Research Article

Some Results on Warped Product Submanifolds of a Sasakian Manifold

Siraj Uddin, V. A. Khan, and Huzoor H. Khan

1 Institute of Mathematical Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
2 Department of Mathematics, Aligarh Muslim University, Aligarh 202 002, India

Correspondence should be addressed to Siraj Uddin, siraj.ch@gmail.com

Received 5 October 2009; Revised 18 December 2009; Accepted 13 February 2010

Academic Editor: Frédéric Robert

Copyright © 2010 Siraj Uddin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We study warped product Pseudo-slant submanifolds of Sasakian manifolds. We prove a theorem for the existence of warped product submanifolds of a Sasakian manifold in terms of the canonical structure F.

1. Introduction

The notion of slant submanifold of almost contact metric manifold was introduced by Lotta [1]. Latter, Cabrerizo et al. investigated slant and semislant submanifolds of a Sasakian manifold and obtained many interesting results [2, 3].

The notion of warped product manifolds was introduced by Bishop and O’Neill in [4]. Latter on, many research articles appeared exploring the existence or nonexistence of warped product submanifolds in different spaces (cf. [5–7]). The study of warped product semislant submanifolds of Kaehler manifolds was introduced by Sahin [8]. Recently, Hasegawa and Mihai proved that warped product of the type $N_1 \times_\lambda N_T$ in Sasakian manifolds is trivial where N_T and N_L are ϕ–invariant and anti-invariant submanifolds of a Sasakian manifold, respectively [9].

In this paper we study warped product submanifolds of a Sasakian manifold. We will see in this paper that for a warped product of the type $M = N_1 \times_\lambda N_2$, if N_1 is any Riemannian submanifold tangent to the structure vector field ξ of a Sasakian manifold \tilde{M} then N_2 is an anti-invariant submanifold and if ξ is tangent to N_2 then there is no warped product. Also, we will show that the warped product of the type $M = N_1 \times_\lambda N_0$ of a Sasakian manifold \tilde{M} is trivial and that the warped product of the type $N_T \times_\lambda N_L$ exists and obtains a result in terms of canonical structure.
2. Preliminaries

Let \tilde{M} be a $(2m+1)$-dimensional manifold with almost contact structure (ϕ, ξ, η) defined by a $(1,1)$ tensor field ϕ, a vector field ξ, and the dual 1–form η of ξ, satisfying the following properties [10]:

$$\phi^2 = -I + \eta \otimes \xi, \quad \phi \xi = 0, \quad \eta \circ \phi = 0, \quad \eta(\xi) = 1.$$ \hspace{1cm} (2.1)

There always exists a Riemannian metric g on an almost contact manifold \tilde{M} satisfying the following compatibility condition:

$$g(\phi X, \phi Y) = g(X,Y) - \eta(X)\eta(Y).$$ \hspace{1cm} (2.2)

An almost contact metric manifold \tilde{M} is called Sasakian if

$$\left(\bar{\nabla}_X \phi \right) Y = g(X,Y)\xi - \eta(Y)X$$ \hspace{1cm} (2.3)

for all X,Y in $T\tilde{M}$, where $\bar{\nabla}$ is the Levi-Civita connection of g on \tilde{M}. From (2.3), it follows that

$$\bar{\nabla}_X \xi = -\phi X.$$ \hspace{1cm} (2.4)

Let M be submanifold of an almost contact metric manifold \tilde{M} with induced metric g and if ∇ and ∇_\perp are the induced connections on the tangent bundle TM and the normal bundle $T^\perp M$ of M, respectively, then Gauss and Weingarten formulae are given by

$$\bar{\nabla}_X Y = \nabla_X Y + h(X,Y),$$ \hspace{1cm} (2.5)

$$\bar{\nabla}_X N = -A_N X + \nabla^\perp_X N,$$ \hspace{1cm} (2.6)

for each $X, Y \in TM$ and $N \in T^\perp M$, where h and A_N are the second fundamental form and the shape operator (corresponding to the normal vector field N), respectively, for the immersion of M into \tilde{M}. They are related as

$$g(h(X,Y), N) = g(A_N X, Y),$$ \hspace{1cm} (2.7)

where g denotes the Riemannian metric on \tilde{M} as well as the one induced on M.

