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ARTICLE INFO ABSTRACT

Article history: Observers are computational algorithms designed to estimate unmeasured state variables due to the

Received 16 July 2013 lack of appropriate estimating devices or to replace high-priced sensors in a plant. It is always impor-

‘Iieceuveniuznlrewsed fcérorrllgzpnuary 2015 tant to estimate those states prior to developing state feedback laws for control and to prevent process

ceepte j_.muary disruptions, process shutdowns and even process failures. The diversity of state estimation techniques
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resulting from intrinsic differences in chemical process systems makes it difficult to select the proper

technique from a theoretical or practical point of view for design and implementation in specific appli-

gz]‘.;liaéowrds. cations. Hence, in this paper, we review the applications of recent observers to chemical process systems
Observer and classify them into six classes, which differentiate them with respect to their features and assists in
State estimation the design of observers. Furthermore, we provide guidelines in designing and choosing the observers for

Chemical process particular applications, and we discuss the future directions for these observers.
© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Nomenclature

A,B,C E,F, G state space matrices

sign component wise for vector argument of
z=col(z1,....2n)

X1 measured component concentration

X estimated state vector

X,z dynamic of state vector

Z process vector

Ry measurement noise covariance vector

uy, Uz vector partition correspond to auxiliary variables
discrete

LK observer gain

X estimated state vector with linear innovative term
of discontinuous function

Uy, U external transfer vector

[@] observability matrix

Pr_q covariance at time k—1

Fi_q nonlinear state transition function

£ auxiliary variable

D(s) estimated disturbance

A1,Az  unique solution of process vector

Dy(s), D2(s) lumped disturbances in loop including external
disturbances

1. Introduction

The implementation of state feedback laws in a controlled plant
is often based on the assumptions that all states are available for
online measurement; however, in practice, some of them may not
be measurable due to a lack of appropriate estimating devices or
the high price of sensors (Dochain et al., 2009; Jana, 2010; Soroush,
1997; Wang et al., 1997). As a consequence, measuring the miss-
ing states or variables is expensive and time consuming due to the
significant technical standard requirements and the high cost of
installation of these devices (Gonzalez et al., 2001; Hulhoven et al.,
2006). For these reasons, devices called observers have been devel-
oped to reconstruct the state vector in order to estimate the missing
variables and, at the same time, to reduce the usage of high-priced
sensors (Dochain et al., 2009).

Luenberger (Luenberger, 1964, 1966, 1967, 1971) and Kalman
(Welch and Bishop, 1995) introduced the basic concepts of state
observers and Kalman Filter (KF)-based observers in the 1960s.
However, over the years, research in the design of observers has
become popular but challenging due to the requirements of high
accuracy, low cost and good prediction performances. In fact, many
observers today are simply modifications and extended versions
of the classical Luenberger observer and Kalman filter. In recent
years, various types of observers have been developed to accu-
rately estimate state variables in linear and nonlinear chemical
processes (Aguirre and Pereira, 1998; Bastin and Dochain, 1990;
del-Muro-Cuellar et al., 2007; Gonzalez et al., 1998; Huang et al.,
2010; Lombardi et al., 1999; Pedret et al., 2009). They have been
widely used both theoretically and practically through simulations
and real plant testing (Bejarano and Fridman, 2010; Busawon and
Kabore, 2001; Farza et al., 2011; Lee, 2011; Lin et al., 2003; Oya and
Hagino, 2002).

Researchers have also developed observers for systems to tackle
problems such as disturbances, mismatches and faults. For this
purpose, different types of observers were developed with closely
similar formulations designed to overcome the drawbacks of each
other. For example, to estimate disturbances, the disturbance

observer (DOB) was introduced (Chen et al., 2009; Kim et al., 2011),
and later, the modified disturbance observer (MDOB) was devel-
oped to target large disturbances and mismatches (Yang et al.,
2011). After that, the fractional-order disturbance observer (FO-
DOB) and Bode-ideal-cut-off observer (BICO-DOB) (Olivier et al.,
2012) were developed to include methodology for tuning and
optimizing the estimation performance. Another example is the
asymptotic observer, which was first developed based on avail-
able measurements of the temperature of a mixture and a subset of
the concentrations (Dochain et al., 1992) and later extended on the
basis of the energy balance almost similar to the thermodynamic
properties of the mixtures (Dochain et al., 2009; Hoang et al., 2012,
2013).

Due to the variety of methodologies in observer design for chem-
ical process systems, combining and classifying them into several
different groups would be highly useful to serve as guidelines
to select and then design the appropriate observers for a spe-
cific chemical application. Previous surveys have only included the
study of one or two types of observers. For example, the reviews
by Spurgeon (2008) and Hidayat et al. (2011) focused respectively
on single observer types such as the sliding mode observers and
observers for linear distributed parameter systems. Another sur-
vey from Radke and Zhigiang reviewed the design advantages of
a particular type of disturbance observers for practitioners (Radke
and Zhigiang, 2006), whereas Ruhm solely explained the concepts
of open and closed loop observers (Ruhm, 2008). Dochain has
presented the available results of state and parameter estimation
approaches for chemical and biochemical processes, specifically the
extended Luenberger (ELO), Kalman (EKO), asymptotic and inter-
val observers (Dochain, 2003), Kravaris and coworkers provided
an averview of recent developments regarding the design of non-
linear Luenberger observers, with special emphasis on the exact
error linearization techniques, and discussed general issues includ-
ing observer discretization, sampled data observers and the use of
delayed measurements (Kravaris et al., 2012). In addition, Prakash
and coworkers reviewed recently developed Bayesian estimators
(Prakash et al.,2011),and Daum focused only on the extended non-
linear filters on the basis of the classical KF (Daum, 2005). Chen has
alsoreviewed Bayesian filtering from KF to particle filter, emphasiz-
ing the stochastic filtering theory based on Bayesian perspectives
(Chen, 2003). However, all of these reviews are specific in nature
and do not consider the whole spectrum of the different classes of
observers available.

