Catalytic dehydration of glycerol to acrolein over M2.5H0.5PW12O40 (M = Cs, Rb and K) phosphotungstic acids: Effect of substituted alkali metals

Hamid, Sharifah Bee Abd and Daud, N.A. and Suppiah, Durga Devi and Yehya, W.A. and Sudarsanam, P. and Bhargava, S.K. (2016) Catalytic dehydration of glycerol to acrolein over M2.5H0.5PW12O40 (M = Cs, Rb and K) phosphotungstic acids: Effect of substituted alkali metals. Polyhedron, 120. pp. 154-161. ISSN 0277-5387, DOI https://doi.org/10.1016/j.poly.2016.08.027.

[img] PDF
Catalytic_dehydration_of_glycerol_to_acrolein_over_M.pdf - Published Version
Restricted to Repository staff only

Download (1MB) | Request a copy
Official URL: http://www.sciencedirect.com/science/article/pii/S...

Abstract

Catalytic conversion of glycerol into value-added chemicals, particularly acrolein via acid-catalyzed dehydration route has received much attention due to the potential uses of acrolein. This work reports the synthesis of various alkaline metal substituted phosphotungstic acid (H3PW12O40, HPW) catalysts, namely M2.5H0.5PW12O40 (M = Cs, Rb and K) using a controlled precipitation method. A systematic structural, morphology, and chemical characterization were conducted using various analytical techniques. XRD studies revealed that the incorporation of alkaline metals in H3PW12O40 leads to decreased crystallite size and enhanced lattice strain. N2 adsorption–desorption studies show that the specific surface area of H3PW12O40 is significantly improved from 5 to 82 (K2.5H0.5PW12O40), 103 (Rb2.5H0.5PW12O40), and 94 m2/g (Cs2.5H0.5PW12O40). XRD, Raman, and FT-IR studies confirm the Keggin structure of all the alkaline metal substituted HPW catalysts. The acidity strengths estimated by NH3-TPD analysis were obtained in the following order: H3PW (2654.91 μmole/g) > K2.5H0.5PW (1060.10 μmole/g) > Rb2.5H0.5PW (762.08 μmole/g) > Cs2.5H0.5.5PW (461.81 μmole/g). Although alkaline metal substituted H3PW12O40 catalysts exhibit higher specific surface area and smaller crystallite size compared to parent H3PW12O40 low glycerol conversions were found for substituted H3PW12O40 catalysts. As well, the parent H3PW12O40 catalyst shows an excellent acrolein selectivity (95%) which is much higher than that of Cs2.5H0.5.5PW (81.9%) and very close to the selectivities obtained over Rb2.5H0.5PW (95.1%) and K2.5H0.5.5PW (95.6%) catalysts. The catalytic performance of H3PW12O40 and M2.5H0.5PW12O40 materials is directly proportional to their acidic strengths, indicating that the catalyst acidity is a key factor for achieving better results in glycerol dehydration. Graphical Abstract Catalytic conversion of glycerol into value-added chemicals, particularly acrolein via acid-catalyzed dehydration route has received much attention due to the potential uses of acrolein. This work reports the synthesis of various alkaline metal substituted phosphotungstic acid (H3PW12O40, HPW) catalysts, namely M2.5H0.5PW12O40 (M = Cs, Rb and K) using a controlled precipitation method. A systematic structural, morphology, and chemical characterization were conducted using various analytical techniques. XRD studies revealed that the incorporation of alkaline metals in H3PW12O40 leads to decreased crystallite size and enhanced lattice strain. N2 adsorption–desorption studies show that the specific surface area of H3PW12O40 is significantly improved from 5 to 82 (K2.5H0.5PW12O40), 103 (Rb2.5H0.5PW12O40), and 94 m2/g (Cs2.5H0.5PW12O40). XRD, Raman, and FT-IR studies confirm the Keggin structure of all the alkaline metal substituted HPW catalysts. The acidity strengths estimated by NH3-TPD analysis were obtained in the following order: H3PW (2654.91 μmole/g) > K2.5H0.5PW (1060.10 μmole/g) > Rb2.5H0.5PW (762.08 μmole/g) > Cs2.5H0.5.5PW (461.81 μmole/g). Although alkaline metal substituted H3PW12O40 catalysts exhibit higher specific surface area and smaller crystallite size compared to parent H3PW12O40 low glycerol conversions were found for substituted H3PW12O40 catalysts. As well, the parent H3PW12O40 catalyst shows an excellent acrolein selectivity (95%) which is much higher than that of Cs2.5H0.5.5PW (81.9%) and very close to the selectivities obtained over Rb2.5H0.5PW (95.1%) and K2.5H0.5.5PW (95.6%) catalysts. The catalytic performance of H3PW12O40 and M2.5H0.5PW12O40 materials is directly proportional to their acidic strengths, indicating that the catalyst acidity is a key factor for achieving better results in glycerol dehydration.

Item Type: Article
Funders: Ministry of Higher Education of Malaysia for research grant (HIR F000032)
Uncontrolled Keywords: Heteropolyacid catalyst; Alkali metal substitution; Glycerol; Dehydration; Acrolein
Subjects: Q Science > QD Chemistry
Divisions: Nanotechnology & Catalysis Research Centre
Depositing User: Ms. Durga Devi Suppiah
Date Deposited: 03 Jul 2017 04:03
Last Modified: 19 Oct 2018 04:13
URI: http://eprints.um.edu.my/id/eprint/17419

Actions (login required)

View Item View Item