For any $X \in TM$, we write

$$\phi X = PX + FX,$$ \hspace{1cm} (2.8)

where PX is the tangential component and FX is the normal component of ϕX.

Similarly, for any $N \in T^1M$, we write

$$\phi N = tN + fN,$$ \hspace{1cm} (2.9)

where tN is the tangential component and fN is the normal component of ϕN. We shall always consider ξ to be tangent to M. The submanifold M is said to be \textit{invariant} if F is identically zero, that is, $\phi X \in TM$ for any $X \in TM$. On the other hand, M is said to be \textit{anti-invariant} if P is identically zero, that is, $\phi X \in T^1M$, for any $X \in TM$.

For each nonzero vector X tangent to M at x, such that X is not proportional to ξ, we denote by $\theta(X)$ the angle between ϕX and PX.

M is said to be slant \cite{3} if the angle $\theta(X)$ is constant for all $X \in TM - \{\xi\}$ and $x \in M$. The angle θ is called slant angle \textit{or Wirtinger angle}. Obviously, if $\theta = 0$, M is invariant and if $\theta = \pi/2$, M is an anti-invariant submanifold. If the slant angle of M is different from 0 and $\pi/2$ then it is called \textit{proper slant}.

A characterization of slant submanifolds is given by the following.

\textbf{Theorem 2.1 (see \cite{3}).} Let M be a submanifold of an almost contact metric manifold \overline{M}, such that $\xi \in TM$. Then M is slant if and only if there exists a constant $\delta \in [0, 1]$ such that

$$P^2 = \delta (-I + \eta \otimes \xi).$$ \hspace{1cm} (2.10)

Furthermore, in such case, if θ is slant angle, then $\delta = \cos^2 \theta$.

Following relations are straightforward consequences of (2.10)

$$g(PX, PY) = \cos^2 \theta [g(X, Y) - \eta(X) \eta(Y)],$$ \hspace{1cm} (2.11)

$$g(FX, FY) = \sin^2 \theta [g(X, Y) - \eta(X) \eta(Y)]$$ \hspace{1cm} (2.12)

for any X, Y tangent to M.

\section{Warped and Doubly Warped Product Manifolds}

Let (N_1, g_1) and (N_2, g_2) be two Riemannian manifolds and λ a positive differentiable function on N_1. The warped product of N_1 and N_2 is the Riemannian manifold $N_1 \times_\lambda N_2 = (N_1 \times N_2, g)$, where

$$g = g_1 + \lambda^2 g_2.$$ \hspace{1cm} (3.1)

A warped product manifold $N_1 \times_\lambda N_2$ is said to be \textit{trivial} if the warping function λ is constant. We recall the following general formula on a warped product \cite{4}:

$$\nabla_X V = \nabla_V X + (X \ln \lambda) V,$$ \hspace{1cm} (3.2)

where X is tangent to N_1 and V is tangent to N_2.
Let $M = N_1 \times N_2$ be a warped product manifold then N_1 is totally geodesic and N_2 is totally umbilical submanifold of M, respectively.

Doubly warped product manifolds were introduced as a generalization of warped product manifolds by Unal [11]. A doubly warped product manifold of N_1 and N_2, denoted as $f_2 N_1 \times f_1 N_2$ is the manifold $N_1 \times N_2$ endowed with a metric g defined as

$$g = f_2^2 g_1 + f_1^2 g_2$$

(3.3)

where f_1 and f_2 are positive differentiable functions on N_1 and N_2, respectively.

In this case formula (3.2) is generalized as

$$\nabla_X Z = (X \ln f_1) Z + (Z \ln f_2) X$$

(3.4)

for each X in TN_1 and Z in TN_2 [7].

If neither f_1 nor f_2 is constant we have a nontrivial doubly warped product $M = f_2 N_1 \times f_1 N_2$. Obviously in this case both N_1 and N_2 are totally umbilical submanifolds of M.

