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1. INTRODUCTION

Growing demands for plant or system availability, reliability,
and survivability have prompted active research in fault tol-
erant control systems (FTCSs) [1, 2]. FTCSs are designed to
accommodate component faults automatically by ensuring
overall system stability and acceptable performance. A typi-
cal FTCS design incorporating separate control and fault de-
tection elements can achieve fault tolerance objectives, but
without due considerations given to significant interactions
between the elements such as those described in [3, 4]. In
addition, addressing issues concerning uncertainties is cru-
cial as practical problems associated with variations in actual
plant operating range are undesirable.

Fault detectors are typically based upon the use of pro-
cess models [5–7]. Data from the monitored plant is input
to these algorithms and the outputs are compared with the
corresponding plant outputs. If there are discrepancies, then
it is an indication that at least one fault has occurred. The
model-based approach to designing sensor FTCS employs
mathematical manipulation of available signals, that is, an-
alytical redundancy, via suitably designed controllers to ac-
commodate for faults rather than using extra hardware (sen-
sors/actuators).

1.1. Integrating control and fault detection in FTCS

An integrated approach [8–11] where fault detection and
controller elements are designed with consideration to the
overall system stability or interaction is favourable as the re-
liability of operation can be determined in a mathematically
sound setting offering fast control responses in addition to
the availability of the established solution for incorporating
robustness towards uncertainties.

In this paper, a robust controller-based MIMO FTCS
which integrates the fault detection and controller elements
in a single design is presented. A fault indicating residual
is utilised as a function of control. The residual signals act
as weighting factors, which put corresponding emphasis on
nominal controller and fault accommodating controller. The
FTCS structure proposed allows the plant to be controlled
by a nominal controller that ensures the achievement of best
performance objectives, when sensor faults and uncertainties
are not present, while preserving the stability at a lower de-
gree of system performance in the presence of major sensor
faults [11, 12]. The proposed structure can handle systems
with fast responses, multiple sensor faults, and modelling un-
certainties.

Note that purely robust control-based FTCS such as de-
scribed in [13, 14] ensures robustness towards minor faults
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only; faults are modelled as very small perturbations on the
system. As demonstrated by [13, 14], it is not possible for
a purely robust control structure to maintain high perfor-
mance, when faults are not present as they are designed using
worst case criterion.

2. PROBLEM STATEMENT

Assuming that the MIMO plants and controllers are de-
scribed mathematically in state-space form as follows:

ẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t) +Du(t),
(1)

where x ∈ Rn is state vector, u ∈ Rl is the input vector, while
y ∈ Rm is the measured output vector.

A,B,C, and D are known matrices with appropriate di-
mensions related to the system dynamics. In addition, σ(M)
denotes the largest singular value of M. H∞ denotes the Ba-
nach space of bounded analytic functions with the ∞ norm
defined as ‖F‖∞ = supωσ(F( jω)) for any F ∈ H∞.

Definition 1. All MIMO transfer matrix representations have
appropriate dimensions and are proper real-rational matri-
ces, stabilisable, and detectable. A state space rational proper
transfer function is denoted by

G(s) =
[
A B
C D

]
= C(sI − A)−1B +D. (2)

Furthermore, let P be a block matrix,

P =
[
P11 P12

P21 P22

]
. (3)

Therefore, the linear fractional transformation of P over F is
defined as

Fl(P,F) = P11 + P12F(I − P22F)−1P21, (4)

where F is assumed to have appropriate dimensions and
(I − P22F)−1 is well defined.

2.1. Sensor faults defined

Sensor fault symptoms can be observed as measurements
that are unavailable, incorrect, or unusually noisy. These
faults may occur individually or concurrently or simulta-
neously, resulting in total system failure or degradation in
performance. Significant information about the influence of
faults on a process cannot be known without the inclusion
of its model in the design. Additive faults provide a suitable
framework for sensor faults and are modelled as additional
input signals to a system [5],

ẋ(t) = Ax(t) + Bu(t),

y′(t) = Cx(t) +Du(t) + fs(t),
(5)

where fs(t) ∈ Rm denote sensor faults. Hence

y(s) = Gp(s)u(s). (6)

The variable y(s) denotes all available sensor outputs. When
output sensor faults occur in the plant as shown in (5), the
measured outputs become

y′(s) = y(s) + fs(s). (7)

