimental
group over the control group.

Keywords: Flowchart; novice programmer; problem solving; solution-based multi-agent system; text-to-flowchart
conversion.

1. Introduction and related works

Learning programming is a must for students in the
engineering and computer science fields, because several
programming courses require programming abilities as part
of the curriculum (McCracken et al., 2001). The literature
reports high failure and dropout rates in introductory
programming courses (Carter et al., 1999). Applying
complex programming languages along with a lack of
problem-solving skills and solution design activities are
outlined by many researchers as the main reasons why
learning programming is more difficult (Kartam & Flood,
2002; Pillay & Jugoo, 2005). It is worth mentioning that
students’ knowledge level, class size, motivation, and
programming language syntax are also among the most
accentuated reasons. In addition, it is frequently said that the
composing instructions for creating program components
is another difficulty for many students, which leaves them
unable to use basic programming constructs (Spohrer &
Soloway, 1985; Deldari et al., 2007; Al-Juboori, 2012).
We believe that greater attention and priority should be
given to solution designing and problem solving activities,
while programming languages should only be used as a
way to express solutions. This is because learning to solve

problems algorithmically contributes to learning how to
program. As majority of students encounter a variety of
difficulties in the initial programming stages and may not be
able to develop solutions for plain programming problems,
they mostly lose interest and even give up. Numerous
tools, approaches, and environments have been proposed
and developed over the past decades by researchers
to overcome learning difficulties faced by students.
Some that offer familiar environments to teach basic
programming constructs are, for instance, ONTOIAS, an
ontology-supported information agent shell for ubiquitous
services (Yang, 2011), Jeliot3 (Bednarik et al., 2005) and
OOP Semantics System (Teh Noranis, 2011). These help
promote students’ programming skills in simpler, less
complicated environments than professional ones.

Graphical representations have been proposed in
numerous animation educational tools, such as SICAS
(Chang et al., 2005), Jeliot 2000 (Bassat et al., 2001) and
Raptor (Carlisle et al., 2005), to enable students to better
understand programs. Several tools have been developed
to facilitate the application of artificial intelligence (AI)
techniques, such as DISCOVER (Ramadhan et al., 2001)
and Lisp Tutor (Anderson & Reiser, 1985) that support

Kuwait J. Sci. 44 (2) pp. 58-66, 2017

SMAS: A solution-based multi-agent system for improving problem solving skills in computer programming59

individualized learning. Moreover, multi-agents have been
proposed to offer students support with problem solving
skills. One of them proposed the role of multi-agents that
performs a step-by-step extraction and transformation
from one problem solving technique to another (Rajabi
et al., 2013; Noranis & Azuan, 2013)With these tools,
students obtain error and misconception findings as
well as corrections for their programs through program
simulation. Although it is believed that guiding students to
find and correct errors and misconceptions by simulating
their own programs is very valuable, students who are
weaker cannot benefit from this as they are unable to
develop initial solution propositions to be simulated. It is
also worth mentioning that instead of focusing on problem
solving skills, which are rather essential for weaker
students, such tools emphasize more on programming
language features. The main concern therefore highlights
the need to develop the ability to understand problem
description as well as the ability to develop solutions. The
main aim of the current research is thus to enhance the
problem solving skills of novice programmers. Hence, a
Solution-based Multi-agent System (SMAS) is developed,
which benefits from an automatic text-to-flowchart
conversion approach to enable creating initial solutions
for simple problems and to improve problem solving
skills. The target audience in this research is novice
programmers with no prior knowledge of programming.
Many academic applications can also benefit from SMAS
and its architecture for problem solving in various areas,
drawing diagrams, etc. Moreover, the proposed SMAS
may help make teaching programming subjects a more
appealing option for instructors. The remaining parts of
this article are dedicated to the following topics: SMAS
architecture, evaluation and results, and conclusions.