Now, we consider a doubly warped product of two Riemannian manifolds N_1 and N_2 embedded into a Sasakian manifold \overline{M} such that the structure vector field ξ is tangent to the submanifold $M = f_2 N_1 \times f_1 N_2$. Consider ξ is tangent to N_1, then for any $V \in TN_2$ we have

$$\nabla_V \xi = (\xi \ln f_1) V + (V \ln f_2) \xi + h(V, \xi) = -PV - FV.$$

(3.5)

Thus from (2.4), (2.5), (2.8), and (3.5), we get

$$\overline{\nabla}_V \xi = (\xi \ln f_1) V + (V \ln f_2) \xi + h(V, \xi) = -PV - FV.$$

(3.6)

On comparing tangential and normal parts and using the fact that ξ, V, and PV are mutually orthogonal vector fields, (3.6) implies that

$$V \ln f_2 = 0, \quad \xi \ln f_1 = 0, \quad h(V, \xi) = -FV, \quad PV = 0.$$

(3.7)

This shows that f_2 is constant and N_2 is an anti-invariant submanifold of \overline{M}, if the structure vector field ξ is tangent to N_1.

Similarly, if ξ is tangent to N_2 and for any $U \in TN_1$ we have

$$\overline{\nabla}_U \xi = (\xi \ln f_2) U + (U \ln f_1) \xi + h(U, \xi) = -PU - FU,$$

(3.8)

which gives

$$U \ln f_1 = 0, \quad \xi \ln f_2 = 0, \quad PU = 0, \quad h(U, \xi) = -FU.$$

(3.9)

That is, f_1 is constant and N_1 is an anti-invariant submanifold of \overline{M}.
Note 1. From the above conclusion we see that for warped product submanifolds $M = N_1 \times N_2$ of a Sasakian manifold \overline{M}, if the structure vector field ξ is tangent to the first factor N_1 then second factor N_2 is an anti-invariant submanifold. On the other hand the warped product $M = N_1 \times N_2$ is trivial if the structure vector field ξ is tangent to N_2.

To study the warped product submanifolds $N_1 \times N_2$ with structure vector field ξ tangent to N_1, we have obtained the following lemma.

Lemma 3.1 (see [12]). Let $M = N_1 \times N_2$ be a proper warped product submanifold of a Sasakian manifold \overline{M}, with $\xi \in TN_1$, where N_1 and N_2 are any Riemannian submanifolds of \overline{M}. Then

(i) $\xi \ln \lambda = 0$,

(ii) $A_{FZ}X = -th(X, Z)$,

(iii) $g(h(X, Z), FY) = g(h(X, Y), FZ)$,

(iv) $g(h(X, Z), FW) = g(h(X, W), FZ)$

for any $X, Y \in TN_1$ and $Z, W \in TN_2$.

4. Warped Product Pseudoslant Submanifolds

The study of semislant submanifolds of almost contact metric manifolds was introduced by Cabrero et.al. [2]. A semislant submanifold M of an almost contact metric manifold \overline{M} is a submanifold which admits two orthogonal complementary distributions \mathcal{D} and \mathcal{D}^θ such that \mathcal{D} is invariant under ϕ and \mathcal{D}^θ is slant with slant angle $\theta \neq 0$, that is, $\phi \mathcal{D} = \mathcal{D}$ and ϕZ makes a constant angle θ with TM for each $Z \in \mathcal{D}^\theta$. In particular, if $\theta = \pi/2$, then a semislant submanifold reduces to a contact CR-submanifold. For a semislant submanifold M of an almost contact metric manifold, we have

$$TM = \mathcal{D} \oplus \mathcal{D}^\theta \oplus \{\xi\}. \quad (4.1)$$

Similarly we say that M is an pseudo-slant submanifold of \overline{M} if \mathcal{D} is an anti-invariant distribution of M, that is, $\phi \mathcal{D} \subseteq T^\perp M$ and \mathcal{D}^θ is slant with slant angle $\theta \neq 0$. The normal bundle $T^\perp M$ of an pseudo-slant submanifold is decomposed as

$$T^\perp M = FT M \oplus \mu, \quad (4.2)$$

where μ is an invariant subbundle of $T^\perp M$.