Due to the existence of fault represented by fs(s), a conven-
tional controller cannot usually satisfy required performance
and the closed-loop control system may even become un-
stable. A sensor fault-compensating controller can be intro-
duced to augment a nominal controller designed for best per-
formance. However, since the structure of the system as seen
in Figure 1 is virtually an internal model controller [15], con-
ditions for physical realizability need to be observed. To en-
sure that the fault-compensating controller, Q is well defined
and proper, the transfer matrix representation from fs(s) to
controller output u(s) must exist and is also proper. There-
fore,

fs(s) =Ws(s) f ′s (s). (8)

By appropriate use of input weight,Ws(s), the input f ′s (s) can
be normalised and transformed into the physical input, fs(s).
Consideration of such sensor fault models has been shown to
be suitable for use in formulating the FTCS objectives for the
rejection of sensor faults as an optimisation problem. Uncer-
tainties affecting the sensors can also be classified as a sub-
set of fs(s). Figure 1 shows the block diagram illustrating the
interconnections assumed for the formulation H∞ problem
associated with the proposed FTCS design.

2.2. Fault indicating residuals

The presence of sensor faults and uncertainty vectors defined
in Section 2.1 can be reflected by a fault indicating residual,
since a filtered estimation can be obtained via coprime fac-
torisation of the plant model, Gp(s) [11, 12]. Let

Gp(s) = M̃−1(s)Ñ(s). (9)

Hence, from (8) and (9), the fault indicating residual denoted
by fr(s) can be defined as

fr(s) = Ñ(s)u(s)− M̃(s)y′(s)

= Ñ(s)u(s)− M̃(s)
[
y(s) + fs(s)

]
= −M̃(s)Ws(s) f ′(s).

(10)

2.3. Integrating the controller element

Now, since fr(s) reflects the presence of faults and uncer-
tainty, it can be utilised as an input to the fault compensating
controller. The perturbations caused can then be minimised
by control actions due to the nominal controller and fault
compensating controller. The control signal vector can be ex-
pressed as follows:

u(s) = uk(s) + uq(s), (11)

where

uk(s) = K(s)e(s) (12)
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and uk(s) denotes nominal controller (K(s)) output, and
uq(s) denotes sensor fault compensator (Q(s)) output. Error
from feedback is denoted by e(s) whereby r(s) denotes input
demand. Thus, from (10), fr(s) is utilised in the following
manner:

uq(s) = Q(s) fr(s) = −Q(s)M̃(s)Ws(s) f ′s (s). (13)

From (6), (7), and (8), e(s) can be expressed as

e(s) = r(s)− y′(s)

= r(s)− y(s)− fs(s)

= r(s)−Gp(s)u(s)−Ws(s) f ′s (s).

(14)

By substituting (12), (13), and (14) into (11), the following
is derived:

u(s) = (I + K(s)Gp(s)
)−1

×{K(s)r(s)− (K(s) + [Q(s)M̃(s)]
)
Ws(s) f ′s(s)

}
.

(15)

Thus,

y′(s) = Gp(s)(I + K(s)Gp(s))−1

× {K(s)r(s)− (K(s) + [Q(s)M̃(s)]
)
Ws(s) f ′s(s)

}
.

(16)

The plant output expression in (16) shows that in the absence
of sensor faults and uncertainties, the output closed-loop sys-
tem is only reliant on the nominal controller K(s), allowing
for high performance during healthy operation. Note that the
fault detection scheme generating the above-mentioned fault
indicating residual does not need to be made robust, since the
fault indicating residual is mainly used as an activating signal
forQ(s). It is thus not essential to identify nor to estimate the
source of the faults, hence even if the presence of fr(s) is due
to uncertainties and not faults in the sensors, Q(s) will still
provide the necessary control signals to compensate for such
perturbations thereby introducing robustness to the system.

