\((\eta, \eta_\alpha, \theta)\)-Einstein real hypersurfaces in complex two-plane Grassmannians

RUENN-HUAH LEE
Institute of Mathematical Sciences,
University of Malaya, 50603 Kuala Lumpur, Malaysia
e-mail: rhlee063@hotmail.com

TEE-HOW LOO
Institute of Mathematical Sciences,
University of Malaya, 50603 Kuala Lumpur, Malaysia
e-mail: looth@um.edu.my

(2010 Mathematics Subject Classification: 53C40, 53C15.)

Abstract. In this paper, we introduce the notion of \((\eta, \eta_\alpha, \theta)\)-Einstein real hypersurfaces in complex two-plane Grassmannians. We show that there does not exist any \((\eta, \eta_\alpha, \theta)\)-Einstein real hypersurface in complex two-plane Grassmannians such that \(\xi\) is tangent to \(\mathcal{D}\). Some examples of \((\eta_\alpha, \theta)\)-Einstein real hypersurfaces are given.

1 Introduction

A Riemannian manifold is said to be Einstein if the Ricci tensor \(S\) is given by \(S = \rho \mathcal{I}\), where \(\rho\) is a constant. The Einstein condition can be generalized in a natural manner for those spaces with certain additional geometric structures.

An almost contact metric manifold \((M, \phi, \eta, \xi, g)\) is said to be \(\eta\)-Einstein if it satisfies \(S = f_1 \mathcal{I} + f_2 \xi \otimes \eta\), for some functions \(f_1, f_2\) on \(M\). Similar notion was also introduced in almost 3-contact metric geometry. Suppose now \(M\) is a manifold with an almost 3-contact metric structure \((\phi_\alpha, \eta_\alpha, \xi_\alpha, g), \alpha \in \{1, 2, 3\}\). If the Ricci tensor \(S\) satisfies \(S = f_1 \mathcal{I} + f_2 \sum_{\alpha=1}^{3} \xi_\alpha \otimes \eta_\alpha\), where \(f_1, f_2\) are functions on \(M\), then \(M\) is said to be \(\eta_\alpha\)-Einstein.

For a Kähler or quaternionic Kähler manifold, its real hypersurfaces (i.e., submanifolds of real codimension one) naturally inherited an almost contact metric (resp. almost 3-contact metric) structure from the Kähler (resp. quaternionic Kähler) structure of the ambient manifold. The study of real hypersurfaces in a

Key words and phrases: real hypersurfaces, complex two-plane Grassmannians.
Kähler (resp. quaternionic Kähler) manifold has become a branch of almost contact metric (resp. almost 3-contact metric) geometry.

In the case of non-flat complex space form, \(\eta\)-Einstein real hypersurfaces were classified in [3, 5, 9]. In the classification, we obtain that \(f_1, f_2\) must be constant and there does not exist any Einstein real hypersurface in a non-flat complex space form.

On the other hand, \(\eta_a\)-Einstein real hypersurfaces in non-flat quaternionic space forms were studied in [4, 8, 10], and a complete classification of such spaces could be deduced from a result in [10]. According to their results, we see that \(f_1, f_2\) must also be constant as in the Kählerian case. Moreover, only quaternionic projective spaces \(\mathbb{H}P^m\) admit an Einstein real hypersurface, which must be a tube of radius \(r \in [0, \pi/2]\) over a totally geodesic \(\mathbb{H}P^{m-1}\) with \(\cot^2 r = 2m\).

Remark 1.1. \(\eta\)-Einstein and \(\eta_a\)-Einstein real hypersurfaces were studied under the name of pseudo-Einstein real hypersurfaces in the above mentioned papers. However, we shall not follow that terminology in this paper to avoid the confusion.

A complex two-plane Grassmannian \(G_2(C^{m+2})\) has some remarkable properties and structures. The most notable one being the fact that it is the unique compact irreducible Riemannian symmetric space with both a Kähler structure \(J\) and a quaternionic Kähler structure \(\mathcal{J}\) (cf. [1]). These geometric structures induce an almost contact 3-structure \((\phi_a, \xi_a, \eta_a), a \in \{1, 2, 3\}\) as well as an almost contact structure \((\phi, \xi, \eta)\) on its real hypersurfaces \(M\). These allow us to study both \(\eta\)-real hypersurfaces and \(\eta_a\)-real hypersurfaces in \(G_2(C^{m+2})\).

