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In the tunneling framework of Hawking radiation, chargedmassive particle’s tunneling in charged nonrotating TeV-scale black hole
is investigated. To this end, we consider natural cutoffs as a minimal length, a minimal momentum, and a maximal momentum
through a generalized uncertainty principle. We focus on the role played by these natural cutoffs on the luminosity of charged
nonrotating microblack hole by taking into account the full implications of energy and charge conservation as well as the
backscattered radiation.

1. Introduction

One of themost exciting consequences of models of low scale
gravity [1–4] is the possibility of production of small black
holes [5–7] at particle colliders such as the Large Hadron
Collider (LHC) as well as in Ultrahigh Energy Cosmic Ray
Air Showers (UECRAS) [8–10]. Incorporation of gravity in
quantum field theory supports the idea that the standard
Heisenberg uncertainty principle should be reformulated
by the so-called generalized uncertainty principle near the
Planck scale [11–13]. In particular, the existence of aminimum
observable length is indicated by string theory [14], TeV-
scale black hole physics [15], and loop quantum gravity [16].
Moreover, some black hole Gedanken experiments support
the idea of existence of a minimal measurable length in
a fascinating manner [17, 18] On the other hand, Doubly
Special Relativity theories [19–24] suggest that a test particle’s
momentum cannot be arbitrarily imprecise and there is
an upper bound for momentum fluctuation. It means that
there is also a maximal particle momentum. It has been
shown that incorporation of quantum gravity effects in black
hole physics and thermodynamics through a generalized
uncertainty principle (GUP) with the mentioned natural
cutoffs modifies the result dramatically, specially, the final
stage of black hole evaporation. Parikh and Wilczek on their

pioneering work [25] constructed a procedure to describe the
Hawking radiation emitted from a Schwarzschild black hole
as a tunneling through its quantum horizon. The emission
rate (tunneling probability) which arising from the reduction
of the black hole mass is related to the change of black hole
entropies before and after the emission. In this paper, charged
particle’s tunneling from charged nonrotating microblack
hole is investigated.We consider amore general framework of
GUP that admits aminimal length,minimalmomentum, and
maximal momentum to study the effects of natural cutoffs
on the tunneling mechanism and luminosity of charged
nonrotating TeV-scale black holes with extra dimensions in
Arkani-Hamed, Dimopoulos, and Dvali (ADD) model [1]
in the context of this GUP. The calculation shows that the
emission rate satisfies the first law of black hole thermody-
namics. The paper is organized as follows: in Section 2, we
introduce a generalized uncertainty principle with minimal
length, minimal momentum, and maximal momentum. In
Section 3, we obtain an expression for emission rate of
charged particle from charged nonrotating microblack hole
based on the ADD model and the mentioned GUP. We
consider the backscattering of the emitted radiation taking
into account energy and charge conservation to evaluate the
luminosity of TeV-scale black hole in presence of natural
cutoffs. The last part is the discussion and calculation.
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2. Generalized Uncertainty Principle

The existence of a minimal measurable length of the order
of the Planck length, 𝑙𝑝 ∼ 10

−35m, was indicated by most
of quantum gravity approaches [26, 27] which modifies the
Heisenberg uncertainty principle (HUP) to the so-called
generalized (gravitational) uncertainty principle (GUP). The
minimal position uncertainty, Δ𝑥0, could be not made arbi-
trarily small toward zero [12] in the GUP framework due to
its essential restriction on the measurement precision of the
particle’s position. On the other hand, Doubly Special Rela-
tivity (DSR) theories [21–24] have considered that existence
of a minimal measurable length would restrict a test particle’s
momentum to take arbitrary values and therefore there is an
upper bound for momentum fluctuation [28, 29]. So there
is a maximal particle’s momentum due to the fundamental
structure of space-time at the Planck scale [30, 31]. Based on
the above arguments, the GUP that predicts both a minimal
length and a maximal momentum can be written as follows
[19, 20]:

Δ𝑥Δ𝑝 ≥
ℏ

2
[1 − 𝛼 ⟨Δ𝑝⟩ + 2𝛼

2
⟨Δ𝑝⟩
2
] . (1)

The relation (1) can lead us to the following commutator
relation:

[𝑥, 𝑝] = 𝑖ℏ (1 − 𝛼𝑝 + 2𝛼
2
𝑝
2
) , (2)

where 𝛼 is GUP dimensionless positive constant of both
minimal length and maximal momentum that depends on
the details of the quantum gravity hypothesis. It has been
developed that particle’s momentum cannot be zero if the
curvature of space-time becomes important and its effects
are taken into account [32, 33]. In fact, there appears to be a
limit to the precision of which the correspondingmomentum
can be expressed as a nonzero minimal uncertainty in
momentummeasurement. Based on thismore general frame-
work as a consequence of small correction to the canonical
commutation relation, this GUP can be represented as [34]

Δ𝑥Δ𝑝 ≥ ℏ (1 − 𝛼𝑙𝑝Δ𝑝 + 𝛼
2
𝑙𝑝
2
(Δ𝑝)
2
+ 𝛽
2
𝑙𝑝
2
(Δ𝑥)
2
) (3)

which in extra dimensions can be written as follows:

Δ𝑥𝑖Δ𝑝𝑖

≥ ℏ (1 − 𝛼𝑙𝑝 (Δ𝑝𝑖) + 𝛼
2
𝑙𝑝
2
(Δ𝑝𝑖)
2
+ 𝛽
2
𝑙𝑝
2
(Δ𝑥𝑖)
2
) .

(4)

Here, 𝛼 and 𝛽 are dimensionless positive coefficients which
are independent of Δ𝑥 and Δ𝑝. In general they may depend
on expectation value of 𝑥 and 𝑝. According to the generalized
Heisenberg algebra, we suppose that operators of position
and momentum obey the following commutation relation:

[𝑥, 𝑝] = 𝑖ℏ (1 − 𝛼𝑝 + 𝛼
2
𝑝
2
+ 𝛽
2
𝑥
2
) . (5)

In what follows, we use this more general framework of GUP
to find the tunneling rate of emitted particles through charged
nonrotating TeV-scale black holes.

3. Tunneling Mechanism

The idea of large extra dimensions might allow studying
interactions at Trans-Planckian energies in particle colliders
and the ADD model used d new large space-like dimen-
sions. So, in order to investigate the Hawking radiation via
tunneling from charged nonrotating TeV-scale black holes of
higher dimensional, a natural candidate is that of Reissner-
Nordstrom d-dimensional modified solution in presence
of generalized uncertainty principle. In this case, the line
element of d-dimensional Reissner-Nordstrom solution of
Einstein field equation is given by [35]

𝑑𝑠
2
= 𝑓 (𝑟) 𝑐

2
𝑑𝑡
2
− 𝑓
−1
(𝑟) 𝑑𝑟

2
− 𝑟
2
𝑑Ω
2

𝑑−2

= 𝑔𝜇]𝑑𝑥
𝜇
𝑑𝑥

]
,

(6)

where Ω𝑑−2 is the metric of the unit 𝑆
𝑑−2 as Ω𝑑−2 =

2𝜋
(𝑑−1)/2

/Γ((𝑑 − 1)/2) and

𝑓 = 𝑓 (𝑀,𝑄, 𝑟) = 1 −
𝜔𝑑−2𝑀

𝑟𝑑−3
+

𝜔𝑑−2𝑄
2

2 (𝑑 − 3)Ω𝑑−2𝑟
2(𝑑−3)

, (7)

where 𝜔𝑑−2 = 16𝜋/(𝑑 − 2)Ω𝑑−2. Here𝑀 and 𝑄 are the mass
and electric charge of the black hole, respectively; units 𝐺𝑑 =
𝑐 = ℏ = 1 are adopted throughout this paper. The black hole
has an outer/inner horizon located at

𝑟
𝑑−3

±
=
𝜔𝑑−2

2

[

[

𝑀 ± √𝑀2 −
(𝑑 − 2)𝑄

2

8𝜋 (𝑑 − 3)

]

]

. (8)

Therefore, the event horizon shrinks, and the inner one
appears; when the black hole becomes charged the inner
radius is related to the amount of charge and the outer one
𝑟+ corresponds to the radius of Schwarzschild black hole. In
this case, (8) can be rewritten as follows:

𝑟+ = (
𝜔𝑑−2

2

[

[

𝑀 + √𝑀2 −
(𝑑 − 2)𝑄

2

8𝜋 (𝑑 − 3)

]