2.4. Sensor fault compensator realisation

The sensor fault compensator Q(s) is integrated into the
framework by utilising fr(s) as a function of control. The
design Q(s) is achieved with the H∞ technique. A perfor-
mance weights Wftc(s) can be defined to establish post-
fault performance requirements, which emphasise on stabil-
ity rather than high performance. The corresponding solu-
tion for achieving Q(s) is by minimising the following opti-
misation criterion:

γ = min
Q(s)

‖Fl[Pf (s),Q(s)]‖∞. (17)

Therefore, the standard H∞ problem is specified in (17) for
which the corresponding transfer functions from f ′s (s) to
z(s) must satisfy. If the controller Q(s) in (17) is found, then
the closed-loop system is said to have robust performance
towards uncertainty and sensor faults; it is well known that a
system satisfies robust performance if and only if it is robustly

r(s)
K(s)

uk(s)

++
uq(s)

Q(s)

Ñ ′(s)
+−fr(s)

M̃′(s)

u(s)
Gp(s)

y(s)

+

+ fs(s)

Ws(s)

f ′s (s) z(s)

y′(s)

Wf tc(s)

Figure 1: Block diagram representation of H∞ problem formula-
tion for the proposed FTCS design.

f ′s (s)

uq(s)

Q(s)

P f (s)

z(s)

fr(s)

Figure 2: The LFT representation of the proposed FTCS.

stable with respect to norm-bounded matrix perturbation
[16]. The equivalent linear fractional transformation (LFT)
block diagram for the H∞ problem stated above is shown in
Figure 2.

Thus,

[
z(s)
fr(s)

]
=
[
P11(s) P12(s)
P21(s) P22(s)

]
︸ ︷︷ ︸

Ps(s)

[
f ′s (s)
uq(s)

]
. (18)

From (10), P21 and P12 can be derived as

P21(s) = −M̃(s)Ws(s),

P12(s) = 0.
(19)

Now, note that

uk(s) = K(s)
(
r(s)− y′(s)

)
= K(s)

(
r(s)−Gp(s)u(s)−Ws(s) f ′s (s)

)
= K(s)r(s)−K(s)Gp(s)

[
uk(s)+uq(s)

]−K(s)Ws(s) f ′s (s),
(20)

and thus,

uk(s) = (I + K(s)Gp(s)
)−1

K(s)r(s)

− (I + K(s)Gp(s)
)−1

K(s)Ws(s) f ′s (s)

− (I + K(s)Gp(s)
)−1

K(s)Gp(s)uk(s).

(21)
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Also

z(s) =Wftc(s)y′(s)

=Wftc(s)
[
Gp(s)u(s) +Ws(s) f ′s (s)

]
=Wftc(s)Gp(s)uk(s)

+Wftc(s)Gp(s)uq(s)

+Wftc(s)Ws(s) f ′s (s).

(22)

Substituting (21) into (22),

z(s) =Wftc(s)Gp(s)
(
I+K(s)Gp(s)

)−1
K(s)r(s)

−Wftc(s)Gp(s)(I+K(s)Gp(s))−1K(s)Gp(s)uq(s)

+Wftc(s)Gp(s)uq(s)−Wftc(s)Gp(s)(I + K(s)Gp(s))−1

× K(s)Ws(s) f ′s (s) +Wftc(s)Ws(s) f ′s (s).
(23)

Ignoring the reference input r(s), we have

P11(s) = −Wftc(s)Gp(s)
(
I + K(s)Gp(s)

)−1

× K(s)Ws(s) +Wftc(s)Ws(s)

=Wftc(s)
{
I −Gp(s)

(
I + K(s)Gp(s)

)−1
K(s)

}
Ws(s)

=Wftc(s)
(
1 +Gp(s)K(s)

)−1
Ws(s),

P12(s) = −Wftc(s)Gp(s)
(
I + K(s)Gp(s)

)−1

× K(s)Gp(s) +Wftc(s)Gp(s)

=Wftc(s)
{
I −Gp(s)

(
I + K(s)Gp(s)

)−1
K(s)

}
Gp(s)

=Wftc(s)
(
1 +Gp(s)K(s)

)−1
Gp(s).

(24)

Note that the following matrix operation (Zhou, Doyle &
Glover, 1996, page 23) has been used in the derivation of
(24):

A−1
11 +A−1

11 A12(A22 − A21A
−1
11 A12)

−1
A21A

−1
11

= (A11 − A12A
−1
22 A21)

−1
.

(25)

With the conditions laid out, the closed-loop system shown
above is guaranteed to be tolerant to sensor faults and mod-
elling uncertainty, stable for any nonlinear, time varying, and
stable K(s) and Q(s) due to the minimisation of the transfer
matrix between fault-generating signal f ′s (s) to the perfor-
mance evaluation signal z(s).

3. A NUMERICAL SIMULATION EXAMPLE

An experimental study of the FTCS implementation on a
double inverted pendulum system for tolerance towards sen-
sor faults is shown next to illustrate the feasibility of the pro-
posed design method. The implementation is tested for fault
tolerance towards sensors in nominal and under plant uncer-
tainty conditions.