2. SMAS architecture

An illustration of the SMAS architecture is presented in
Figure 1. Supporting problem solving abilities through
design activities and demonstrating the importance of
highlighting the essential principles of various algorithms
at higher abstraction levels are considered the primary
purposes of SMAS. This system includes two levels,
namely “a keyword is found” and “a keyword is NOT
found.”

 The former occurs when a keyword is found following
text processing, such as sentence parsing, noise removal,
and the separation of main words, while the latter happens
when no keyword is found subsequent to text processing.
The main role and function of the first level of SMAS are

described below.

Fig. 1. General SMAS architecture

The first system level2.1

Graphical user interface (GUI) agent1.1.1

The interface for the interaction between users and other
agents is the GUI agent. Both SMAS levels communicate
with this agent as well as the flowchart content and process
orientation agent. The GUI agent normally conveys a
developed flowchart or sub-flowchart along with instant
feedback and messages to users. Moreover, this agent
takes the given programming problem, in English text
here, and sends it to the next agent called the NLP agent.

Natural language processing (NLP) agent 1.1.2

The NLP agent performs the semantic and syntactic
analysis of a programming problem entered in English
text. It normally does sentence segmentation, part-of-
speech tagging and parsing. After parsing a sentence, the
agent performs noise removal, meaning that prepositions,
conjunctions, etc. will be removed and only the main
words will be sent to the key finder agent.

Example 1: Write a program to calculate the factorial of
a given number.

After parsing, we have: write/VB (verb, base form) a/
DT (determiner) program/NN (noun, singular or mass) to/
TO (to) calculate/VB (verb, base form) factorial/NN (noun,
singular or mass) of/IN (preposition or subordinating
conjunction) given/VBN (verb, past participle) number/
NN (noun, singular or mass)

As seen above, an online parser processes the entered
text and the system automatically removes noise from
the parsed sentence. The output for example 1 after noise
removal is:

Calculate/VB (verb, base form) factorial/NN (noun,
singular or mass) given/VBN (verb, past participle)
number/NN (noun, singular or mass)

Danial Hooshyar, Rodina Ahmad, Mohd H. N. M. Nasir 60

Key finder agent 1.1.3

This agent cross-checks the main words extracted from
the entered sentence with keywords stored in database 1
(D1). If a word matches a keyword, the keyword will be
referred to the flowchart agent for further processing. If
no keyword is found, the main words will be sent to the
dictionary agent for further checking. If no substitution
or synonym is found, the second system level starts
working.

Dictionary agent1.1.4

This agent checks words for their synonyms and
substitutions through database 2 (D2). If any keyword
is found from its two sub-agents, it will be returned to
the key finder agent again for further action. This agent
comprises two sub-agents as described below:

� Synonym sub-agent

This sub-agent cross-checks words with its repository and
if any synonym is found, it will be passed to the dictionary
agent.

Example 2: write a program to pick the largest of a set of
numbers

After parsing, we have: write/VB (verb, base form) a/
DT (determiner) program/NN (noun, singular or mass)
to/TO (to) pick/VB (verb, base form) the/DT (determiner)
largest/JJS (adjective, superlative) of/IN (preposition
or subordinating conjunction) a/DT (determiner) set/
NN (noun, singular or mass) of/IN (preposition or
subordinating conjunction) numbers/NNS (noun, plural)

If the key finder agent cannot find any keyword match
for its question, it refers it to the dictionary agent, which
uses a synonym sub-agent to find synonyms such as
biggest, maximum, or max for the main word, ‘largest.’

� Substitution sub-agent

This sub-agent cross-checks the words with its repository
and if any substitution is found, it will be passed to the
dictionary agent.

Flowchart agent1.1.5

This agent receives the keyword found from D1 and
provides the GUI agent with a workspace for users
to complete the sub-flowchart, a system chat to guide
users step by step, the flowchart template, etc. System
assessment offers a means to guide student learning and
feedback for the student regarding the learning process.