Therefore, this review paper intends to provide a comprehen-
sive survey considering the unique features of different types of
recent observers in chemical process systems (Dochain, 2003;
Kravaris et al.,, 2012) by categorizing them into different classes,
a level of organization not currently available in the literature. Six
classes are proposed, namely, Luenberger-based observers, finite-
dimensional system observers, Bayesian estimators, disturbance
and fault detection observers, artificial intelligence (Al)-based
observers and hybrid observers. In brief, the main contribution
of this review is to provide the list of recent observers that have
been applied in chemical process systems and to classify them
into six classes with emphasis on their positive highlights based
on their estimation performances in specific chemical process sys-
tems. Recent observers refer to the observers developed since the
year 2000, as most observers before that would be referred to as
the classical types (Elicabe et al., 1995; Gonzalez et al., 1998; Lee
and Ricker, 1994; Oliveira et al., 1996; Soroush, 1997; Wang et al.,
1997). All of these observers can be either linear or nonlinear and
have served as specific estimators to several unit operations. How-
ever, this review does not include some methodologies such as the
recursive error method (Lee et al., 2000) and the partial least square
method (Roffel et al., 2003), which have also been considered as
estimators.



This paper is organized as follows. The introduction is in Section
1, followed by the classification of observers and their applications
in chemical process systems in Section 2. Section 3 discusses the
observer design methodology. Section 4 focuses on the current and
future trends of observers, while Section 5 concludes the review.

2. Classifications and applications

The formulations of observer design methodologies in research
publications have normally been written and explained with
merely theoretical emphasis, which makes it difficult for prac-
titioners and researchers, especially newcomers to this area, to
choose (potentially) appropriate observers for their systems. In
addition, selecting the most suitable observer for any specific sys-
tem is an important but difficult task for installed systems due
to the diversity of the many available methods, observer types,
application range and nature of chemical process systems. So far,
this research area has been very active and attracts attention from
many researchers (Aguilar-Garnica et al., 2011; Lopez-Negrete and
Biegler, 2012; Mesbah et al., 2011; Nagy Kiss et al., 2011; Olivier
et al., 2012). Based on our extensive review of the recent observers
applied to chemical process systems, we can clearly differentiate
them into six major classes. These classes are the Luenberger-
based observers, finite-dimensional system observers, Bayesian
estimators, disturbances and fault detection observers, artificial
intelligence-based observers and hybrid observers. The attributes,
advantages, limitations and guidelines for practitioners according
to each class are given in Table 1, while Table 2 sorts these recent
observers into their respective classes. In addition, the selection of
the recent observers according to those classes is depicted in Fig. 1
to guide and help researchers in their selection.

The category of Luenberger-based observers is the first class
that groups together all of the observers designed based on the
Luenberger observer methodology, or, in other words, it involves
the extended versions of the classical Luenberger observer itself
(Alonso et al., 2004; Dochain, 2003; Fissore et al.,, 2007; Tronci
et al., 2005; Vries et al., 2010). The extended Luenberger observer
(ELO), sliding mode observer (SMO), adaptive state observer (ASO),
generic and backstepping observers are examples of observers
falling into this class. This type of observer is suitable for less com-
plex linear systems with relatively simpler computational methods
(Bejarano et al., 2007b).

The second category is the finite-dimensional system observers,
which include, among others, the reduced-order, low-order,
high-gain, asymptotic and exponential observers. These finite-
dimensional system observers are designed for chemical process
systems whose dynamics are described by ordinary differential
equations (ODEs) (Bitzer and Zeitz, 2002) and are quite straightfor-
ward to implement. They suit systems with less kinetic information,
but the accuracy of the convergence rate is uncertain. For exam-
ple, for the case of asymptotic and exponential observers, the
convergence rate can only be shown if the process operating con-
ditions are such that the dilution rate is bounded (Dochain et al.,
1992; Dochain, 2000; Hadj-Sadok and Gouze, 2001; Hoang et al.,
2013). It is worth noting that asymptotic/exponential and inter-
val observers can also be extended to infinite dimensional systems
(i.e., distributed parameter systems) such as for tubular reactors
and plug flow reactors (Dochain, 2000; Aguilar-Garnica et al.,
2011).

Bayesian estimators, in the third category, provide an approach
based on the probability distribution estimation of state variables
by utilizing the available data of the system (Chen et al., 2004).
It assumes that all variables are stochastic in nature, and thus,
the distribution of state variables is achievable based on the mea-
sured variables. Examples of the Bayesian type of estimators are the

extended Kalman filter (EKF), particle filter (PF) and moving hori-
zon estimator (MHE). These are based on probability distribution
and are therefore consistent and versatile estimators, which are
highly appropriate for fast estimation (Abdel-Jabbar et al., 2005;
Fan and Alpay, 2004; Patwardhan and Shah, 2005). However, the
computational complexity involved in using this approach makes
them infeasible for high-dimensional systems.

