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This article presents a hybrid finite-element/ finite-difference approach. The approach
solves the 3-D unsteady energy equation in nonisothermal fluid flow over a staggered
tuhe bank with five tubes in the flow direction. The investigation used Reynolds numbers
of 100 and 300, Pranddl number of 0.7, and pitch-to-diameter ratio of 1.5, An equilateral
triangle (ET) tube pattern is considered for the staggered tube bank. The proposed
hybrid method employs a 2-D Taylor-Galevkin finite-element method, and the energy
equation perpendicular to the tube axis is discretized. On the other hand, the finite-
difference technigue discretizes the devivatives toward the tube axis. Weighting the 3-D,
transient, convection-diffusion equation for a cube vervifies the numevical vesults. The L?
norm of the ervor between numerical and exact solutions is also presented for three
different hybrid meshes, A grid independence study for the energy equation preceded the
Sfinal mesh. The outcome is found to be in acceptable concurvence with those from the
previous studies. After the tempevatuve field is attained, the local Nusselt number is
computed for the tbes in the bundle ar different times. The isotherms arve also obtained
at different times until a steady-state solution is reached. The numervical vesults converge
to the exact vesults through refining the mesh. The implemented hybrid scheme rvequives
less computation time comparved with the conventional 3-D  finite-element method,

requiring less program coding.
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NOMENCLATURE
K matrix X coordinate vector
M mass matrix 0 dimensionless temperature
P dimensionless pressure n dynamic viscosity Pa s
P Pressure, Pa
Pe Peclet number Subscripts and Superscripts
Pr Prandtl number a advection
Re Reynolds number bd balancing diffusion
t dimensionless time d diffusion
i time. s (e) element
T temperature, K np total number of nodes in each
El .
U velocity, m/s perpendicular plane
V velocity vector W wall
V=(u, v, w) dimensionless velocity vector oo free-stream
X dimensionless coordinate vector

1. INTRODUCTION

Heat transfer and fluid flow analysis over tube banks is of great importance in
various design applications such as cooling towers [1], boilers [2], various heat
exchangers [3-5], chemical filtration [6], and nuclear reactors [7]. Heat exchanger
design depends on such parameters as the number of pipes of various lengths and
diameters, geometric dimensions, arrangement of tubes, and fluids that carry heat
[8, 9]. There have been numerous experimental and 2-D numerical studies on the
flow over tube banks, but Le Feuvre [10] and later Launder and Massey [11] were
the ones who developed numerical applications for fluid flow and heat transfer in
tube banks. Alavi and Goshayeshi [12] and Alavi [13] used a finite-clement (FE)
method to assess the laminar forced convection of air past an in-line and staggered
tube bank. Recently, Wu and Che [14] employed a finite-volume (FV) method to
examine turbulent forced-convection heat transfer of vapor/air mixture flow past
a staggered tube bank. They studied a wide range of tube rows (from 2 to 7), tube
diameters, vapor concentration, wall temperature, and gas velocity for an equilateral
triangle of tube banks.

However, 2-D analysis is not always sufficient, and a full 3-D analysis is
required in some circumstances for more accuracy [15], especially of transfer in heat
exchangers [16-18].

There have been a number of 3-D numerical studies on the heat transfer and
fluid flow over tube banks. Fan, Ding, He, and Tao [19] developed a code according
to nonorthogonal curvilinear coordinates, using the finite-volume method to solve
3-D fluid flow and heat transfer equations around a dimpled fin-and-tube structure.
Yusuf, Halvorsen, and Melaaen [20] have studied 3-D turbulent forced-convection
heat transfer in a cylindrical pin-fin channel with a staggered and aligned arrange-
ment, using a finite-clement commercial code, ANSYS CFX 11. Afgan [15] employed
the commercial CFD code STAR-CD to examine the turbulent forced convection of
an incompressible Newtonian fluid in a square in-line tube bank. His results showed
the 2-D simulations could not capture the complete flow physics. More recently,
lacovides, Launder, Laurence, and West [21] and Tacovides, Launder, and West



[22, 23] examined the turbulent forced-convection heat transfer of a Newtonian fluid
around in-line tube banks, using the large-eddy simulation (LES) and unsteady
Reynolds-averaged Navier-Stokes (URANS) models in the finite-volume code,
Code_Saturne.