In this paper, we introduce a “generalized Einstein” condition on real hypersurface \(M\) in \(G_2(C^{m+2})\), apart from the impact due to both the almost contact and almost 3-contact structures on \(M\), which also characterizes the interaction between these two structures. A real hypersurface \(M\) in \(G_2(C^{m+2})\) is said to be \((\eta, \eta_a, \theta)\)-Einstein if it satisfies

\[
S = f_1 \mathbb{I} + f_2 \xi \otimes \eta + f_3 \sum_{a=1}^{3} \xi_a \otimes \eta_a + f_4 \theta.
\]

where \(f_1, f_2, f_3, f_4\), called the coefficient functions, are functions on \(M\) and \(\theta\) is a symmetric \((1,1)\)-tensor field on \(M\) given by \(\theta := \sum_{a=1}^{3} \eta_a(\xi)(\phi \phi_a - \xi \otimes \eta_a)\). For some special cases, we say that the real hypersurface \(M\) is \((\eta, \eta_a)\)-Einstein if \(f_4 = 0\); \((\eta_a, \theta)\)-Einstein if \(f_2 = 0\); etc.

In this paper, we shall first prove that there does not exist any \((\eta, \eta_a, \theta)\)-Einstein real hypersurface \(M\) in \(G_2(C^{m+2})\) with constant coefficient functions and \(\xi \in \mathcal{D}\), where \(\mathcal{D}^\perp := \{\xi_1, \xi_2, \xi_3\}\) (cf. Theorem 3.4). Next we show that real hypersurfaces of type \(A\) in \(G_2(C^{m+2})\) are \((\eta_a, \theta)\)-Einstein (cf. Theorem 4.1). With this result, we also obtain example of \(\eta_a\)-Einstein real hypersurfaces in \(G_2(C^{m+2})\).

Remark 1.2. \((\eta, \eta_a)\)-Einstein real hypersurfaces in \(G_2(C^{m+2})\) were considered in [11, 12].
2 Real hypersurfaces in $G_2(\mathbb{C}^{m+2})$

In this section, we summarize and list out some important formulae as well as well-known results in the theory of real hypersurfaces in complex two-plane Grassmannians (see [2, 7, 12] for details).

Denote the set of all complex 2-dimensional linear subspaces by $G_2(\mathbb{C}^{m+2})$ with Kähler structure J and quaternionic Kähler structure \mathcal{J}. Let M be a connected, oriented real hypersurface isometrically immersed in $G_2(\mathbb{C}^{m+2})$, $m \geq 3$, and N a unit normal vector field on M. Denote by g the Riemannian metric on M. A canonical local basis $\{J_1, J_2, J_3\}$ of \mathcal{J} on $G_2(\mathbb{C}^{m+2})$ induces a local almost contact 3-structure $(\phi_a, \xi_a, \eta_a, g)$ on M by

\[J_aX = \phi_aX + \eta_a(X)N, \quad J_aN = -\xi_a, \quad \eta_a(X) = g(X, \xi_a), \]

for any $X \in TM$. It follows that

\[\phi_a\phi_{a+1} - \xi_a \otimes \eta_{a+1} = \phi_{a+2} = -\phi_{a+1}\phi_a + \xi_{a+1} \otimes \eta_a, \]
\[\phi_a\xi_{a+1} = \xi_{a+2} = -\phi_{a+1}\xi_a \]

for $a \in \{1, 2, 3\}$. The indices in the preceding equations is taken modulo three.

Let (ϕ, ξ, η, g) be the almost contact metric structure on M induced by J, i.e.,

\[JX = \phi X + \eta(X)N, \quad JN = -\xi, \quad \eta(X) = g(X, \xi). \]

The two structures (ϕ, ξ, η, g) and $(\phi_a, \xi_a, \eta_a, g)$ are related as follows

\[\phi_a\phi - \xi_a \otimes \eta = \phi\phi_a - \xi \otimes \eta_a; \quad \phi\xi_a = \phi_a\xi. \]

Next, we denote by ∇ the Levi-Civita connection and A the shape operator on M. Then

\[
(\nabla_X \phi)Y = \eta(Y)AX - g(AX, Y)\xi; \quad \nabla_X\xi = \phi AX \\
(\nabla_X \phi_a)Y = \eta_a(Y)AX - g(AX, Y)\xi_a + q_{a+2}(X)\phi_{a+1}Y - q_{a+1}(X)\phi_{a+2}Y \\
\nabla_X\xi_a = \phi_a AX + q_{a+2}(X)\xi_{a+1} - q_{a+1}(X)\xi_{a+2} \\
X\eta(\xi_a) = 2\eta_a(\phi AX) + \eta_{a+1}(\xi)q_{a+2}(X) - \eta_{a+2}(\xi)q_{a+1}(X)
\]

for any $X, Y \in TM$, where q_a is a 1-form on M. We define a local symmetric $(1, 1)$-tensor field θ_a on M by

\[\theta_a := \phi_a\phi - \xi_a \otimes \eta. \]