The fourth class is the disturbance and fault detection observers.
Although they can be of different classes, both are included in one
category because they are mostly applied to estimate irregulari-
ties in the system, either through disturbances or faults (Olivier
et al., 2012). Fault detection observers can also be applied to esti-
mate parameters for fault diagnosis of chemical process systems.
Examples of disturbance and fault detection observers are the
disturbance observer (DOB), the modified disturbance observer
(MDOB), the unknown input observer (UIO) and the nonlinear
unknown input observer (NUIO). These are highly specific types of
observers and focus only on disturbances or fault detection related
variables during the estimation process (Chen et al., 2009; Rocha-
Cézatland Wouwer, 2011; Sotomayor and Odloak, 2005; Yanget al.,
2011). They are mostly suitable for estimating disturbances and
faults, which provide early warning to operators prior to causing
disruption to the process units (Sotomayor and Odloak, 2005; Zarei
and Poshtan, 2010).

The fifth class is the artificial intelligence (Al)-based observers.
Al is the science of making the program perform intelligence-
based tasks, which include methods such as fuzzy logic, artificial
neural networks (ANN), expert systems and genetic algorithms.
These types of observers have been widely utilized as estimators
in recent times. For example, the work by Hussain and cowork-
ers utilized a hybrid neural network (HNN) to predict porosity in
a food drying process (Hussain et al,, 2002), and the research by
Aziz and coworkers applied ANN to estimate the heat released
from a polymerization reactor (Aziz et al., 2000). Other applications
of Al-based observers can also be found in many papers (Barton
and Himmelblau, 1997; Islamoglu, 2003; Khazraee and Jahanmiri,
2010; Kordon et al., 1996; Kureda and Kim, 2002; Liu, 2007; Ng and
Hussain, 2004; Turkdogan-Aydinol and Yetilmezsoy, 2010; Wang
et al., 2006, Wei et al., 2007). However, this review paper covers
only recent types of Al-based observers coupled with conven-
tional (model-based) types, as purely Al observers are not recent
in nature. Examples of these recent types are the fuzzy Kalman fil-
ter (FKF) and the EKF-neural network observers (Porru et al., 2000;
Prakash and Senthil, 2008). These Al-based observers overcome the
limitations of single-based observers and are suitable for systems
with incomplete model structure and information. The formulation
of Al-based observer may be difficult and time consuming com-
pared to the other hybrid observers in some systems (Senthil et al.,
2006). In addition, the Al elements must first be adapted for online
implementation (Himmelblau, 2008; Lashkarbolooki et al., 2012;
Rivera et al., 2010).

The sixth class is the hybrid observers, which are combinations
of more than one observer to obtain improved estimation in certain
systems. An example of this is the extended Luenberger observer
(ELO)combined with the asymptotic observer (AQ)(Hulhovenetal.,
2006). ELO provides good convergence factors, while AO estimates
parameters without any kinetics data. Therefore, the combination
results in an improved hybrid observer that contains both features.
Hybrid observers are good at overcoming the limitations of the
single observer, but choosing the appropriate combination may
be tedious and time consuming (Aguilar-Lopez and Maya-Yescas,
2005; Bogaerts and Wouwer, 2004; Goffaux et al., 2009). Normally
this class of observer is suitable for conditions where the single-
based observer is not accurate enough for the process systems, for
instance, to compensate for offsets in estimation resulting from the
use of the single observer (Hulhoven et al., 2006).



Table 1

Observers' overall evaluation according to classes.

No. Class of
observers

Example of observer equation

Attributes

Advantages

Limitations

Guidelines for practicing
engineers

1 Luenberger-

For sliding mode observer:

Extension of classical

Simple computational
methods

Design is always based
on the perfect
knowledge of system
parameters

For less complex linear
systems, this type of
observer is sufficient for
crucial parameter

based %= AR + Bu + Lsignly — C&) Luenberger observer
observers

2 Finite- For exponential observer: Knowledge of process
dimensional % =FE+Gx) — LUy, + Uz system kinetics is not
system necessary
observers

3 Bayesian For extended Kalman filter: Based on probability
estimators Py = Fk_,Pk_”k_‘F{_| +Ry distribution and

mathematical
inference of the system
4 Disturbance

For disturbance estimation: Focus on estimating

and fault D(s) = Di(s)+Da(s)+ -+ + Dals) disturbances and
detection detecting faults within
observers the system
5 Al-based According to Al-elements, example Combination of
observers using fuzzy logic where the observers with Al
IF-THEN rule is: elements
IF eisnegative small AND Aeis zero
THEN Xestimated = Xacrual
6 Hybrid For combination of extended Combination of two or
observers Luenberger and asymptotic more observers

observer:
L _ DEVZ(E) + Ay (£) + Apus(t)

estimation
Suitable for systems with
less kinetics information

Easy implementation and
simple formulation

Convergence factor
depends strongly on
the operating condition

For fast estimation results
based on probability theory,
Bayesian estimators may be

Fast estimation based on
prediction-correction
method and versatile

The complexity of their
computational method
is sometimes infeasible

estimators for high dimensional applied

systems
Good at estimating May ignore other If the objective is to
disturbances and uncertainties during estimate disturbances and

predicting faults before
they can affect the unit
operations of the plant

the estimation process  parameters to predict faults,
then these type of observers

are the most appropriate

Overcome limitations of ~ May be difficult and For highly nonlinear
single observer and time consuming systems with an incomplete
suitable for systems with  For online or unknown model

incomplete model
structure

implementation, the Al
elements must first be
adapted to the system
Choosing appropriate
combination may be
tedious

Overcome the limitations
of a single observer

This is suitable for systems
where a single type of
observer is not accurate
enough

The detailed applications of the various observers under these
six classes are listed in Table 3. The table does not need any further
elucidation because it is comprehensive and self-explanatory in
nature, covering the objectives, the positive highlights, applications
in various unit operations and the relevant references involved for
each of the observer types.