]

)

1/(𝑑−3)

. (9)

In order to apply the semiclassical tunneling analysis, one
can find a proper coordinate system for the black hole metric
where all the constant lines are flat and the tunneling path
is free of singularities. In this manner, Painlevé coordinates
are suitable choices. In these coordinates, the d-dimensional
Reissner-Nordstrom metric is given by

𝑑𝑠
2
= −𝑓𝑑𝑡

2
± 2√1 − 𝑓𝑑𝑡𝑑𝑟 + 𝑑𝑟

2
+ 𝑟
2
𝑑Ω
2

𝑑−2
(10)

which is stationary, nonstatic, and nonsingular at the horizon
and plus (minus) sign corresponds to the space-time line
element of the outgoing (incoming) particles across the
event horizon, respectively.The trajectory of chargedmassive
particles as a sort of de Broglie s-wave can be approximately
determined as [36, 37]

̇𝑟 =
𝑑𝑟

𝑑𝑡
= −

𝑔𝑡𝑡

2𝑔𝑡𝑟

= ±
𝑓

2√1 − 𝑓
, (11)
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where the plus (minus) sign denotes the radial geodesics of
the outgoing (incoming) charged particles tunneling across
the event horizon, respectively. We incorporate quantum
gravity effects in the presence of theminimal length, minimal
momentum, and maximal momentum via the GUP which
motivates modification of the standard dispersion relation in
the presence of extra dimensions based onADDmodel. If the
GUP is a fundamental outcome of quantum gravity proposal,
it should appear that the de Broglie relation is as follows:

𝜆±

=
𝑝𝑖

2𝛽2𝑙2
𝑝

(1 ± √1 −
4𝛽
2
𝑙
2

𝑝
(1 − 𝛼𝑙𝑝𝑝𝑖 + 𝛼

2
𝑙
2

𝑝
𝑝
2

𝑖
)

𝑝2
𝑖

).

(12)

One can find easily that positive sign does not recover
ordinary relation in the limits 𝛼 → 0 and 𝛽 → 0. So we
consider the minus sign as

𝜆− = (
3𝛽
2
𝑙
4

𝑝

𝑝𝑖

+ 𝑝𝑖𝑙
2

𝑝
)𝛼
2
− (

2𝛽
2
𝑙𝑝
3

𝑝2
𝑖

+ 𝑙𝑝)𝛼 +
𝛽
2
𝑙
2

𝑝

𝑝3
𝑖

+
1

𝑝𝑖

(13)

or equivalently

𝜀 = (3𝐸𝛽
2
𝑙
4

𝑝
+ 𝐸
3
𝑙
2

𝑝
) 𝛼
2
− (2𝛽

2
𝑙
3

𝑝
+ 𝐸
2
𝑙𝑝) 𝛼 + 𝐸

+
𝛽
2
𝑙
2

𝑝

𝐸
.

(14)

Here, for investigating Hawking radiation of chargedmassive
particles from the event horizon of charged nonrotating
microblack hole, we use this more general uncertainty prin-
ciple and take into consideration the response of background
geometry to radiated quantum of energy E with GUP cor-
rection, that is, 𝜀. The emitted particle which can be treated
as a shell of energy 𝜀 and charge q moves on the geodesics
of a space-time with central mass 𝑀 − 𝜀 substituted for M
and charge parameter 𝑄 − 𝑞 replaced with 𝑄. We set the
total Arnowitt-Deser-Misner (ADM)mass,M, and the ADM
charge of the space-time to be fixed but allow the hole mass
and charge to fluctuate and replaceM by𝑀−𝜀 and𝑄 by𝑄−𝑞

in both themetric and the geodesic equation. So the outgoing
radial geodesics of the charged massive particle tunneling
out from the event horizon and the nonzero component of
electromagnetic potential are

̇𝑟 =
𝑓 (𝑀 − 𝜀, 𝑄 − 𝑞, 𝑟)

2√1 − 𝑓 (𝑀 − 𝜀, 𝑄 − 𝑞, 𝑟)

,

𝐴 𝑡 =
𝑄 − 𝑞

(𝑑 − 3)Ω𝑑−2𝑟
𝑑−3

.