Recently, the hybrid scheme has helped overcome the difficulties in generating
3-D meshes. Dai and Nassar [24] studied the heat conduction equation in a double-
layered 3-D thin film using a hybrid finite-difference/finite-element method. Their
model predictions were in good agreement with earlier finite-difference numerical
studies. Chaabane, Askri, and Ben Nasrallah [25] employed the lattice Boltzmann
method (LBM) to solve the transient conduction—radiation heat transfer equation
in a cylindrical enclosure. In that work, the radiation was solved through a hybrid
finite-element/control-volume (CVFEM) approach. Wang, Han, and Sun [26] used
a hybrid finite-difference/finite-element scheme to model 1-D and 2-D nonclassical-
conduction heat transfer and its related thermal stresses in various configurations.
Arefmanesh and Alavi [27] solved the unsteady energy equation in 3-D heat transfer
and fluid flow crossing over a circular tube using a hybrid finite-element/finite-
difference method.

The aforementioned simulation approaches have proven applicable to 3-D
problems. However, complex cases requiring both high computational time and
verification of results require a new method. For this article, the hybrid finite-
element/finite-difference method, using an in-house FORTR AN code, has numerically
analyzed unsteady 3-D, nonisothermal heat transfer and fluid flow past a staggered
tube bank. The flow regime’s simulation results contrasted with the exact solution
results in the literature. Attention focused on computation time and program coding
complexity of the proposed method, compared to the 3-D finite-element method.

2. METHODOLOGY

This study solved a 3-D transient energy equation for a nonisothermal fluid

flow passing over a staggered tube bank inserted in a channel. To do this, we
introduced a hybrid finite-element/finite-difference technique. In this scheme, the
finite-difference method discretizes the energy equation along with the tube axis,
whereas the finite-element method handles the perpendicular direction. Appointing
equally spaced grid points (m + 1) along the tube length (H) divides it into identical
parts (m). A normal plane with respect to the tube axis is plotted at each point, with
Az the distance between any two sequential planes, as shown in Figure 1 (perpendi-
cular planes). Eventually, symmetry creates an identical 2-D finite-element mesh
including triangular elements of three nodes on each of the planes. Thereafter,
aligned lines, in parallel with the tube axis, connect the nodes of homological
elements in adjacent planes. This creates a hybrid 3-D mesh, as shown in Figure 1.

The following steps create the hybrid finite-element/finite-difference scheme.
First, a Navier-Stokes equation solver based on the finite-clement method helps
calculate the temperature distribution of the flow field. After the velocity distribution
is obtained, a 2-D Taylor-Galerkin finite-element scheme helps discretize the energy
equation over each perpendicular plane. Finally, finite-difference equations replace
resulting derivatives in the obtained semidiscretized equations, which are in the
direction of the tube axis (z coordinate).



Figure 1. The hybrid 3-D mesh used in the present study.

Dimensionless transient equations of continuity, momentum, and energy for
3-D, incompressible flow of a Newtonian fluid in laminar regime are presented as
follows:
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where the dimensionless variables can be expressed as
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A physical model of 2-D flow around a staggered tube bank with five tubes in
the flow direction is shown in Figure 2a4. The axis of the first tube is positioned in the
upstream at a distance from the input plane equivalent to 3D (L,,). The computa-
tional domain should be long enough on the x axis to fully develop boundary
conditions at the outlet plane. Therefore, this length was selected at 12D, which is
up to the fifth tube axis in the downstream (L,,). All the above lengths were chosen
according to Tezduyar and Shih [28] and Arefmanesh and Alavi [29]. Various
arrangements can be chosen for the tubes in a staggered tube bank. The equilateral
triangle (ET) [30, 31] is a tube arrangement used in this work, and its graphical
definition is given in Figure 2b.