The flowchart agent includes three sub-agents as follows:

� Guidance sub-agent

By employing this sub-agent, users will receive an editor,
the algorithm of the programming problem entered, a
flowchart template, and a system chat. In this option, users
are required to drag the disorderly algorithm given at the
left side of the workspace (the lines) and drop it in the right
position of the flowchart template. Afterwards, the correct
shape will be extracted from the relevant database and be
placed through the flowchart. If the algorithm is dropped
in the wrong position, the system will not allow the line
to be dropped and the system chat will automatically
generate the relevant error and feedback. A screen shot of
the guidance option after a user drops the algorithm in the
wrong position is shown in Figure 2.

Fig. 2. Screen shot of the guidance option after a user drops the
algorithm in the wrong position

Once the user has completed the flowchart, the system
asks whether they would like to have the complete
flowchart traced using a trace table. A snapshot of a typical
complete flowchart is shown in Figure 3. If affirmative,
the system traces the flowchart for the user to assure
they understand the solution of the problem step by step.
A snapshot of the generated flowchart with the relevant
trace table is shown in Figure 4.

Fig. 3. Complete flowchart with the guidance option of SMAS

SMAS: A solution-based multi-agent system for improving problem solving skills in computer programming61

Fig. 4. Snapshot of generated flowchart and relevant trace table

� Sorting sub-agent

Unlike guidance, in the sorting option the algorithm is
not provided at the left of the workspace. Some shapes
are already placed in the correct places and are marked
with √ in the flowchart template and the remaining shapes
are misplaced and marked with ×. Therefore, the user is
required to sort the misplaced shapes using the empty
flowchart template at the left to complete the flowchart.
In case the user drags a shape into the wrong position,
the same mark (×) will appear next to the shape. In the
sorting option, the errors and feedback are brief, as brief
feedback is a classical way of making users think after a
failure/error. A snapshot of the sorting option is illustrated
in Figure 5.

Fig. 5. Snapshot of the sorting option in SMAS

� System chat agent

This agent provides users with immediate feedback,
errors and recommendations while they are completing
the flowchart, as shown in previous figures of SMAS.

Error detection agent1.1.6

If any error occurs throughout flowchart completion
while using the toolbar and guidance sub-agents, the
error detection agent will detect and store it. Afterwards,
the error will be conveyed to the crawler agent to find
additional, relevant information and definitions to

automatically improve the database without human
intervention for subsequent users.

Crawler agent1.1.7

This agent receives an unknown keyword from the error
detection agent and crawls relevant websites to find
a related definition and context for improving the D1
database. Upon extracting additional information by this
agent, it will be added automatically to the D1 database. If
the next user enters the same question before proceeding
to flowchart completion, the system will present this
added information in definition form at the top of the
page. Figure 6 illustrates the functions of these two agents
in example 1.

Fig. 6. Workspace of the guidance sub-agent with extra information
added by the crawler agent

 The second system level2.2

The role of each agent in the second level regarding ‘a
keyword is NOT found’ is presented.

GUI & NLP agents1.1.1

These two agents were described in Sections 4.1.1 and
4.1.2.

Example 3: Write a program that asks the user to type an
integer, and write _you win_ if the value is between 56
and 78.

After parsing, there is: write/VB (verb, base form) a/
DT (determiner) program/NN (noun, singular or mass)
that/WDT (Wh-determiner) asks/VBZ (verb, 3rd person
singular present) the/DT (determiner) user/NN (noun,
singular or mass) to/TO (to) type/VB (verb, base form)
an/DT (determiner) integer/NN (noun, singular or mass)
and/CC (coordinating conjunction) write/VB (verb, base
form) _/VBG (verb, gerund or present participle) you/PRP
(personal pronoun) win/VB (verb, base form) _/NNS (noun,
plural) if/IN (preposition or subordinating conjunction)

Danial Hooshyar, Rodina Ahmad, Mohd H. N. M. Nasir 62

the/DT (determiner) value/NN (noun, singular or mass)
is/VBZ (verb, 3rd person singular present) between/
IN (preposition or subordinating conjunction) 56/CD
(cardinal number) and/CC (coordinating conjunction)
78/CD (cardinal number)