From the above note, we see that for warped product submanifolds $N_1 \times N_2$ of a Sasakian manifold \overline{M}, one of the factors is an anti-invariant submanifold of \overline{M}. Thus, if the manifolds N_θ and N_\perp are slant and anti-invariant submanifolds of Sasakian manifold \overline{M}, then their possible warped product pseudo-slant submanifolds may be given by one of the following forms:

(a) $N_\perp \times N_\theta$,

(b) $N_\theta \times N_\perp$.
Comparing tangential and normal parts, we get

\[N \theta \times N_\theta \text{ and } N_\theta \times N_\theta \text{ when } \xi \text{ is in } TN_\perp \text{ and in } TN_\theta, \text{ respectively.} \]

For the warped product of the type (a), we have

Theorem 4.1. There do not exist the warped product Pseudo-slant submanifolds \(M = N_\perp \times N_\theta \) where \(N_\perp \) is an anti-invariant and \(N_\theta \) is a proper slant submanifold of a Sasakian manifold \(M \) such that \(\xi \) is tangent to \(N_\perp \).

Proof. For any \(X \in TN_\theta \) and \(Z \in TN_\perp \), we have

\[
\left(\nabla_X \phi \right) Z = \nabla_X \phi Z - \phi \nabla_X Z. \tag{4.3}
\]

Using (2.3), (2.5), (2.6), and the fact that \(\xi \) is tangent to \(N_\perp \), we obtain

\[
-\eta(Z)X = -A_{FZ}X + \nabla_X^\perp FZ - P \nabla_X Z - F \nabla_X Z - th(X, Z) - fh(X, Z). \tag{4.4}
\]

Comparing tangential and normal parts, we get

\[
\eta(Z)X = A_{FZ}X + P \nabla_X Z + th(X, Z) \tag{4.5}
\]

Equation (4.5) takes the form on using (3.2) as

\[
\eta(Z)X = A_{FZ}X + (Z \ln \lambda)PX + th(X, Z). \tag{4.6}
\]

Taking product with \(PX \), the left hand side of the above equation is zero using the fact that \(X \) and \(PX \) are mutually orthogonal vector fields. Then

\[
0 = g(A_{FZ}X, PX) + (Z \ln \lambda)g(PX, PX) + g(th(X, Z), PX). \tag{4.7}
\]

Using (2.7), (2.11) and the fact that \(\xi \) is tangent to \(N_\perp \), we get

\[
(Z \ln \lambda)\cos^2 \theta \|X\|^2 = g(h(X, Z), FPX) - g(h(X, PX), FX). \tag{4.8}
\]

As \(\theta \neq \pi/2 \), then interchanging \(X \) by \(PX \) and taking account of (2.10), we obtain

\[
(Z \ln \lambda)\cos^4 \theta \|X\|^2 = -\cos^2 \theta g(h(PX, Z), FX) + \cos^2 \theta g(h(X, PX), FZ) \tag{4.9}
\]

or

\[
(Z \ln \lambda)\cos^2 \theta \|X\|^2 = g(h(X, PX), FZ) - g(h(PX, Z), FX). \tag{4.10}
\]
Adding equations (4.8) and (4.10), we get

$$2(Z\ln \lambda)\cos^2\theta ||X||^2 = g(h(X, Z), FPX) - g(h(PX, Z), FX).$$

(4.11)

The right hand side of the above equation is zero by Lemma 3.1(iv); then

$$(Z\ln \lambda)\cos^2\theta ||X||^2 = 0.$$ \hspace{1cm} (4.12)

Since N_θ is proper slant and X is nonnull, then

$$Z\ln \lambda = 0.$$ \hspace{1cm} (4.13)

In particular, for $Z = \xi \in T N_\perp$, Lemma 3.1 (i) implies that $\xi \ln \lambda = 0$. This means that λ is constant on N_\perp. Hence the theorem is proved. \[\Box\]

Now, the other case is dealt with in the following theorem.