3. Methodology for observer design

Observers were first designed based on linear formulation;
these original observers were known as linear observers and used
to estimate states and unknown variables in a linear process in
the eventual presence of disturbances or noise (Bara et al., 2001;

Bejarano and Fridman, 2010; Bejarano et al., 2007a,b; Bodizs et al.,
2011; Busawon and Kabore, 2001; El Assoudi et al., 2002; Fissore,
2008; Jafarov, 2011; Lee, 2011; Oya and Hagino, 2002; Vries et al.,
2010). Later, because most processes exhibit highly nonlinear
behavior, researchers formulated nonlinear observers (Besancon,
2007; Bitzer and Zeitz, 2002; Boulkroune et al., 2009; Busawon and
Leon-Morales, 2000; de Assis and Filho, 2000; Di Ciccio et al., 2011;
Dong and Yang, 2011; Farza et al., 1997, 2011; Floquet et al., 2004;
Hashimoto et al., 2000; Kalsi et al., 2009; Kazantzis and Kravaris,
2001; Kazantzis et al., 2000; Ko and Wang, 2007; Kravaris et al.,
2007; Maria et al., 2000; Schaum et al., 2008).

Most researchers developed observers based on the mathe-
matical model of the systems and used the first principles model
prior to developing the observer’s equation (Dochain et al., 2009).

Table 2
Recent observers categorized under different classes.

Class

Luenberger-based Finite-dimensional Bayesian estimators Disturbance and fault Artificial Hybrid observers
observers system observers detection observers intelligence-based

observers

Specific observer

1. Extended Luenberger 1. Reduced-order 1. Particle filter (PF) 1. Disturbance observer 1. Fuzzy Kalman filter 1. Extended
observer (ELO) observer 2. Extended Kalman filler  (DOB) 2. Augmented fuzzy Luenberger-asymptotic
2. Sliding mode observer 2. Low-order observer  (EKF) 2. Modified disturbance Kalman filter observer
(SMO) 3. High gain observer 3.Unscented Kalman filter  observer (MDOB) 3. Differential neural 2. Proportional-integral
3. Adaptive state 4, Asymptotic observer (UKF) 3. Fractional- order network observer observer
observer (ASO) (AO) 4. Ensemble Kalman filter  disturbance observer 4. EKF with neural network 3. Proportional-SMO
4. High-gain observer 5. Exponential observer (EnKF) 4, Bode-ideal cut-off model 4. Continuous-discrete
5. Zeitz nonlinear 6. Integral observer 5. Steady state Kalman observer observer
observer 7. Interval observer filter (SSKF) 5. Unknown input observer 5. Continuous-discrete-
6. Discrete-time 6. Adaptive fading Kalman  (UIO) interval observer
nonlinear recursive filtering (AFKF) 6. Nonlinear unknown 6. Continuous-discrete-
observer (DNRO) 7. Moving horizon input observer EKF
7. Geometric observer estimator (MHE) 7. Extended unknown 7. High-gain-

8. Generic observer
9, Specific observer

8. Backstepping observer

input observer continuous-discrete
8. Modified proportional

observer
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Fig. 1. General guideline for selecting recent observers according to their classification.

Therefore, most observer designs are model-based approaches
(Damour et al., 2010a, 2010b; Dochain et al., 2009; Salehi and
Shahrolkhi, 2008) with the exception of the Al-based observers
(Bahar and Ozgen, 2010; Lahiri and Ghanta, 2008; Mohebbi et al.,
2011; Rezende et al., 2008; Wei et al., 2010). The gain of the
observer and its estimation error dynamics are also significant in
designing the model-based observers, as shown in several refer-
ences (Aguilar-Lopez and Martinez-Guerra, 2007; De Battista et al.,
2011; Hulhoven et al., 2008; Porru et al., 2000). However, the suc-
cess of observer designs is evaluated based on their capabilities in
estimating the difficult-to-measure states with satisfactory conver-
gence rates (Bitzer and Zeitz, 2002; Ciccio et al., 2011; Hashimoto
et al., 2000; Kravaris et al., 2007; Lafont et al., 2011; Morel et al.,
2006) and with approximately zero estimation errors (Benaskeur
and Desbiens, 2002; Bogaerts and Wouwer, 2004; Kazantzis et al.,
2000; Liu, 2011).

The first important step before designing the observer is to
consider the detectability or observability condition of the sys-
tem because observers have to be designed for a detectable or
observable system. Observability is the condition in which all ini-
tial states are observable and a system is said to be observable if,
for any initial condition vectors, its internals states can be inferred
by knowledge of its (external) outputs (Evangelisti, 2011; Moreno
and Dochain, 2008; Soroush, 1997). Detectability is a weaker con-
dition than observability, where the non-observable states can
still decay to zero asymptotically (Evangelisti, 2011; Moreno and
Dochain, 2008). Both concepts will influence the feasibility con-
ditions of the observers (Dochain et al., 1992; Hoang et al.,, 2013;
Moreno and Dochain, 2008). The concept of observability is central
in reconstructing unmeasurable state variables. This explains the

need of observers to estimate unknown states prior to developing
control laws and the fact that not all states are available directly
through on-line measurements (Ogata, 1995). Extensive discuss-
ions on observability and detectability can be found in various
references (Astolfi and Praly, 2006; Evangelisti, 2011; Hermann and
Krener, 1977; Moreno and Dochain, 2008; Soroush, 1997; Zuazua,
2007).