3.1. The double inverted pendulum system

The double inverted pendulum system is an example of a
chaotic system. The system is a fast, multivariable, nonlin-

Servo motor

Track

Upper arm

Lower arm

Cart

θ1

θ1

θ2

xc

u

Figure 3: Schematic diagram of the pendulum system.

ear, and unstable process. The pendulum system is a stan-
dard classical control test rig for the verification of different
control methods, and is among the most difficult systems to
control in the field of control engineering. Similar to the sin-
gle inverted pendulum problem, the control task for the dou-
ble inverted pendulum is to stabilise the two pendulums. The
position of the carriage on the track is controlled quickly and
accurately, so that the pendulums are always erected in their
inverted position during such movements.

The double inverted pendulum system is made up of two
aluminium arms connected to each other with the lower arm
attached to a cart placed on a guiding rail, as illustrated in
Figure 3. Data used in this case study has been obtained from
[9]. The aluminium arms are constrained to rotate within a
single plane and the axis of rotation is perpendicular to the
direction of the force acting on the cart motion f . The cart
can move along a linear low-friction track and is moved by a
belt driven by a servo motor system. Sensors providing mea-
surements of cart position xc, the pendulums angles θ1 and
θ2, controller output, u, and motor current i are assumed
available for the purpose of control. The control law has to
regulate the lower-arm angle and upper-arm angle, θ1 and
θ2, respectively, from an initial condition, and the control of
the position of the cart xc from an initial position.

3.2. Nominal high-performance controller

An H∞ loop shaping controller, as high-performance nomi-
nal controller K for the MIMO system, is designed using the
MATLAB command ncfsyn.m. The specification functionWp

is augmented to K in the manner shown in Figure 4. Sensors
for detecting ex (cart positional error), θ1 and θ2, are fault
prone sensors. Motor voltage and current are denoted by u
and i, respectively. The controller output variable is the cor-
responding motor voltage demand u. The controller perfor-
mance was tested on the SIMULINK model of the double
inverted pendulum. Initial conditions are with θ1 = 0.05 rad
and θ2 = −0.04 rad. The cart movement command signal rc
is initiated at 0.5 m and at −0.5 m after 50 seconds, is shown
in Figure 5, while system responses are shown in Figure 6.
It is observed that the output responses are within limits
of specifications, and the cart position set points have been
achieved in a stable and smooth manner.
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ex
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u
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Figure 4: The H∞ loop-shaping controller K with specification
function.
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Figure 5: Command signal requiring the cart to move from 0.5 m
to −0.5 m.

3.3. FTCS design and implementation

The nominal model of the double inverted pendulum model
is described by its left coprime factors to ensure well posed-
ness. The double inverted pendulum model without mod-
elling uncertainty is considered for the representation of
the nominal plant in the fault indicating residual generator
setup. Fault indicating residuals are denoted by fθ1, fθ2 and
fex for faults in the corresponding sensors.

The interconnection of the system is setup and the de-
sign of the controller sensor fault compensating controller,
Q is automated with the command hinfsyn.m provided in
MATLAB’s μ-analysis and synthesis toolbox [17], which itera-
tively solves the optimisation criterion set out in (17). When
γ value of below 1 is obtained, the solution of a satisfactory
Q is used. This condition is only met with relaxations to the
effects of additive faults, as it is obvious that total failure can-
not be handled. Note that the performance weights Wftc(s)
(shown in the appendix) to establish postfault performance
requirements reuse the elements in the original specification
function Wp, which are related to the fault prone sensors,
that is, sensors providing measurements of cart position xc,
the pendulums angles θ1 and θ2. The block diagram showing
the augmentation of Q to nominal controller K is illustrated
in Figure 7.

3.4. Tests and results

The following responses have been recorded from testing the
FTCS by simulating the occurrence of faults in the relevant
sensors. Sensor effectiveness indicating faults are simulated
as deterioration of performance; 0%: no fault, 100%: to-
tal failure. Results are shown for conditions with and with-
out modelling uncertainty. Responses of the inverted dou-
ble pendulum system performances with the proposed FTCS,
H∞, and μ controllers are recorded for comparison purposes.
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Figure 6: System responses with K implementation (position of
cart xc is shown instead of cart position error ex).
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Figure 7: Block diagram of sensor fault compensator Q augmented
to nominal controller K in the FTCS structure.