(15)

So the Lagrangian for the matter-gravity system is

𝐿 = 𝐿𝑚 + 𝐿𝑒, (16)

where 𝐿𝑒 = −(1/4)𝐹𝜇]𝐹
𝜇] is the Lagrangian function of

the electromagnetic field corresponding to the generalized
coordinates 𝐴𝜇 = (𝐴 𝑡, 0, 0, 0) [38].

We assume the tunneling mechanism as a semiclassical
method producing Hawking radiation. In this case, using
WKB approximation, the emission rate of tunneling massive
charged particle can be obtained from the imaginary part of
the particle action at the stationary phase for the tunneling
trajectory; namely, [39, 40]

Γ ∼ exp (−2 Im 𝐼) . (17)

Assuming the generalized coordinate 𝐴 𝑡 is an ignorable one,
to eliminate this degree of freedom completely, we can obtain
the action of the matter-gravity system as

𝐼 = ∫

𝑡𝑓

𝑡𝑖

(𝐿 − 𝑃𝐴𝑡
�̇�𝑡) 𝑑𝑡

= ∫

𝑟𝑓

𝑟𝑖

[∫

(𝑝𝑟,𝑝𝐴𝑡
)

(0,0)

( ̇𝑟𝑑𝑝


𝑟
− �̇�𝑡𝑑𝑝



𝐴𝑡
)]

𝑑𝑟

̇𝑟
,

(18)

where 𝑟𝑖 and 𝑟𝑓 are the location of the event horizon
corresponding to 𝑡𝑖 and 𝑡𝑓, respectively, before and after the
particle of energy 𝜀 and charge 𝑞 tunnels out, inwhich𝑝𝐴𝑡 and
𝑝𝑟 are the canonical momentum conjugate to the coordinates
𝐴 𝑡 and 𝑟, respectively.

In order to consider the effect of quantum gravity, the
commutation relation between the radial coordinate compo-
nents and conjugate momentums should be modified based
on (1) and (2) of the expressed GUP as follows [41]:

[𝑟, 𝑝𝑟] = 𝑖 (1 − 𝛼𝑙𝑝𝑝𝑟 + 𝛼
2
𝑙
2

𝑝
𝑝
2

𝑟
) . (19)

So as it is clear from the more general GUP and based on (5)
the commutation relation should be modified as

[𝑟, 𝑝𝑟] = 𝑖 (1 − 𝛼𝑙𝑝𝑝𝑟 + 𝛼
2
𝑙
2

𝑝
𝑝
2

𝑟
+ 𝛽
2
𝑙
2

𝑝
𝑟
2
) . (20)

In the classical limit it is replaced by Poisson bracket as
follows:

{𝑟, 𝑝𝑟} = (1 − 𝛼𝑙𝑝𝑝𝑟 + 𝛼
2
𝑙
2

𝑝
𝑝
2

𝑟
+ 𝛽
2
𝑙
2

𝑝
𝑟
2
) . (21)

Now, we apply the deformed Hamiltonian equation:

̇𝑟 = {𝑟,𝐻} = {𝑟, 𝑝𝑟}
𝑑𝐻

𝑑𝑟

𝑟
,

𝑑𝐻|(𝑟,𝐴𝑡 ,𝑝𝑡)
= 𝑑 (𝑀 − 𝜀) ,

�̇�𝑡 =
𝑑𝐻

𝑑𝑝𝐴𝑡

=
𝑑𝐸

𝑄

𝑑𝑝𝐴𝑡

, 𝑑𝐻|(𝐴𝑡 ,𝑟,𝑝𝑟)
= 𝐴 𝑡𝑑 (𝑄 − 𝑞) .

(22)

In (18) as the Hamiltonian is 𝐻 = 𝑀 − 𝜀
, one can set 𝑝2 ≃

𝜀
2 and 𝑝 ≃ 𝜀

 and eliminate the momentum in favor of the
energy in integral (18) and switching the order of integration
yields the imaginary part of the action as follows:
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Im 𝐼 = Im∫

𝑟𝑓

𝑟𝑖

∫

(𝑀−𝜀,𝑄−𝑞)

(𝑀,𝑄)

[(1 − 𝛼𝑙𝑝𝜀

+ 𝛼
2
𝑙
2

𝑝
𝜀
2
+ 𝛽𝑙
2

𝑝
𝑟
2
) 𝑑 (𝑀 − 𝜀


) −

𝑄 − 𝑞


(𝑑 − 3)Ω𝑑−2𝑟
𝑑−3

𝑑 (𝑄 − 𝑞

)]

