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ABSTRACT. In [7), Sakaguchi introduce the class of functions starlike with respect
to symmetric points. We extend this class. For 0 g B < 1, let S;(B) be the

class of normalised analytic functions f defined in the open unit disc D such
that Re zf'(z)/(f(z)-f(-z)) > B, for some =z € D. In this paper, we introduce 2

other similar classes S:(B), S;c(B) as well as give sharp results for the real
part of some function for f € S;(B), S:(B) and S;C(B). The behaviour of certain

integral operators are also considered.
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1. INTRODUCTION.
Let S be the class of analytic functions f, univalent in the unit disc
D =1{z: |z| <1}, with
©

f(z) =z + L anZn. (1.1)
n=2

For 0 g B < 1, denote by S*(B), the class of starlike functions of order 8.
Then f € S*(B) if, and only if, for z € D,

izf'(2)
Re { flz) ] > B.

In [7], Sakaguchi introduced the class S; of analytic functions f, normalised
by (1.1) which are starlike with respect to symmetrical points. We begin by defining

the class S:, which is contained in K, the class of close-to-convex functions.

DEFINITION 1.

A function f € S; if, and only if, for z e D,

zf'(z)
e (i) - o

We now extend this definition as follows:
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DEFINITION 2.
A function f with normalisations (1.1) is said to be starlike of order B, with
respect to symmetric points if, and only if, for z ¢ D and O ¢ B < 1,

2zf'(z)
Re [_““ﬂz)-f(-—z)] > B

We denote this class by S;(B) and note that S: = S;(O).

In the same manner, we define the following new classes of close-to-convex
functions, which are generalisations of the classes in El-Ashwah and Thomas [2].
DEFINITION 3.

A function f normalised by (1.1) is said to be starlike of order B, with

respect to conjugate points if, and only if, for z ¢ D and 0 ¢ B < 1,

1
Re —2E£L££LL-— > B.

£(z)+1(z)

We denote this class by S:(B).

DEFINITION L,
A function f normalised by (1.1) is said to be starlike of order B, with

respect to symmetric conjugate points if, and only if, for z € Dand O < B < 1,

Al
Re 2zf'(z) > 8.
£(z)-£(-2)
We denote this class by S;C(B).
REMARK.
The class S; has been studied by several authors, (eg. Wu [9] and Stankiewicz [8]).
For f € S;(B), Owa et al [U4] proved that for % < B < %,

Re [f(Z)—f(_z)\ - z € D.

z ] 7 3-8
2. RESULTS.
THEOREM 1.
Let f e S;(B), then for z = rele e D,

1/(1-8) 1/(1-8)
, 2 R 28/(1—3).

>

Re (f(z)—f(-z)

z 1+r

The result is sharp for fO given by
_ 2,8-1
fo(z) - fo(-z) = 22(1+42°)" .

To prove Theorem 1, we first require the following lemma.
LEMMA 1.
Let g € S*(B) and be odd. Then for z = re € D,

re [BC2)
Z

]l/(l-e) !
\ 2

l+r2
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PROOF OF LEMMA.

Pinchuk [5] showed that if F e S*(B), then for z = rei® ¢ D,
{ . 1/2(1-8)
lkﬁz—)'] -1l gr (2.1)

Since g is odd, we may write [s_z.(z)]2 = F(zz). so that (2.1) gives

-1

£r,

1/(1-8)
)

where on squaring both sides, gives

2/(1-8) 1/(1-8)
[]Hrz—)r] - 2 Re [_[g(zz)] -‘4- 1< rh.

e (’[E’ 1/(1—8)-, § (1_rh) (J.E.:E'_Z_)_L]z/(l-e).; N

Thus

_ z ) -
N
A
(1+x%)
where we have used the inequality [6]
le(z)] » —5—=—=,
(1+r2)1-B

for odd starlike functions of order 8.
The Lemma now follows at once.
PROOF OF THEOREM 1.

Since f € S’S*(B), it follows that we may write

elz) = f(z);f(-z) ,

for g an odd starlike function of order B. An application of Lemma 1 proves

the Theorem.

Results analogous to Theorem 1 can also be found for the classes S’c’(B) and S‘S’C(B).
THEOREM 2.