As seen above, the text entered is processed by an
online parser and the system automatically does minor
noise removal in the parsed sentence. It is worth noting
that the noise removal stage in the second level of SMAS
differs from the first level. Therefore, the output for
example 3 after noise removal is:

Asks/VBZ (verb, 3rd person singular present) user/
NN (noun, singular or mass) type/VB (verb, base form)
integer/NN (noun, singular or mass) write/VB (verb, base
form) _/VBG (verb, gerund or present participle) you/PRP
(personal pronoun) win/VB (verb, base form) _/NNS (noun,
plural) if/IN (preposition or subordinating conjunction)
value/NN (noun, singular or mass) is/VBZ (verb, 3rd
person singular present) between/IN (preposition or
subordinating conjunction) 56/CD (cardinal number) 78/
CD (cardinal number)

Key finder agent1.1.2

This agent cross-checks the main words extracted from
the sentence entered by the NLP agent with keywords
stored in D1 and D2. If no match is detected, the main
words extracted from the statement of the programming
problem will be sent to the process orientation agent.

Process orientation agent1.1.3

This agent obtains the main words from the NLP agent,
refers each related word to its corresponding flowchart
notation and then sends them to the flowchart sub-agent
for drawing. The process orientation agent includes two
sub-agents as follows:

� Flowchart sub-agent

This sub-agent refers each main word and keyword to
its corresponding shape and develops a sub-flowchart. It
also provides the GUI agent with a workspace for users to
complete the sub-flowchart, an online system chat to guide
users step-wise and a flowchart template. In example 3,
the process orientation agent automatically generates the
relevant sub-flowcharts using the flowchart sub-agent
shown in Figure 7. When users keep the mouse cursor
on the programming problem statement, the relevant sub-
flowchart will be highlighted to show the relationship
between the text and its corresponding flowchart.

Fig. 7. Workspace of the process orientation agent

� Online chat sub-agent

It is not unusual for students to get stuck in certain
programming assignment stages. In such situation, it
is important to get timely help from an instructor to be
able to continue working on the assignment. Otherwise,
learners may give up or not have sufficient time to
work on the task. Therefore, this agent provides novices
with an online chat with the system admin for further
flowchart development. As shown in Figure 7, an online
chat is improvised at the bottom right of the page to help
users obtain additional guidance from the system admin.
It is worth mentioning that if databases 1 and 2 are fed
properly and with sufficient basic exercises aimed at CS
minors, users will not be referred to this stage. Therefore,
the online chat with the admin is only used in the worst
case scenarios.

Admin agent1.1.4

The admin agent asks the system admin to define
and draw the relevant flowchart of each unknown
programming problem stored in database 3, which will
all be automatically added to D1 to improve the system’s
database.

3. Evaluation

To assess and investigate the success of SMAS in
learning computer programming and acquiring problem
solving skills, an experimental study was adopted using
42 first-year undergraduate students taking their first
introductory programming course. Because the module
content involves imperative strategies for solving
fundamental programming problems, these participants
were particularly appropriate for investigating SMAS
efficacy in learning computer programming and acquiring
problem solving skills.

SMAS: A solution-based multi-agent system for improving problem solving skills in computer programming63