𝑑𝑟

̇𝑟

= Im∫

𝑟𝑓

𝑟𝑖

∫

(𝑀−𝜀,𝑄−𝑞)

(𝑀,𝑄)

2√1 − 𝑓 (𝑀 − 𝜀, 𝑄 − 𝑞, 𝑟)

𝑓 (𝑀 − 𝜀, 𝑄 − 𝑞, 𝑟)
[(1 − 𝛼𝑙𝑝𝜀


+ 𝛼
2
𝑙
2

𝑝
𝜀
2
+ 𝛽𝑙
2

𝑝
𝑟
2
) 𝑑 (𝑀 − 𝜀


) −

𝑄 − 𝑞


(𝑑 − 3)Ω𝑑−2𝑟
𝑑−3

𝑑 (𝑄 − 𝑞

)] 𝑑𝑟.

(23)

r integral can be evaluated by deforming the contour of the
single pole at the outer horizon. During r integral first, we
find

Im 𝐼 = Im∫

𝜀

0

2 (−𝜋𝑖) 𝑟+ (𝑀 − 𝜀

, 𝑄 − 𝑞)

⋅ (1 − 𝛼𝑙𝑝𝜀

+ 𝛼
2
𝑙
2

𝑝
𝜀
2
+ 𝛽𝑙
2

𝑝
) 𝑑 (−𝜀


)

− ∫

𝑄−𝑞

0

2 (−𝜋𝑖) 𝑟+ (𝑀 − 𝜀, 𝑄 − 𝑞

)

⋅
(𝑄 − 𝑞


)

(𝑑 − 3) 𝜋𝑟𝑑−3
𝑑 (𝑄 − 𝑞


) .

(24)

This allows us to consider the leading order correction to be
just proportional to second order of𝛼𝑙𝑝 and also second order
of 𝛽𝑙𝑝 for simplicity without loss of generality. In this regard,
we can finish the integration by applying Taylor series and
obtain the imaginary part of the action. Although integral

(24) is complicated, one can find such terms as an example
for 𝑑 = 5 as follows:

Im 𝐼𝑑=5 ≈ ⋅ ⋅ ⋅ + 4096𝛼𝑙𝑝𝜋𝑀
2
− 8192𝛼𝑙𝑝𝜋𝑀(3𝐸𝛽

2
𝑙
4

𝑝

+ 𝐸
3
𝑙
2

𝑝
) 𝛼
2
+ 8192𝛼𝑙𝑝𝜋𝑀(2𝛽

2
𝑙
3

𝑝
+ 𝐸
2
𝑙𝑝) 𝛼

− 8192𝛼𝑙𝑝𝜋𝑀𝐸 − 8192𝛼𝑙𝑝𝜋𝑀
𝛽
2
𝑙
2

𝑝

𝐸

+ 4096𝛼𝑙𝑝𝜋((3𝐸𝛽
2
𝑙
4

𝑝
+ 𝐸
3
𝑙
2

𝑝
) 𝛼
2

− (2𝛽
2
𝑙
3

𝑝
+ 𝐸
2
𝑙𝑝) 𝛼 + 𝐸 +

𝛽
2
𝑙
2

𝑝

𝐸
)

2

− 192𝛼𝑙𝑝𝑄
2

+ ⋅ ⋅ ⋅ .

(25)

Substituting (24) into (17), the tunneling probability of
charged particles from charged nonrotating TeV-scale black
holes is obtained as

Γ = exp (−2 Im 𝐼) ≃ exp[Im∫

𝜀

0

2 (−𝜋𝑖) 𝑟+ (𝑀 − 𝜀

, 𝑄 − 𝑞) (1 − 𝛼𝑙𝑝𝜀


+ 𝛼
2
𝑙
2

𝑝
𝜀
2
+ 𝛽𝑙
2

𝑝
) 𝑑 (−𝜀


)

− ∫

𝑄−𝑞

0

2 (−𝜋𝑖) 𝑟+ (𝑀 − 𝜀, 𝑄 − 𝑞

)

(𝑄 − 𝑞

)

