SYNTHESIS, CHARACTERIZATION AND STABILITY OF SUPERPARAMAGNETIC MAGHEMITE NANOPARTICLE SUSPENSION

Irwan Nurdin*1, Mohd Rafie Johan1, Iskandar Idris Yaacob2, Bee Chin Ang1 and Andri Andriyana1

1 Nano Materials Engineering Research Group, Advanced Materials Research Laboratory, Department of Mechanical Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
2 Department of Manufacturing and Materials Engineering, Kulliyyah of Engineering, International Islamic University Malaysia, 50728 Kuala Lumpur, Malaysia

irwan_nurdina@yahoo.com

Abstract: Maghemite nanoparticles were synthesised using co-precipitation method and characterised by various techniques including XRD, TEM, AGM, DLS, and zeta potential. The stability of the suspension was monitored by measuring the particle size distribution and zeta potential using DLS over a period of a few months. The pattern obtained from XRD confirmed that the particles were maghemite with crystallite size of 9.4 nm. TEM observations and analyses showed that the mean physical size of the nanoparticles was 9.5 nm. The nanoparticles show superparamagnetic behavior with magnetization value at ±10 kOe of 32.18 emu g⁻¹. The intensity averaged particle size of as-synthesised maghemite nanoparticles was 45.3 nm. The suspension was stored for periods of two, four, and eight months. The intensity averaged sizes were 47.1, 50.5 and 52.1 nm. No sedimentation was observed. The suspension's zeta potential value was 44.6 mV for as-synthesised sample and 43.3, 42.7, and 41.8 mV for sample after storage period of two, four, and eight months, respectively. This indicated that the suspension was very stable.