Theorem 4.2. Let $M = N_T \times \lambda N_\perp$ be a warped product submanifold of a Sasakian manifold \overline{M} such that N_T is an invariant submanifold tangent to ξ and N_\perp is an anti-invariant submanifold of \overline{M}. Then $(\overline{\nabla}_X F)Z$ lies in the invariant normal subbundle for each $X \in T N_T$ and $Z \in T N_\perp$.

Proof. As $M = N_T \times \lambda N_\perp$ is a warped product submanifold with ξ tangent to N_T, then by (2.3),

$$\left(\overline{\nabla}_X \phi\right)Z = 0,$$

(4.14)

for any $X \in T N_T$ and $Z \in T N_\perp$. Using this fact in the formula

$$\left(\overline{\nabla}_U \phi\right)V = \overline{\nabla}_U \phi V - \phi \overline{\nabla}_U V$$

(4.15)

for each $U, V \in T \overline{M}$, thus, we obtain

$$\overline{\nabla}_X \phi Z = \phi \overline{\nabla}_X Z.$$ \hspace{1cm} (4.16)

Then from (2.5) and (2.6), we get

$$-A_{FZ}X + \nabla^\perp_X FZ = \phi(\nabla_X Z + h(X, Z)).$$

(4.17)

Which on using (2.8) and (2.9) yields

$$-A_{FZ}X + \nabla^\perp_X FZ = P \nabla_X Z + F \nabla_X Z + th(X, Z) + fh(X, Z).$$

(4.18)

From the normal components of the above equation, formula (3.2) gives

$$\nabla^\perp_X FZ = (\lambda \ln \lambda)FZ + fh(X, Z).$$

(4.19)
Taking the product in (4.19) with FW_1 for any $W_1 \in TN_L$, we get

$$g\left(\nabla^\perp_X FZ, FW_1\right) = (X \ln \lambda) g(FZ, FW_1) + g(fh(X, Z), FW_1)$$ \hspace{1cm} (4.20)

or

$$g\left(\nabla^\perp_X FZ, FW_1\right) = (X \ln \lambda) g(\phi Z, \phi W_1) + g(\phi h(X, Z), \phi W_1).$$ \hspace{1cm} (4.21)

Then from (2.2), we have

$$g\left(\nabla^\perp_X FZ, FW_1\right) = (X \ln \lambda) g(Z, W_1).$$ \hspace{1cm} (4.22)

On the other hand, we have

$$\left(\nabla_X F\right)Z = \nabla^\perp_X FZ - F \nabla_X Z.$$ \hspace{1cm} (4.23)

Taking the product in (4.23) with FW_1 for any $W_1 \in TN_L$ and using (4.22), (2.2), (3.2), and the fact that ξ is tangential to N_T, we obtain that

$$g\left(\left(\nabla_X F\right)Z, FW_1\right) = 0,$$ \hspace{1cm} (4.24)

for any $X \in TN_T$ and $Z, W_1 \in TN_L$.

Now, if $W_2 \in TN_T$ then using the formula (4.23), we get

$$g\left(\left(\nabla_X F\right)Z, \phi W_2\right) = g\left(\nabla^\perp_X FZ, \phi W_2\right) - g(F \nabla_X Z, \phi W_2).$$ \hspace{1cm} (4.25)

As N_T is an invariant submanifold, then $\phi W_2 \in TN_T$ for any $W_2 \in TN_T$, thus using the fact that the product of tangential component with normal is zero, we obtain that

$$g\left(\left(\nabla_X F\right)Z, \phi W_2\right) = 0,$$ \hspace{1cm} (4.26)

for any $X, W_2 \in TN_T$ and $Z \in TN_L$. Thus from (4.24) and (4.26), it follows that $\left(\nabla_X F\right)Z \in \mu$. Thus the proof is complete.

\textbf{Acknowledgment}

The authors are thankful to the referee for his valuable suggestion and comments which have improved this paper.
References