(𝑑 − 3) 𝜋𝑟𝑑−3
𝑑 (𝑄 − 𝑞


)] = exp (Δ𝑠) ,

(26)

where Δ𝑠 is the difference in black hole entropies before
and after emission [42–47]. It was shown that the emission
rates on the high energy scales correspond to differences
between the counting of states in the microcanonical and in
the canonical ensembles [48, 49]. By performing integration
on (24), one canfind that the first order ofE in the exponential
gives a thermal, Boltzmannian spectrum. The existence of
extra terms in relation (25) shows that the radiation is not
completely thermal. In fact, these extra terms enhance the
nonthermal character of the radiation. Also, it is easy to find
that the tunneling rate should be greater than the ordinary
one in any stage of tunneling process. This tunneling rate
compared to the tunneling rate which is calculated in [50]
obviously shows that, by considering all natural cutoffs in
generalized uncertainty principle relation, many additional
terms appeared. The additional terms show strong deviation

of microblack holes radiation from ordinary thermal radia-
tion.

4. Backscattering and Luminosity

It has been shown [51] that black holes radiate a thermal
spectrum of particles. So microblack holes emit black body
radiation at the Hawking temperature. Following a heuristic
argument [52], the energy of the Hawking particles is Δ𝐸 ≈

𝑐Δ𝑝 and it is deduced for the Hawking temperature of black
hole based on LED scenario,

𝑇𝐻 ≃
(𝑑 − 3) Δ𝑝

4𝜋
, (27)

where (𝑑 − 3)/4𝜋 is a calibration factor in d-dimensional
space-time. By saturating inequality (4), one can find
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momentum uncertainty in terms of position uncertainty as
follows:

Δ𝑃𝑖 = (
𝛼𝑙𝑝 + Δ𝑥𝑖

4𝛼2𝑙2
𝑝

)

⋅ (1 ± √1 −
4𝛼
2
𝑙
2

𝑝
(1 + 4𝛽

2
𝑙
2

𝑝
(Δ𝑥𝑖)
2
)

(𝛼𝑙𝑝 + Δ𝑥𝑖)
2

).

(28)

So the modified black hole Hawking temperature in the
presence of natural cutoffs becomes

𝑇𝐻 =
(𝑑−3)(2𝑟++𝛼𝑙𝑝)

16𝜋𝛼2𝑙2
𝑝

(1

− √1 −
4𝛼
2
𝑙
2

𝑝
(1 + 16𝛽

2
𝑙
2

𝑝
𝑟+
2
)

(2𝑟+ + 𝛼𝑙𝑝)
2

).

(29)

Based on (29), GUP give rise to the existence of a minimal
mass of a charged nonrotating microblack hole given by

𝑀
GUP
min

=
(𝑑 − 2)Ω

16𝜋
((

(1 + 2√1 − 12𝛽2𝛼2𝐿4
𝑝𝑙
) 𝐿𝑝𝑙𝛼

32𝛽2𝛼2𝐿4
𝑝𝑙
− 2

)

2𝑑−6

+
8𝜋𝑄
2

(𝑑 − 2) (𝑑 − 3)
)

⋅

((

(1 + 2√1 − 12𝛽2𝛼2𝐿4
𝑝𝑙
) 𝐿𝑝𝑙𝛼

32𝛽2𝛼2𝐿4
𝑝𝑙
− 2

)

𝑑−3

)

−1

.

(30)

Therefore, there are some black hole remnants without
radiation based on (30). A radiated particle state correspond-
ing to an arbitrary finite number of virtual pairs inside the
black hole event horizon is as follows [53]:

𝜓⟩ = 𝑁∑𝑒
−𝜋𝑛𝜀/ℏ𝑘 

𝑛
(𝐿)

out⟩ ⊗

𝑛
(𝑅)

out⟩ , (31)

where 𝑁2 = 𝑒
𝛾𝜀
/(𝑒
𝛾𝜀
− 1) is a normalization constant and 𝑘

is the surface gravity. This quantum state is transformed with
respect to an observer outside the horizon. In order to obtain
the average particle number in the energy state 𝜀with respect
to an observer, one can trace out the inside degrees of freedom
to yield the reduced density matrix of the form

𝜌reduced = (1 − exp (−2𝜋𝜀
ℏ𝑘

))

∞

∑

𝑛=0

𝑒
−𝛾𝑛𝜀 

𝑛
(𝑅)

out⟩

⊗ ⟨𝑛
(𝑅)

out

.