Then we have the following identities

\[
(2.2) \begin{cases}
\text{tr} \theta_a = \eta(\xi_a), & \theta_a^2 - \phi\xi_a \otimes \eta_a\phi = I \\
\theta_a\xi = -\xi_a, & \theta_a\xi_a = -\xi, \quad \theta_a\phi\xi_a = \eta(\xi_a)\phi\xi_a \\
\theta_a\xi_{a+1} = \phi\xi_{a+2} = -\theta_{a+1}\xi_a \\
-\theta_a\phi\xi_{a+1} + \eta(\xi_{a+1})\phi\xi_a = \xi_{a+2} = \theta_{a+1}\phi\xi_a - \eta(\xi_a)\phi\xi_{a+1}.
\end{cases}
\]
Further, we can easily derive from (2.1) that

\[
(2.3) \quad (\nabla_X \phi_a)Y = (\nabla_X \phi_a)Y + \phi_a(\nabla_X \phi)Y - g(\nabla_X \xi, Y)\xi_a - \eta(Y)\nabla_X \xi_a = \eta_a(\phi Y)AX - g(AX, Y)\phi \xi_a + g_{a+2}(X)\theta_{a+1}Y - g_{a+1}(X)\theta_{a+2}Y
\]

\[
(2.4) \quad \nabla_X \phi \xi_a = \theta_a AX + \eta_a(\xi)AX + g_{a+2}(X)\phi \xi_{a+1} - g_{a+1}(X)\phi \xi_{a+2}.
\]

For each \(x \in M\), we define a subspace \(\mathcal{H}^\perp\) of \(T_xM\) by

\[
\mathcal{H}^\perp := \text{span}\{\xi, \xi_1, \xi_2, \phi_1, \phi_2, \phi_3\}.
\]

Let \(\mathcal{H}\) be the orthogonal complement of \(\mathcal{H}^\perp\) in \(T_xM\). Then \(\dim \mathcal{H} = 4m - 4\) (resp. \(\dim \mathcal{H} = 4m - 8\)) when \(\xi \in \mathcal{D}^\perp\) (resp. \(\xi \notin \mathcal{D}^\perp\)) and \(\mathcal{H}\) is invariant under \(\phi, \phi_a\) and \(\theta_a\). Moreover, \(\theta_{a\mid \mathcal{K}}\) has two eigenvalues: 1 and \(-1\). Denote by \(\mathcal{H}_a(\varepsilon)\) the eigenspace corresponds to the eigenvalue \(\varepsilon\) of \(\theta_{a\mid \mathcal{K}}\). Then \(\dim \mathcal{H}_a(1) = \dim \mathcal{H}_a(-1)\) is even, and

\[
\phi \mathcal{H}_a(\varepsilon) = \mathcal{H}_a(\varepsilon), \quad \phi_a \mathcal{H}_a(\varepsilon) = \mathcal{H}_a(\varepsilon), \quad \theta_{a\mid \mathcal{K}}(\mathcal{H}_a(\varepsilon)) = \mathcal{H}_a(-\varepsilon), \quad (a \neq b).
\]

Now we define \(\theta := \sum_{a=1}^3 \eta_a(\xi)\theta_a, \xi^\perp := \sum_{a=1}^3 \eta_a(\xi)\xi_a\) and \(\eta^\perp := \sum_{a=1}^3 \eta_a(\xi)\eta_a\).

Then by (2.2) and (2.3), we have

\[
(2.5) \quad \text{tr} \theta = \sum_{a=1}^3 \eta_a(\xi)^2 = ||\xi^\perp||^2
\]

\[
(2.6) \quad (\nabla_X \theta)Y = \sum_{a=1}^3 \{\theta_a X - 2g(AX, Y)\phi \xi_a\}
\]

It follows from (2.5) that the tensor field \(\theta\) provides an index to measure \(\xi\) for being tangential to \(\mathcal{D}\) or \(\mathcal{D}^\perp\).

Lemma 2.1. Let \(M\) be a real hypersurface in \(G_2(C^{m+2})\). Then \(0 \leq \text{tr} \theta \leq 1\).