Once the system dynamics fulfill the observability or detectabil-
ity conditions, observers can then be designed to estimate the state
variables. In this respect, the choice of a suitable observer accord-
ing to the six classes provided in Section 2 is therefore of great
importance. Prior to that, the desired estimated states (i.e. the
exact values of the observed states) and initial conditions must
be defined clearly (Farza et al., 2011). After that, tests are run to
compare the estimates with the actual values to determine the per-
formance of the proposed observer (Aamo et al., 2005; De Battista
et al.,, 2011; Hajatipour and Farrokhi, 2010; Jana et al., 2006; Nagy
Kiss et al., 2011; Salehi and Shahrokhi, 2008). The test not only is
important for the design of the single observer but also determines
whether a hybrid observer is further needed to estimate the param-
eter (Goffaux et al., 2009; Hulhoven et al., 2006; Sheibat-Othman
et al., 2008). If there are huge discrepancies between the actual
and estimated values, a hybrid observer should be developed to
improve the estimates. Furthermore, if systems are complex and
models are difficult to obtain from the first principles, hybrid Al-
based observers would possibly be a suitable choice (Chairez et al.,
2007; Porru et al., 2000; Prakash and Senthil, 2008).

The design guideline for these observers based on the six classes
is depicted in Fig. 2 with detailed explanation in the following sub-
sections.



Table 3

Application of recent observers in chemical process systems under different classes.

Observer

Objective/estimate(s)

System

Positive highlight(s)

Ref.

Class 1: Luenberger-based observers

ELO

ELO
ELO

SMO
SMO
SMO
SMO
DNRO
ASO
ASO
ASO

ASO
ASO

Backstepping

Zeitz nonlinear
observer

Geometric

Geometric

Crystal mass

Solutes concentration

Process kinetics, influent
concentrations

Substrate concentration,
specific growth rate

Specific growth rate

Substrate concentration
Biomass and substrate
concentration

Reactor parameters

Growth rate, kinetic coefficient
Liquid, vapor flow rate, reboiler
coefficient

Radical concentration

Distribution coefficients
Compositions, partially known
parameters

Concentrate and tailing grade

Nitrogen oxide (NO,) inlet
concentration, outlet reactant
conversion

Product compositions

Compositions, solid mass
fraction, production rate

Class 2: Finite-dimensional system observers

Reduced-order
Reduced-order

Reduced-order
Low-order
High-gain
High-gain
Exponential
Exponential
Exponential
AD

AD

AO

Interval

Interval
Interval

Integral

Class 3: Bayesian estimators
SSKF

SSKF
EKF
EKF
EKF

EKF
EKF

EKF
EKF

UKF
UKF

Down hole pressure
Reactor concentration

Substrate concentration
Steady state profiles
Reaction heat

Reactor concentration and
temperature

Reactor concentration

Top tray compositions
Microorganisms concentration
Concentrations, enthalpy
Reactor concentration

Growth rate

Organic concentration, growth
rates

Reactant concentration
Residual parameters

Heat of reaction

Time-delay

Product compositions
Interface temperature
Component's concentration
Product compositions

Outlet reactor concentration
Liquid compositions

Top tray compositions and
flow rates

Solutes concentration
Solutes concentration
Particle size distribution

Crystallization unit

Fed-batch crystallizer
Fixed bed reactor

Fermentation process
Fed-batch bioreactor
Bioreactor

Bioreactor

CSTR

Bioreactor
Debutanizer

Polymerization process

Distillation column
Batch distillation column

Solid-solid separation unit

Loop reactor

Distillation column

Copolymerization reactor

Gas-lift well
CSTR

Bioreactor

30-tray distillation column
CSTR

CSTR

Tubular reactor”

Batch distillation column
Bioreactor

CSTR

Tubular reactor?
Activated sludge process
Activated sludge process
Plug flow reactor”
Separator (grinding

process)
CSTR

stirred tank heater

Batch distillation column
Freeze-drying process
Batch distillation column
Batch distillation column
CSTR

Reactive distillation
column

Distillation column
Fed-batch crystallizer

Fed-batch crystallizer
Semi-batch reactor

Good estimation without perfect
initial condition

Robust against model deviation

Easy to implement, simple structures

Smooth estimates

Accurate and error free estimation
Proven stability factor
Proven stability factor

Stable estimator

Guaranteed convergence factor
Precise estimates under mismatch
condition

Estimates without information of
initiator

Guaranteed convergence factor
Good convergence factor

Guaranteed convergence, zero
estimation error
Fast, reliable estimates

Overcomes ill-conditioning of the
observability matrix
Accurate estimation

Stable estimates
Good conceniration estimates

Robust estimation

Robust against noise

Robust against noise and disturbances
Precise estimates

Good estimation without process
kinetics

Good convergence properties
Guaranteed convergence

Good estimation, not sensitive to
noise

Good estimation without process
kinetics

Precise estimation without process
kinetics

Converge toward bounded interval

Robust estimation
Good convergence factor

Robust estimation

Consistent estimates even with noise
Stable estimation

Good estimation without perfect
initial condition

Simple observer design yet accurate
estimation

Precise estimate even with noise

Accurate concentration estimation
Robust against modeling error

Guaranteed convergence factor

Robust against model deviation
Robust against model deviation
Good estimation without accurate
model