Let f e S‘c“(B). Then for z = reie e D,
1/2(1-8)
w [ 222e23) ] L BB (261 /2(1-8)
z 1+r

The result is sharp for f£(z) + f£(z) = 22(l+z)2(8-1)

PROOF
Since f ¢ S:(B), it is easy to see that, if

NZ)=ﬁzgﬂD

then F € S*(B). Using the same techniques as in the proof of Lemma 1, it follows
from (2.1) that
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ne [F(z)]l/2(l-8) N 1
Lz Z 1+r
The result now follows immediately.

Similarly, we have the following result, which we state without proof.
THEOREM 3.

Let f S;C(B). Then for =z = reie e D,
1/2(1-8)
re | £lz)=£(=7) p1/20-8)  (56.1)/2(1-8)
e 2T > 2 -
z 1+r

The result is sharp for f(z) - f(-z) = 2z(l+z)2(e'1)

We now consider the results of some integral operators. In [1] Das and Singh,
obtained analogous results of the Libera integral operator. They proved that for

f e S;(O), the function h given by

z
h(z) = % ! £7H£(6)-£(~t) Jat
0

also belongs to S;(O).

The result below generalises that of Das and Singh.
THEOREM L.
Let f ¢ S;(B). Then the function H defined by

A
H(z) = i‘%J £37 L £(t)-1(-t) Jat, (2.2)
0

2z
also belongs to S;(B) for z e Dand a+ 8 >0.

We first require the following Lemma due to Miller and Mocanu [5].
LEMMA 2.

Let M and N be analytic in D with M(0) = N(0) = 0 and let B be any real
number. If N(z) maps D onto a (possibly many sheeted) region which is starlike

with respect to the origin, then for =z € D,

Re Ji(2) > B = Re [ > 6,
and
Re M'(z) M(z)

PROOF OF THEOREM k4.
(2.2) gives,

Z
2l(z)-t(-2) ]-a | > L[e(t)-£(<t)lat
2zH'(z) Jo

H(z)-H(-z) z
f 2 e(t)-p(-t) at
0

M(z)
N(z)

, say.

Note that M(0)

N(0) =0 and for f e sg(s),
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i zZN"(z) | _ z[£'(z)+£'(=2) ]
Re [1 + N'(z)} = a + Re [ f(zz_f(_z)z J

> a + B.

Thus N(z) is starlike if, and only if a > -B.

Furthermore, since

M'(z) _ 2[£'(z)+£"( -z)].
N (z) - Re ( fz)-t(-2) | &

Re

Lemma 2 shows that H € S;(B).

Finally, we give the following analogous results for the classes
THEOREM 5.
Let f e S:(B). Then H defined by
2z

H(z) = 91% | 27 £(¢) + £(%) lat,
2z ]

also belongs to SZ(B) for z € D and a + B8 > 0.

PROOF.
Since f € S:(S), (2.3) gives

z —_— z ©
f 27 e(t) + f(E)lat = 2 { gt [t + L Rea t“]at
lo Jo n=2 °
Z
=2 f 21 (4 4 I Fea tn]dt
0 t = ")
Z a1
= f 27 £() + £(T)]at.
0
Thus
- Z
2[£(z) + £(3)] - af 2 e(e) + £(E) lat
2z H'(z) 0
o . —
H(z) + H(z) f 2 e(¢) + £(E))at
0
_ M(z)
T N(z)?

where M(0) = N(0) = 0 and N € S* for a+ 8 > O.
On using Lemma 2 it follows that H ¢ S:(B)s

THEOREM 6.
Let f e s;c(s). Then H defined by

1 (? ,a-1
=

H(z) = [£(t) - £(-t)]at,

also belongs to S;C(B) for zeDanda+ B8 >0.

455

Ss*(8) and S* (B).
Cc sSC

(2.3)

(2.4)
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PROOF.
For f ¢ S;C(B), (2.4) gives

S -z I
H(-z) = 221 | 271 e(t) - £(-) Jat
(-z)* o
e i BTN
) (-2)% a+l p=2 Bt 2 n *n
- 2 a- _
= —iégll I 271 e(t) - £(-F)]at.
Z
As before, writing
2zH'(z) _ Mz
— N(z)?®
H(z) - H(-Z)

one can show that N € S* and hence using Lemma 2 the result follows.
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