Moreover, we have

(a) \(\text{tr} \theta = 0\) if and only if \(\xi \in \mathcal{D}\); and

(a) \(\text{tr} \theta = 1\) if and only if \(\xi \in \mathcal{D}^\perp\).
The equations of Gauss and Codazzi are given by

\[R(X,Y)Z = g(Y,Z)X - g(X,Z)Y + g(AY,Z)AX - g(AX,Z)AY \]
\[+ g(\phi Y,Z)\phi X - g(\phi X,Z)\phi Y - 2g(\phi X,Y)\phi Z \]
\[+ \sum_{a=1}^{3} \{ g(\phi_a Y,Z)\phi_a X - g(\phi_a X,Z)\phi_a Y - 2g(\phi_a X,Y)\phi_a Z \} \]
\[+ g(\theta a Y,Z)\theta a X - g(\theta a X,Z)\theta a Y \} \]

\[(\nabla X A)Y - (\nabla Y A)X = \eta(X)\phi Y - \eta(Y)\phi X - 2g(\phi X,Y)\xi \]
\[+ \sum_{a=1}^{3} (\eta_a(X)\phi_a Y - \eta_a(Y)\phi_a X - 2g(\phi_a X,Y)\xi_a \]
\[+ \eta_a(\phi X)\theta_a Y - \eta_a(\phi Y)\theta_a X \].

By the Gauss equation, the Ricci tensor \(S \) is given by

\[(2.7) \quad S = hA - A^2 + (4m + 7)I + \theta - 3\xi \otimes \eta - \sum_{a=1}^{3} (3\xi_a \otimes \eta_a + \phi_a \otimes \eta_a) \],

where \(h := \text{tr} A \) is the mean curvature of \(M \).

Finally we state some well-known results.

Lemma 2.2 ([7]). Let \(M \) be a real hypersurface in \(G_2(C^{m+2}) \), \(m \geq 3 \). If \(\xi \) is tangent to \(\mathcal{D} \), then \(A\phi \xi_a = 0 \), for \(a \in \{1, 2, 3\} \).

Theorem 2.3 ([2]). Let \(M \) be a connected real hypersurface in \(G_2(C^{m+2}) \), \(m \geq 3 \). Then both \(\xi \) and \(\mathcal{D}^\perp \) are invariant under the shape operator of \(M \) if and only if

(A) \(M \) is an open part of a tube around a totally geodesic \(G_2(C^{m+1}) \) of \(G_2(C^{m+2}) \),

or

(B) \(m \) is even, say \(m = 2n \), and \(M \) is an open part of a tube around a totally geodesic \(\mathbb{H}P^m \) in \(G_2(C^{m+2}) \).

We say that a real hypersurface \(M \) in \(G_2(C^{m+2}) \) is of type \(A \) if it satisfies the first property in the characterization theorem given above. On the other hand, \(M \) is said to be of type \(B \) if it satisfies all properties in part (B). A connected orientable real hypersurface \(M \) in \(G_2(C^{m+2}) \) is said to be Hopf if the Reeb vector field \(\xi \) is invariant under the shape operator of \(M \). The following theorem provides the sufficient conditions of being a real hypersurface of type \(B \).
Theorem 2.4 ([6]). Let M be a connected orientable Hopf hypersurface in \(G_2(\mathbb{C}^{m+2}) \), \(m \geq 3 \). Then the Reeb vector \(\xi \) belongs to the distribution \(\mathcal{D} \) if and only if M is locally congruent to an open part of a real hypersurface of type \(B \).

3 \((\eta, \eta_0, \theta)\)-Einstein real hypersurfaces

We shall show that there does not exist any \((\eta, \eta_0, \theta)\)-real hypersurface in \(G_2(\mathbb{C}^{m+2}) \) such that \(\xi \) is tangent to \(\mathcal{D} \) everywhere in this section. We begin with deriving a basic formula for such spaces.

Lemma 3.1. Let M be a \((\eta, \eta_0, \theta)\)-Einstein in \(G_2(\mathbb{C}^{m+2}) \) with constant coefficient functions, i.e.,

\[
S = f_1 + f_2 \xi \otimes \eta + f_3 \sum_{a=1}^{3} \xi_a \otimes \eta_a + f_4 \theta.
\]

where \(f_1, f_2, f_3, f_4 \) are constants. Then we have

(a) \(\text{grad tr} \, S = -4f_4 A \phi \xi^\perp \);

(b) \(f_3 \phi A \xi + f_3 \sum_{a=1}^{3} \phi_a A \xi_a + f_4 (A - h I) \phi \xi^\perp - f_4 \sum_{a=1}^{3} \theta_a A \phi \xi_a = 0 \).