Fig. 8. Experimental study

The present experimental study was conducted over
six sessions in line with a pre-test/post-test control group
design. The first and last sessions were 90 minutes each,
and the rest were run for 50 minutes each. Three different
sets were utilized in the sessions, each including 4 basic
programming concepts and problems. The evaluation
process is shown in Figure 8. First, the participants were
randomly assigned to the experimental and control group.
Each group had 21 students. The pre-test conducted in
the first session was to test the initial knowledge of the
participants using a set of basic programming concepts
and problems. In the second and third stages, the
participants were given 4 basic programming problems
and their answers were collected. Afterwards, the lecturer
assessed the answers, based on which a personalized and
individualized exercise was handed out to each participant
in the fourth session. The problems left unresolved in
the two previous sessions were given to the participants
as personalized exercises and they spent the fourth and
fifth sessions attempting to solve them. In this stage, the
experimental group participants only accessed SMAS to
solve the problems. A 40-minute live demo was given
to the participants with three programming problems in
all the sets utilized during the experimental evaluation.
Both control and experimental groups solved these three
exercises in order to prevent any possible bias. In session
six, the third set of programming problems was used to
conduct a post-test to measure progress. Scoring was based
on algorithm and flowchart (solution design) development;
those solutions that contained a correctly developed
solution were marked as correct. To assign the pre-test and
post-test scores, the number of exercises solved in the first
and last sessions was considered. Both homoscedasticity
(Levene’s test) and normality (K–S normality test) of all
variables were checked for evaluation purposes. SPSS
19.0 was used to obtain the mean as a measurement of the
central trend and the standard error of the mean (SEM) as a
measurement of dispersion. In order to define the influence
of using SMAS on the scores gained by the participants
(dependent variable), a mixed model ANOVA [group (2;
control and experimental) * testing time (2; pre-test and
post-test)] was implemented. In addition, in the case of

significant interaction and main effects, which was set at
p = 0.05 prior to Bonferroni correction, post-hoc analysis
with Bonferroni correction was used. Subsequently, the
main effect of the test type (pre-test and post-test) on the
scores obtained by participants (F1, 42 = 20.31; p < 0.001;
η2

p = 0.28) was displayed by ANOVA. Moreover, testing
time and group had an interaction effect on the scores
(F1, 42 = 7.12; p = 0.007; η2

p = 0.23). By reviewing the
control group participants’ scores in the pre-test and post-
test (F1, 42 = 2.48; p > 0.05; η2

p = 0.11), no considerable
improvement was observed. However, unlike the control
group, considerable improvement was observed in the
experimental group (F1, 42 = 27.60; p < 0.001; η2

p = 0.54),
signifying the substantial influence of the multi-agent
system only on the experimental group who utilized
SMAS (Table 1).

Table 1. Differences between testing times for the scores gained by
the control and experimental groups

 Initial test
results

 Final test
results

 Control Group
(21)

 Experimental
Group (21)

6.56 (1.09)
 5.66 (0.92) 6.93 (0.55)

7.95 (1.30)*

*Considerable differences (ᴘ < 0.001) among the scores achieved in
the pre and post test

Table 2. Differences in performance upon using the multi-agent
system in the treatment stage (sessions 2-5)

 First
attempt

 Individualized
sheet

 Relative
 performance

(%)

 Control Group
(21)

 Experimental
Group (21)

 4.78
(0.69)
 5.27

 (0.65)

1.77 (0.51)
4.83 (0.50)

30.4
69.7

The average numbers of exercises solved by the control
and experimental groups in the first two sessions are shown
in Table 2. The similar prior knowledge of participants in
both groups is evident from the small differences in scores
gained in sessions 2 and 3 as their first attempt. However,
the considerable differences in scores gained in sessions
4 and 5 (with the personalized exercises and sheets) are
indicative of the positive and significant influence of
SMAS. In the control group, only 30.4% of problems that

Danial Hooshyar, Rodina Ahmad, Mohd H. N. M. Nasir 64

were left unresolved in previous sessions were solved
by students; however, 69.7% of previously unresolved
problems were solved by students in the experimental
group who used SMAS. The use of SMAS in practice is
supported by the results that indicate considerable gains
for the experimental group over the control group. The
constructive impact of using programming environments
aimed at creating a mental model of the solution to
a problem for novice programmers as determined in
the current study is in line with previous research (Teh
Noranis, 2011; Hooshyar et al., 2015, 2016).