Damour et al. (2010a,b)

Mesbah et al. (2011)
Mendez-Acosta et al.
(2008)

Pico et al. (2009)

De Battista et al., 2011
Gonzalez et al. (2001)
Hajatipour and Farrokhi
(2010)

Huang et al. (2010)
Zhang and Guay (2002)
Jana et al. (2009)

Sheibat-Othman et al.
(2008)

Jana et al. (2006)
Murlidhar and Jana (2007)

Benaskeur and Desbiens
(2002)
Fissore et al. (2007)

Trongi et al. (2005)

Lopez and Alvarez (2004)

Aamo et al. (2005)
Salehi and Shahrokhi
(2008)

Kazantzis et al. (2005)
Singh and Hahn (2005c)
Aguilar et al. (2002)
Biagiola and Figueroa
(2004b)

Dochain (2000)

Jana (2010)
El Assoudi et al. (2002)
Dochain et al. (2009)

Dochain (2000)

Hadj-Sadok and Gouze
(2001)

Hadj-Sadok and Gouze
(2001)

Aguilar-Garnica et al., 2011
Meseguer et al. (2010)

Aguilar-Lopez (2003)

Patwardhan and Shah
(2005)
Venkateswarlu and
Avantika (2001)
Velardi et al. (2009)

Yildiz et al. (2005)

Venkateswarlu and
Avantika (2001)
Himmelblau (2008)
Olanrewaju and Al-Arfaj
(2006)

Jana et al. (2006)

Mesbah et al. (2011)
Mesbah et al. (2011)
Mangold et al. (2009)



Table 3 (Continued)

Observer Objective/estimate(s) System Positive highlight(s) Ref.

UKF Biomass concentration Fermentor Effective estimation despite using the ‘Wang et al. (2010)
simplified mechanistic model

UKF Uncertain parameters Hybrid tank system Effective control and good estimation Prakash et al. (2010)

EnKF Solute concentrations Fed-batch crystallizer Robust against model deviation Mesbah et al. (2011)

EnKF Unmeasured disturbances Hybrid tank system Effective control and good estimation Prakash et al. (2010)

AFKF Product compositions Batch distillation column Precise estimate despite noisy Venkateswarlu and
conditions Avantika (2001)

AFKF Temperature Heat exchanger Good estimation without coefficient Bagui et al. (2004)
adjustment

PF Yield parameter Fermentor Good estimation based on Chitralekha et al. (2010)
maximization algorithm theory

PF Conditional density CSTR Few assumptions required for Lopez-Negrete et al. (2011)
estimation

PF Conditional density Batch Reactor Few assumptions required for Lépez-Negrete et al. (2011)
estimation

MHE Solutes concentration Fed-batch crystallizer Robust against model deviation Mesbah et al. (2011)

MHE Molecular weight distribution Polymerization reactor Smooth estimates Lopez-Negrete and Biegler

(2012)

MHE Tray efficiencies Binary distillation column Able to handle constraint during Lipez-Negrete and Biegler
estimation (2012)

MHE Biomass concentration Animal cell cultures Accurate estimates Raissi et al. (2005)

Generic observer Carbon and nitrogen Sequential batch reactor Robust against modeling error Boaventura et al. (2001)

Specific observer

concentrations
Carbon and nitrogen
concentrations

Class 4: Disturbances and fault detection observers

DOB
FO-DOB
BICO-DOB
MDOB

Modified proportional

uIo

ulo
Quio

NUIO
EUIO

Class 5: Al-based observers
FKF

ASFKF

DNNO

DNNO

EKF-NN

Class 6: Hybrid observers
ELO-AO
Continuous-discrete

Continuous-discrete-
interval

Continuous-discrete-
EKF

Proportional-SMO

Proportional-integral

High-gain-continuous-
discrete

Disturbances related to time
delay
Disturbances due to mismatch

Disturbances due to mismatch

Closed-loop system
disturbances

Uncertainties in reactive
concentration, reactor and
jacket temperature

Fault in actuator and sensor

Fault in input sensor

Faults in concentration, flow
rates, light intensity

Fault in residuals

Fault in residuals

Reactor temperature and
concentration

Reactor temperature and
concentration

Anthracene dynamics
decomposition and
contaminant concentration
Formic acid, fumaric acid,
maleic acid, oxalic acid
Qutlet reactor concentration

Biomass concentration
Biomass concentration

Process kinetics

Biomass, subsirate
concentration

Polymer molecular weight,
monomer concentration,
reactor temperature
Unknown inputs

Rate coefficient

Sequential batch reactor

Conveyor (grinding
process)

Cyclone (grinding process)
Cyclone (grinding process)

Jacketed stirred tank heater

CSTR

Polymerization reactor

CSTR
Bioreactor

CSTR
CSTR

CSTR

CSTR

Microreactor
Wastewater treatment

plant
Heterogeneous reactor

Bioreactor
Batch reactor

Bioreactor
Bioreactor
Polymerization reactor
Wastewater treatment

plant
Polymerization process

Robust against modeling error

Overcome the effect of internal
disturbances

Optimize the estimation even with
huge disturbances

Optimize the estimation even with
huge disturbances

Smooth disturbances estimate

Robust against uncertainties

Accurate estimation

Accurately estimating fault even in
the presence of disturbances
Satisfactory estimates

Acting as alternative fault alarm
Acting as alternative fault alarm

Unbiased estimation
Satisfactory unbiased estimates

Good agreement with the actual value

Guaranteed small estimation error

Further reduction in estimation error
compared to EKF

Stable rate of convergence
Robust against modeling error

Avoids growth of interval sizes during
estimation
Accurate estimates, reduced error

Robust against noise and uncertain
parameters

Stable estimation rate

Estimates without information of
initiator

Boaventura et al. (2001)

Chen et al. (2009)
Olivier et al. (2012)
Olivier et al. (2012)
Yang et al. (2011)

Aguilar-Lopez and
Martinez-Guerra (2005)

Sotomayor and Odloak

(2005)
Zarei and Poshtan (2010)

Rocha-Cézatl and Wouwer
(2011)

Zarei and Poshtan (2010)
Zarei and Poshtan (2010)

Prakash and Senthil (2008)
Prakash and Senthil (2008)

Poznyak et al. (2007)

Chairez et al. (2007)

Porru et al. (2000)

Hulhoven et al. (2006)
Aguilar-Lopez and
Martinez-Guerra (2005)
Goffaux et al. (2009)

Bogaerts and Wouwer
(2004)

Aguilar-Lopez and
Maya-Yescas (2005)

Nagy Kiss et al. (2011)

Sheibat-Othman et al.
(2008)

 Finite-dimensional system observers may be extended to the infinite-dimensional systems such as for tubular and plug flow reactor.
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Fig. 2. General methodology for observer design.

3.1. Observability conditions

Two types of observability conditions typically applied for
observer designs are the observability matrix and the observabil-
ity Gramian. The observability matrix appears with the alteration of
the state space models such as conversion to canonical forms, while
the observability Gramian arises when considering the operator
properties including system reduction and optimal linear quadratic
regulators (Curtain and Zwart, 1995; Singh and Hahn, 2005a). Both
the observability matrix and the observability Gramian provide
sufficient conditions for the observability of a system; however,
the observability matrix is related to the differential properties,
while the observability Gramian is based on the integral condi-
tions (Tsakalis, 2013). Furthermore, the type of observability used
to detect the observable condition will depend on the formulation
of the systems. Brief formulations of both observability conditions
are given in Appendices A and B, respectively.

3.2, Estimated variables

The estimated variables are the difficult-to-measure parameters
intended to be estimated using observers. They are system-
dependent and not specific to one parameter for a particular
process unit (Liu, 1999) such as reactor concentration in a CSTR
(Salehi and Shahrokhi, 2008), production rate and solid mass
fraction in a polymerization reactor (Lopez and Alvarez, 2004)
or specific growth rate in a bioreactor (De Battista et al., 2011).
The estimated parameters are normally the crucial parameters
that may potentially lead to uncertainty in the process and can

affect product quality (Alanis et al., 2010; Fan and Alpay, 2004;
Mesbah et al., 2011; Olivier et al., 2012). The parameters should
also be updatable for online implementation and to eliminate bias
between simulation and the online estimation implementation
(Sandink et al., 2001). Examples of estimated parameters in vari-
ous chemical process systems are given in Section 2 (we refer the
readers to the ‘Objective/Estimate(s)’ column in Table 3).

3.3. Kinetics information of the system

The kinetics information of the system determines the system’s
nonlinearities based on the mathematical model that represents
it (Biagiola and Figueroa, 2004b). This information is required to
aid in the selection of the appropriate observers, For a system
where this information is complete and system parameters are
well known, the Luenberger-based observer is appropriate, while
the Bayesian estimator is used for systems in which only certain
system parameters are known (Dochain, 2000, 2003). When less
kinetic information is available, researchers can apply exponential
or asymptotic observers (Dochain, 2000; El Assoudi et al., 2002;
Hadj-Sadok and Gouze, 2001; Hoang et al., 2013; Hulhoven et al.,
2008). Al-based observers may be suitable for systems with incom-
plete model information.

3.4. Observer formulation

Since most observers are model-based (Boaventura et al., 2001;
Chenetal., 2009; de Canete et al.,2012; Prakashetal.,2011; Vicente
etal., 2000; Yang et al., 2011), the design steps include modeling of
the systems prior to developing the observer equation, computing



the gain of the observer and deriving the estimation error model or
the error dynamic equation (D'Attellis et al., 1997; Di Ruscio, 2009;
Dochain, 2003; Gajic, 2003; Soroush, 1997). Classification of recent
observers into six classes as in Section 2 can be helpful in design-
ing the observers, as we can now apply either method 1 or 2 in the
design (we refer the readers to Fig. 2). For example, modeling can
be simplified if the observers are from the finite dimensional and
Al-based classes because those two classes can be designed for sys-
tems with incomplete models or less kinetic information (Dochain
et al,, 1992, 2009; Senthil et al,, 2006). If the systems require spe-
cific parameter estimation such as disturbances, the focus can be
narrowed down to the disturbances and fault detection observer
types. Thus, we can directly apply the disturbances and faults
detection observers and obtain the best estimation performance.
Furthermore, if our systems are simple linear systems with easy-
to-formulate models, we canapply the Luenberger-based observers
instead of choosing from all other types of observers available
(Damour et al., 2010a, 2010b; Mesbah et al., 2011). In addition, we
can apply the hybrid observer to overcome the limitations of sin-
gle observers and to improve the estimation performance (Goffaux
et al., 2009; Hulhoven and Bogaerts, 2002; Hulhoven et al., 2006).