(32)

In this regard, the number distribution with respect to 𝜀 is
given by

⟨𝑛𝜀⟩ = trace (𝑛𝜌reduced) =
1

𝑒𝛾𝜀 − 1
, (33)

where 𝛾 = 1/𝑇𝐻. Whenever a particle is radiated from the
microblack hole event horizon, its wave function satisfies a
wave equation with an effective potential that depends on
outer event horizon. As the potential represents a barrier
to the outgoing radiation, one part of the radiation is
backscattered.

In this way, it can be shown that the distribution ⟨𝑛𝜀⟩ for
the Hawking radiation will be modulated by grey body factor
[54] which for a charged nonrotating TeV-scale black hole is
given as

Λ = 4𝜀
2
𝑟
2

+
, (34)

which Λ is the standard approximated grey body factor. In
this way, one can take energy and charge conservation into
account [54] and get the straightforward result by substituting
(14) into (34). So we obtain

Λ 𝐸𝐶 = 4[𝐸 (1 − 𝛼𝑙𝑝𝐸 + 𝛼
2
𝑙
2

𝑝
𝐸
2
)

⋅ (1 +
𝛽
2
𝑙
2

𝑝

𝐸2
(1 − 𝛼𝑙𝑝𝐸 + 𝛼

2
𝑙
2

𝑝
𝐸
2
))]

2

𝑟
2

+
(𝑀 − 𝜀, 𝑄

− 𝑞) .

(35)

On the other hand, if we consider the full consequences
of energy and charge conservation, for total flux, including
backscattering [55], the luminosity modulated according to
the grey body factor has to be written as

𝐿
𝑑
(𝑀) =

1

2𝜋
∫
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GUP
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2
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exp((16𝜋𝛼2𝑙2
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𝜀/ (𝑑 − 3) (2𝑟+ + 𝛼𝑙𝑝)) [1 −
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.

(36)
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Figure 1: Hawking temperature for different amount of charges in
presence of GUP.

It is important to remark that the total luminosities for
microblack hole would be ten times bigger if we neglect
backscattering effect. We are taking into account in the
integration limits that the maximum energy of a radiated
particle could be 𝑀 − 𝑀

GUP
min . Equation (36) gives larger

luminosities for smaller masses. The results show that, in
large extra dimension scenario, Hawking temperature of
charged black hole increases and leads to faster decay and less
classical behaviors for black holes (Figure 2). On the other
hand, it has been shown [56, 57] that the allowed particles
forming the black hole at the LHC are quarks, antiquarks,
and gluons which formed nine possible electric charge states:
±4/3, ±1, ±2/3, ±1/3, 0. In this case, as far as the electric
charge of the black hole increases, the minimum mass and
its order of magnitude increase and the temperature peak is
displaced to the lower temperature (see Figure 1). As (36)
is related to the black hole temperature, based on the above
arguments, the luminosity of charged nonrotating TeV-scale
black hole has different amount with respect to the charge of
black hole and also extra dimensions.

5. Conclusion and Discussion

In this paper, we have investigated Hawking radiation of
the charged massive particles as a semiclassical tunneling
process from the charged nonrotating microblack hole. In
this respect, we considered possible effect of natural cutoffs
as a minimal length, a maximal momentum, and a minimal
momentum on the tunneling rate.We have shown that, in the
presence of generalized uncertainty principle, the tunneling
rate of charged massive particle is deviated from thermal
emission. In order to study the evolution of the TeV-scale
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Figure 2: Hawking temperature with respect to the mass in terms
of GUP.

microblack hole as it evaporates respecting energy and charge
conservation, we have also modified the grey body factor,
which allows considering the effect of the backscattered
emitted radiation. We have calculated Hawking temperature
based on the GUP which admitted a minimal length, a max-
imal momentum, and a minimal momentum. The adopted
GUP predict a minimal mass remnant with respect to the
charge of black hole. So we have been able to derive an
expression for the luminosity that takes into account natural
cutoffs in presence of large extra dimension based on ADD
scenario for different amount of charge of black hole (Figures
2 and 1). The investigation implies that, considering natural
cutoffs in the presence of LED, information conservation of
charged nonrotating microblack hole is still possible.
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