4. Conclusion

Literature in this field reports high failure and dropout
rates in introductory programming courses. Many students
avoid programming in their final year projects because
they do not have sufficient skill in programming. In this
study, a solution-based multi-agent system (SMAS) was
proposed and developed. The purpose was to improve
the problem solving skills of novice programmers by
providing them with algorithm and flowchart development
for imperative, basic programming problems. When using
this tool, learners are engaged in developing flowcharts
by employing an automatic text-to-flowchart conversion
approach. SMAS offers students step-by-step guidance to
develop flowcharts in the form of solution designing along
with, additional information regarding the programming
problem entered, and feedback on their actions. In order
to assess and investigate the success of SMAS in learning
computer programming and acquiring problem solving
skills, an experimental study was adopted using 42 first-
year undergraduate students, who were taking their first
introductory programming course at a public university in
Malaysia. In the control group, only 30.4% of problems
that were left unresolved in previous sessions were solved
by students, but 69.7% of previously unresolved problems
were solved by students in the experimental group who
used SMAS. The practical use of SMAS is supported
by the results, which indicate considerable gains for the
experimental group over the control group.

5. Acknowledgment

This work is financially supported by University of
Malaya under project RG327-15AFR.

References

Al-Juboori H.M. (2012). Design of an interactive platform for computer
engineering education. Kuwait Journal Science, 39 (2A):119-130.

Anderson, J. & Reiser, B. (1985). The LISP Tutor, Byte, 10:159-
175.

Bednarik, R., Joy, M., Moreno, A., Myller, N. & Sutinen, E. (2005).
Multi agent educational system for program visualization. Intelligent
Agents, Web Technologies and Internet Commerce (CIMCA-
IAWTIC’05); Pp.1-6.

Ben-Bassat, R., Ben Ari, M. & Uronen P. (2001). An extended
experiment with Jeliot 2000, In Proceedings of the First International
Program Visualization Workshop, University of Joensuu Press, Porvoo
Finland, 131-140.

Carlisle, M.C., Wilson, T., Humphries J. & Hadfield S. (2005).
RAPTOR: A visual programming environment for teaching algorithmic
problem solving, Proceeding of 36th SIGCSE Technical Symposium on
Computer Science Education, 176-180.

Carter J. & Jenkins T. (1999). Gender and programming: What’s
going on? Proceeding of 4th Annual Conference on Innovation and
Technology in Computer Science Education, 1-4.

Chang, K.E., So, Y.T. & Lin, H.F. (2006). Computer-assisted learning
for mathematical problem solving, Computers & Education, 46:140–
151.

Deldari, H., Sabeghi, M. & Mafi, R. (2007). An agent-based approch
to grid programming. Kuwait Journal Science, 34(2):145-164.

Hooshyar, D., Rodina, B.A., Yousefi, M., Fathi, M., Horng, S.J. &
Lim, H. (2016). Applying an online game-based formative assessment
in a flowchart-based intelligent tutoring system for improving problem-
solving skills, Computers & Education, 94:18-36.

Hooshyar, D., Rodina, B.A., Raj R.G., Mohd Hairul, N.M.N.,
Yousefi, M., Horng, S.J. & Rugelj, J. (2015). A flowchart-based multi-
agent system for assisting novice programmers with problem-solving
activities, Malaysian Journal of Computer Science, 28(2):133-151.

Kartam, N. & Flood, I. (2002). Enhancing engineering education
using multimedia web-based techniques. Kuwait Journal Science, 29
(2):181-196.

McCracken, M., Almstrum, V., Diaz, D., Guzdial, M., Hagan,
D., Kolikant, Y.B., Laxer, C., Thomas, L., Utting, I. & Wilusz, T.
(2001). A multinational, multi-institutional study of assessment of
programming skills of first-year CS students, in Proceedings of 6th
Annual Conference on Innovation and Technology in Computer Science
Education, Canterbury, UK, 125-180.

Pillay, N. & Jugoo, V. (2005). An investigation into student
characteristics affecting Novice programming performance, ACM
SIGCSE Bulletin, 37:107-110.