34.1. Model of the system

The system for observer design is normally based on a mathe-
matical model (Ahn et al., 1999; Bagui et al., 2004; Mohseni et al.,
2009), which is typically incorporated into the mass and energy bal-
ance of the systems (Bernard and Gouze, 2004; Dochain et al., 2009;
James et al., 2002; Salehi and Shahrokhi, 2008) and consequently it
may range from the finite-dimensional to the infinite-dimensional
case. It can also include several appropriate assumptions, for exam-
ple, assuming perfect mixing and constant physical parameters to
simplify the modeling steps (Biagiola and Figueroa, 2004a).

34.2. Observer equation
The observer equation is developed to determine the observer

structure for a given system based on dynamic knowledge and
incorporated with the observer gain and the error dynamic equa-
tion (Bitzer and Zeitz, 2002; Cacace et al., 2010). For a linear
model-based observer, the state space representation is normally
used to describe the observer equation, and the measurement
equation is also involved in the formulation (Fuhrmann, 2008;
Patwardhan et al., 2006; Patwardhan and Shah, 2005; Senthil et al.,
2006). The number of measured variables will also affect the sen-
sitivity of the estimation (Venkateswarlu and Avantika, 2001).

3.4.3. Observer gain

The design of the observer structure will require an appropriate
gain (Dochain, 2003), and it is chosen based on the stability of the
error dynamics of the system (Busawon and Kabore, 2001; Yang
etal, 2012). The observer gain can be solved using the Butterworth
polynomial and the Ackermann formula (Di Ruscio, 2009). Addi-
tionally, the Riccati equation is also applied to determine the gain
value by observing the error dynamic output (Farza et al., 2011).

3.4.4. Error dynamic equation

The error dynamic equation is needed to ensure the observer
structure is bounded to the modeling error (Wang et al., 1997) to
increase the robustness of the observer (Jung et al., 2008). It can be
represented in terms of the linear time-varying system (Mishkov,
2005; Robenack and Lynch, 2004) and must be designed in such a
way that it is asymptotically or exponentially stable (Biagiola and
Figueroa, 2002; Hirdin and van Schuppen, 2007; Iyer and Farell,
1996; Rébenack and Lynch, 2004; Zambare et al., 2003). In certain
systems, where the dynamic information is limited and it is difficult
to develop the error bounds due to large uncertainties (Dochain,
2000), the error dynamic equation can be ignored in the observer
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design. This can be seen in the development of the asymptotic
observer (Dochain et al., 1992, 2009).

3.5. Evaluating the observer

The performance of an observer is usually tested in simula-
tion followed by online implementation (BenAmor et al., 2004;
Bogaerts and Wouwer, 2004; Escobar et al., 2011). The test will
begin with a nominal or simulator model that is different from
the observer model and includes both the process and possibly
measurement noise (Di Ruscio, 2009). Normally, some reason-
able model errors are introduced to the simulator model to test
its performance under plant model mismatches (Aguilar-Lopez
and Martinez-Guerra, 2005; Aguilar-Lopez and Maya-Yescas, 2005;
Jana et al., 2006; Lin et al., 2003). Poor noise assumptions can lead
to bias estimation and divergence and require more assumptions
for the design (Biagiola and Figueroa, 2004a).

4. Current and future trends

In previous years, single-based observers i.e., Luenberger-based
and finite-dimensional observers) have commonly been used to
estimate the difficult-to-measure parameters in a chemical process
system prior to generating the control design and to replace high-
priced sensors in the plant. These observers, however, started to
face challenges in handling uncertainties in both model and mea-
surements (Dochain, 2003). In addition, many of these observers
require accurate knowledge of the process dynamics for the design,
which are difficult to obtain, especially in nonlinear chemical pro-
cesses. Al-based observers have become popular for nonlinear
systems due to their reduced dependency on accurate models but
also are limited in terms of robustness. Thus, in order to over-
come these limitations and challenges, hybrid observers have been
introduced (Hulhoven and Bogaerts, 2002; Hulhoven et al., 2006;

Poznyak et al., 2007). These hybrid observers also have the advan-
tage of being easy to formulate and implement with the availability
of powerful modern computing resources.

Therefore, in general, the trend in the use of observers for chem-
ical process has changed from single-based observer design (Bara
etal, 2001; Benaskeur and Desbiens, 2002; Hadj-Sadok and Gouze,
2001; Kazantzis et al., 2000) to hybrid observers design (Goffaux
et al., 2009; Hulhoven et al., 2006; Prakash and Senthil, 2008),
including Al-based designs, as seen in the trend pattern for the
usage of recent observers in chemical process systems shown in
Fig. 3. The statistics given in the figure show that although all
other classes of observers have always been in use, the trends
have been inconsistent and very much dependent on the partic-
ular system to be resolved. However, the hybrid observer, which
did not exist before 2000, has been consistently increasing in its
usage since then. This could be due to many factors but one main
reason is the availability of many types of observers (as seen in
Section 2) that could be easily combined in the modern software
available at present (de Assis and Filho, 2000; de Canete et al.,2012;
Escobar et al.,, 2011; Rivera et al.,, 2010). Hybrid observers has also
becoming popular due to their ability to obtain better estimation
performances, handle offsets efficiently and increase the rate of
convergence (Aguilar-Lopez and Martinez-Guerra, 2007; Hulhoven
and Bogaerts, 2002).

The sliding mode observer hybrid with an asymp-
totic/exponential observer is an example where a sliding mode
observer provides good convergence rate with guaranteed robust-
ness and stability (Hajatipour and Farrokhi, 2010) while the
asymptotic/exponential observer supports a process system with
minimal kinetic data (Jana et al., 2006), which is beneficial in
situations where there is a lack of information or data regarding
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