Nominal response, without modelling uncertainties and
sensor faults

Nominal performances of all controllers for healthy system
are recorded in Figure 8. Apparently the proposed FTCS pro-
duces faster cart positioning response compared to all other
control system responses, initiating slightly higher over-
shoots in θ1 and θ2.

Multiple sensor faults without plant uncertainty

Multiple sensor faults are assumed to occur at 2, 4, and 6
seconds after the simulation has been initiated (ex at 90%
deterioration, θ1 at 20% deterioration, and θ2 at 10% deteri-
oration, resp.). The output responses are shown in Figure 9.
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Figure 8: Nominal double inverted pendulum system responses of
all controllers under healthy conditions. (a) —- FTCS, (b) . . . H∞
controller, and (c) - - - μ controller.

Observe that the proposed FTCS and the μ controller han-
dled the faults and managed to achieve satisfactory control
responses. However, stability could not be maintained by the
H∞ controller.

Multiple sensor faults with plant uncertainty

Tests for control systems to handle system uncertainty and
multiple sensor faults were also performed. Conditions were
made similar to the tests performed for the nominal system
with multiple sensor faults. The supremacy of the proposed
FTCS to accommodate for faults even under the influence of
system uncertainties is seen in Figure 10.

The H∞ controller could not handle this mode of fault
and oscillates beyond control as shown. Meanwhile, both the
proposed FTCS and the μ controller handled the fault satis-
factorily.

Further discussion

Overall, the proposed FTCS has managed to handle all pre-
and postfault conditions satisfactorily, while maintaining the
highest level of stability in all test scenarios. Although it
seems that the μ controller could handle faults and modelling
uncertainty as well as the proposed FTCS, it could not han-
dle certain cases of single faults such as the cases shown in
Figure 11 for the effect of θ2 sensor fault at 10% deteriora-
tion. Responses of μ control system is too oscillatory and un-
stable.

4. CONCLUSION

The proposed FTCS has been observed to have managed all
faults simulated in the nominal performance tests, while the
two other control systems could not consistently maintain
stability in a majority of fault scenario. Robust performance
assessments showing the performance of the control systems
when faced with system uncertainty in addition to sensor
faults were also simulated. Again, it is observed that fault tol-
erance capability of the proposed FTCS has been maintained.
The proposed improvement to the model-based FTCS struc-
ture provides a potential framework for the realisation of an
integrated MIMO FTCS. This design framework is suitable as
it inherently incorporates fault residuals as feedback and al-
lows the application of established robust MIMO control de-
sign concept. The test results show the capability of the pro-
posed FTCS to maintain availability and an acceptable level
of performance for multiple deteriorated sensor conditions.

APPENDIX

Transfer matrix of Q:

uq(s)

fex(s)
= α1

β1
,

uq(s)

fθ1−θ2(s)
= uq(s)

fθ3(s)
= α2

β2
,

uk(s)
fex(s)

= α3

β3
,

(A.1)
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Figure 9: System responses of all controllers under multiple sensor
fault condition, without modelling uncertainty. (a) —- FTCS, (b)
. . . H∞ controller, and (c) - - - μ controller.
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Figure 10: System responses of all controllers under multiple sensor
fault condition with modelling uncertainty. (a) —- FTCS, (b) . . . H∞
controller, and (c) - - - μ controller.
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Figure 11: System responses of all controllers under θ2 sensor fault
at 10% deterioration, without uncertainties. (a) —- FTCS, (b) . . .
H∞ controller, and (c) - - - μ controller.

where α1 = (0.0001s7 + 0.0025s6 + 0.0465s5 + 0.3162s4 +
1.5660s3 + 2.5422s2 + 1.0939s − 0.1242), β1 = 0.0004s7 +
0.0088s6 +0.1299s5 +0.6940s4 +2.8528s3 +3.3483s2 +2.4253s+
0.1423, α2 = 10−3( − 0.0001s7 − 0.0032s6 − 0.0603s5 −
0.3832s4 − 1.8085s3 − 2.176s2 − 0.9779s + 0.0841), β2 =
0.0004s7+0.0088s6+0.1299s5+0.6940s4+2.8528s3+3.3483s2+
2.4253s + 0.1423, α3 = (0.0001s7 + 0.0016s6 + 0.0223s5 +
0.1791s4 + 0.8204s3 + 1.9258s2 + 1.7793s + 0.2839), β3 =
0.0006s7+0.0137s6+0.1474s5+0.8104s4+2.8431s3+4.6326s2+
3.8566s + 1.5476.