Rajabi, M., Teh Noranis, M.A. & Sulaiman M.N. (2013).
Computational problem solving architectural design based on multi-
agent, Journal of Theoretical and Applied Information Technology
(JATIT), 58(2):311-318.

Ramadhan, H.A., Deek, F. & Shihab, K. (2001). Incorporating
software visualization in the design of intelligent diagnosis systems for
user programming, Artificial Intelligence Review, 16(1):61-84.

Spohrer, J.C. & Soloway, E. (1985). Putting it all together is hard
for novice programmers, in Proceedings of the IEEE International
Conference on Systems, Man, and Cybernetics, Tucson, Arizona, 728-
735.

Teh Noranis, M.A. & Azuan S.N. (2013). A multi-agent model for

SMAS: A solution-based multi-agent system for improving problem solving skills in computer programming65

information processing in computational problem solving, International
Journal of Modeling and Optimization, 3(6):490-494.

Teh Noranis, M.A. (2011). Object-oriented programming semantics
representation utilizing agents, Journal of Theoretical and Applied
Information Technology (JATIT), 32(1): 88-98.

Wheeler, J.L. & Regian, J.W. (1999). The use of a cognitive tutoring
system in the improvement of the abstract reasoning component of
word problem solving, Computer in Human Behavior, 15(2):243–254.

Yang, S.Y. (2011). OntoIAS: An ontology-supported information agent
shell for ubiquitous services. Expert Systems with Applications, 38:
7803-7816.

Submitted : 30/06/2015
Revised : 03/05/2016
Accepted : 03/05/2016

Danial Hooshyar, Rodina Ahmad, Mohd H. N. M. Nasir 66

 d�uO�LJ�« W��d� w� ÈöJA*« q� È«—UN� 5���� jzU�u�« œbF�� q(« vK
 rzU� ÂUE�

*
d�U� ÂUE� ‰u�d� bL�� ¨bL�√ UM�œË— ¨—UO	u� ‰UO�«œ

U�eO�U� ¨—u�*ô«u� ¨U�ôU� WF�U� ¨ÈU�uKF*« WOMI�Ë »u�U(« ÂuK
 WOK� ¨ÈUO��d��« W�bM� r��

*hairulnizam@um.edu.my

W�ö�

 v�≈ hM�« q�u��� b�b� wzUIK� ZN� s� bOH��� Íc�« ¨©SMAS® jzU�u�« œbF�� q(« vK
 rzU� ÂUE� Õ«d��« - ¨Y���« «c� w�

 Æ©CS1® ÈUO��d��« rKF� s� v�Ë_« q�«d*« .bI� u� p�– s� ·bN�«Ë Æ»öD�« Èb� ÈöJA*« q� È«—UN� 5���� jD��

 ¡UM�Ë WGK�« vK
 eO�d��« s� d��√ ÈUDD�*« d�uD� W�O� vK
 ‰uK(« rOLB� WDA�√ vK
 eO�d��« »öD�« lOD��� ¨SAMS Â«b���U�

 Æ»u�U(« W��d� rKF�Ë ÈöJA*« q� WDA�√ w� »öD�« …b
U�* …«œQ� SAMS ÕU$ rOOI�� WO��d& W�«—œ l{Ë - ¨Î«dO�√Ë ÆWKL'«

 •69.7 q� - 5� w� ¨rJ���« W
uL�� »ö
 q�� s� WI�U��« È«—Ëb�« w� UNK� r�� r� w��« ÈöJA*« s� •30.4 q� - ¨ÎUO�UL�≈

 SMAS Â«b���« r
œ - ¨p�c� ÆSMAS «u�b���« s�c�« WO��d���« W
uL�*« w� »öD�« q�� s� ÎUI�U� UNK� r�� r� w��« q�UA*« s�

ÆWD�UC�« W
uL�*« vK
 WO��d���« W
uL�*« `�UB� …dO�� V�UJ� oOI% v�≈ ZzU�M�« dOA� YO� ¨WOKLF�« W�—UL*« w�

