Pei Li Heng Choon Weng Lee

Laboratory of Microbial Ecology, Institute of Biological Sciences, Faculty of Science, University of Malaya

G03. Potential production and loss rates of picocyanobacteria in tropical coastal waters

In this study, monthly samplings were conducted at Port Klang and Port Dickson over a two-year period to measure potential production rate and loss rates of picocyanobacteria using the Landry Hassett dilution technique. Twelve sets of two-factorial experiment were also carried out to further investigate the effect of light and nutrient on picocyanobacteria production rate. Significantly lower abundance was measured at Port Klang $(2.80 \pm .172 \times 10^4 \text{ cell ml}^{-1})$ compared to Port Dickson (13.2 \pm 4.68 \times 10⁴ cell ml⁻¹) (Student's *t*-test: *t* = 9.80, df = 40, p < 0.001). Potential production and loss rates observed at Port Klang $(3.77 - 70.4 \text{ and } 1.88 - 75.60 \times 10^2 \text{ cell ml}^{-1} \text{ h}^{-1})$ were also much lower than Port Dickson $(2.32 - 15.90 \text{ and } 1.06 - 18.4 \times 10^3 \text{ cell ml}^{-1} \text{ h}^{-1})$ (Student's ttest: t = 9.63, df = 37, p < 0.001; t = 7.49, df = 43, p < 0.001). In the twofactorial experiment, only nutrient (F = 7.00, p < 0.05) showed a significant effect on production rate. However, the interaction between light and nutrient also have a significant effect on production rate (F = 5.80, p > 0.05). These results suggest that in tropical coastal waters, nutrient played a more important role in affecting the picocyanobacteria production rate compared to light.