Transfer matrix of K :

uk(s)
ex(s)

= α4

β4
,

uk(s)
θ1(s)

= α5

β5
,

uk(s)
θ3(s)

= α6

β6
,

uk(s)
u(s)

= α7

β7
,

uk(s)
i(s)

= α8

β8
,

(A.2)

where α4 = (0.0001s7 + 0.0016s6 + 0.0223s5 + 0.1791s4 +
0.8204s3 + 1.9258s2 + 1.7793s + 0.2839), β4 = 0.0006s7 +
0.0137s6 +0.1474s5 +0.8104s4 +2.8431s3 +4.6326s2 +3.8566s+
1.5476, α5 = (0.003s7 +0.061s6 +0.740s5 +4.942s4 +17.436s3 +
26.050s2+16.23s+4.898), β5 = 0.0006s7+0.0137s6+0.1474s5+
0.8104s4 + 2.8431s3 + 4.6326s2 + 3.8566s + 1.5476, α6 = ( −
0.005s7 − 0.115s6 − 1.333s5 − 8.249s4 − 25.938s3 − 35.97s2 −
21.914s − 6.633), β6 = 0.0006s7 + 0.0137s6 + 0.1474s5 +
0.8104s4 + 2.8431s3 + 4.6326s2 + 3.8566s + 1.5476, α7 =
(−0.00006s7−0.00149s6−0.01616s5−0.08897s4−0.30832s3−
0.49612s2 − 0.40571s− 0.16099), β7 = 0.0006s7 + 0.0137s6 +
0.1474s5 + 0.8104s4 + 2.8431s3 + 4.6326s2 + 3.8566s+ 1.5476,
α8 = ( − 0.00006s7 − 0.00159s6 − 0.01862s5 − 0.06867s4 −
0.10104s3−0.04271s2−0.01119s−0.01105), β8 = 0.0006s7 +
0.0137s6 +0.1474s5 +0.8104s4 +2.8431s3 +4.6326s2 +3.8566s+
1.5476.

Postfault performance weight matrix:

Wp =

⎡
⎢⎣We 0 0

0 Wθ1 0
0 0 Wθ2

⎤
⎥⎦ , (A.3)

where

(i) We = 25/(50s + 1) denotes the performance weight
related to ex;

(ii) Wθ1 = 50/(s+ 10) denotes the performance weight re-
lated to θ1;

(iii) Wθ2 = 45/(s+ 10) denotes the performance weight re-
lated to θ2.

The performance function of the signals provided is
weighted to characterise the following limits:

(i) limiting cart position tracking error ex at 0 m at high
frequency and relaxed for low frequency at a maxi-
mum error of 0.04 m;
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(ii) limiting the vertical to lower arm angle θ1 at 0 radians
at high frequency and relaxed for low frequency at a
maximum angle of 0.20 radians;

(iii) limiting the vertical to upper arm angle θ2 at 0 radians
at high frequency and relaxed for low frequency at a
maximum angle of 0.22 radians.

System interconnection and synthesis of Q(s)

The appropriate system interconnection structure of P(s)
which is the outer loop of the FTCS inclusive of the nomi-
nal controller, K(s),and fault indicating generation elements
needs to be formed using MATLAB μ-toolbox instruction
sysic.m [17]. Hence, Figure12 is equivalent to Figure13.

Following that, the sensor fault compensating controller,
Q(s), which is an H∞ controller closing the inner loop of
the FTCS (i.e., closing the loop for the system interconnec-
tion obtained from P(s) shown above), can be solved with
the MATLAB instruction, hinfsyn.m [17]. Since

[k] = hinfsyn(p, nmeas, ncon, gmin, gmax,

tol, ricmethd, epr, epp),
(A.4)

hence, in this case,

(i) k denotes the calculated H∞ controller, that is, Q(s);
(i) p denotes system interconnection P(s) as shown above;

(iii) nmeas denotes number of fault indicating signals;
(iv) ncont denotes the number of control inputs;
(v) gmin, gmax, tol, and so on are as denoted in [17].

Finally, the closed-loop interconnection with Q(s) is
shown as in Figure 14.
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