Figure 3 shows the computational domain of the studied problem and its
related boundary conditions. The tubes are between two upper and bottom walls
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(b) Equilateral Triangle (ET) tube arrangement

Figure 2. Physical model of the analyzed configuration.

at distance H. The side walls consist of symmetric planes located between the tubes.
No-slip condition is assumed in this simulation, and the tube surface and upper and
bottom walls are considered of equal temperature (7= T,,). The x derivatives of tem-
perature and velocity at the outlet plane are set as zero, because this plane is far from
downstream and therefore the flow is considered fully developed. For the symmetry
condition, y derivatives of all the dependent variables together with the velocity vec-
tor in the y direction are considered zero along the side walls. At the outlet plane, a
zero value is assigned for the pressure. The initial conditions are [29]

V(X,0)=0 (5)

0(X,0) =0 (6)

The problem is mathematically modeled by Egs. (1)—(3) in a coupled system
along with the initial conditions in Egs. (5) and (6) and the boundary conditions

in Figure 3. Reynolds numbers of 100 and 300, Prandtl number of 0.7, and a
pitch-to-diameter ratio (PDR) of 1.5 are chosen for the investigation.
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Figure 3. Domain and boundary conditions for the analyzed configuration.



3. NUMERICAL MODELING

The flow field needs to be generated before solving the energy equation. A
Navier-Stokes equation solver based on the finite-element technique does this. A lin-
ear shape function helps solve the velocity field within tetrahedral elements with four
nodes, and the pressure is assumed unchanged in each segment within the elements
(piecewise constant pressure) [32]. These approximations are substituted in the
Petrov-Galerkin weighted-residual weak form of the Navier-Stokes equations [33]
and the time derivatives are discretized. The result is nonlinear algebraic equations
in a coupled system for the unknown pressure and velocity components in the nodes
[28]. Solution of this system of equations at each time step gives the distributions of
velocity and pressure in the computational domain.

The proposed hybrid method is applied to discretize the energy equation
[Eq. (3)]. The equation is discretized in the normal planes with respect to the
tube axis (x—y planes), as shown in Figure 1. This is done with a 2-D finite-element
scheme and 3-noded triangular elements. Thereafter, the finite-difference method
discretizes the obtained semidiscretized ODEs in the direction of the tube axis
(z direction).

We used the Taylor-Galerkin technique, a proper choice in transient cases, to
present the dimensionless form of temperature with respect to time in a second-
order-accurate truncated Taylor series in the following equation:
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where n and n+ 1 denote sequential time steps. Using Eq. (3), the tem-perature
derivatives of first and second orders with respect to time are given as follows:
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Substituting the expressions of Eq. (8) into Eq. (7), and replacing d0" /&r by
— 0"/Ar in the ensuing equation, we get a time-discretized form of the energy
equation:
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The Galerkin finite-element method discretizes Eq. (9) is in the x—y planes.
To do so, the following linear interpolation is used to estimate the dimensionless
temperature in a typical 3-noded triangular element, Q°, within the 2-D mesh
(Figure 1):

920 = S Ml 1o

where 8 is the linear approximation of the temperature in the dimensionless form,

N' is the usual linear shape functions, and 8}'6] is the value of the dimensionless

temperature at the nodes, both for i=1-3.



The Galerkin weighted residual formulation of the problem can be achieved by
multiplying Eq. (9) by the shape functions and the integral of the obtained formula
over the elements and setting the formula to zero:
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Using Gauss’s theorem and substituting the linear approximations for 6" and
0" ! from Eq. (10) results in the following system of ordinary differential equations
ODE:s for the typical element:
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where {6}, for i=1-3, is the vector of nodal unknowns. Local node numbers are
used to express the elements of the matrices in the following form:
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Discretization of the system of ODEs [Eq. (12)] along with the z axis is the
next step of solving the energy equation, done with the finite-difference method.
The vector of nodal unknowns in each element is presented according to the global

node number:
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where I, J, and K denote the global node numbers in each element (Figure 1). These
global node numbers can be used to rewrite the difference quotients for the first and
second derivatives with regard to the z axis. Therefore, the dimensionless form of the
temperature in Eq. (12) can be given as
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