Proof. By (2.5), the scalar curvature \(\text{tr} \, S \) has the form of

\[
\text{tr} \, S = (4m - 1) f_1 + f_2 + 3f_3 + f_4 ||\xi^\perp||^2.
\]

It follows from (2.1) that

\[
X \text{tr} \, S = 2 f_4 \sum_{a=1}^{3} \eta(\xi_a) X \eta(\xi_a) - 4f_4 \sum_{a=1}^{3} \eta(\xi_a) g(A \phi \xi_a, X) = -4f_4 g(A \phi \xi^\perp, X).
\]

Hence we obtain Statement (a). On the other hand, by using (2.1) and (2.6), we compute

\[
(\nabla_X S)Y = f_2 (g(\nabla_X \xi, Y) \xi + \eta(Y) \nabla_X \xi) + f_3 \sum_{a=1}^{3} (g(\nabla_X \xi_a, Y) \xi_a + \eta_0(Y) \nabla_X \xi_a)
\]

\[
+ f_4 (\nabla_X \theta) Y
\]

\[
= f_2 (g(\phi AX, Y) \xi + \eta(Y) \phi AX) + f_3 \sum_{a=1}^{3} (g(\phi_a AX, Y) \xi_a + \eta_0(Y) \phi_a AX)
\]

\[
+ f_4 (\eta^\perp(\phi Y) AX - g(AX, Y) \phi \xi^\perp) - 2f_4 \sum_{a=1}^{3} g(A \phi \xi_a, X) \theta_a Y.
\]
Hence, by the above equation and the Schur Lemma: \(2 \text{div } S = \text{grad tr } S\), we obtain Statement (b).

The following lemma can be obtained with the same arguments as in the proof of [3, Prop. 5.2]. We shall state without proof.

Lemma 3.2. Let \((M, \phi, \eta, \xi, g)\) be an almost contact metric manifold. Suppose there exist a symmetric \((1,1)\)-tensor field \(F\) on \(M\), a distribution \(\mathfrak{T}\) on \(M\) with \(\dim \mathfrak{T} \geq 4\), and two functions \(\lambda, \mu\) on \(M\) with \(\lambda < \mu\) such that

(a) \(\xi \in \mathfrak{T}\) everywhere;
(b) \(\mathfrak{T}\) is invariant under both \(F\) and \(\phi\);
(c) there is an orthogonal decomposition \(\mathfrak{T} = \mathfrak{T}_\lambda \oplus \mathfrak{T}_\mu\) such that \(FX = \lambda X\) (resp. \(FY = \mu Y\)) for any \(X \in \mathfrak{T}_\lambda\) (resp. \(Y \in \mathfrak{T}_\mu\));
(d) \((\nabla_X F)Y - (\nabla_Y F)X = \epsilon(\eta(X)\phi Y - \eta(Y)\phi X - 2g(\phi X, Y)\xi + \omega(X, Y))\), for any \(X, Y \in \mathfrak{T}\), where \(\epsilon\) is a nonvanishing function and \(\omega\) is a \((1,2)\)-tensor field on \(M\) such that \(\omega(X, Y) \perp \mathfrak{T}\) for any \(X, Y \in \mathfrak{T}\).

Then \(\xi\) is tangent to either \(\mathfrak{T}_\lambda\) or \(\mathfrak{T}_\mu\) everywhere. In other words, \(\xi\) is an eigenvector for \(F\).

Next, we give an elementary algebraic lemma.

Lemma 3.3. Let \(F\) be a symmetric endomorphism of a finite dimensional inner product space \(V\) and \(X, Y \in V\) with \(X \perp Y\). Suppose \(PX = \sigma X\) and \(PY = \tau Y\), where \(P = F^2 - hF\) and \(h, \sigma, \tau\) are scalars. If \(\sigma \neq \tau\), then \(FX \perp Y\).

Proof. If \(X\) is an eigenvector of \(F\), then clearly \(FX \perp Y\). Suppose \(FX = \alpha X + \beta U\), where \(\beta \neq 0\) and \(U (\perp X)\) is a unit vector. Then

\[FU = \beta^{-1}(PX + (h - \alpha)FX) = \beta X + \gamma U \]

where \(h = \alpha + \gamma\), \(\beta^2 = \alpha \gamma + \sigma\). It follows that \(PU = \sigma U\). Hence \(W \perp Y\) and so \(FX \perp Y\). \(\Box\)

Theorem 3.4. There does not exist any \((\eta, \eta_\alpha, \theta)\)-Einstein real hypersurface with constant coefficients functions in \(G_2(C^{m+2})\) such that \(\xi\) is tangent to \(\mathfrak{D}\).
Proof. Suppose such a real hypersurface M exists. Then $\eta(\xi_a) = 0$ and $A\phi \xi_a = 0$, $a \in \{1, 2, 3\}$, by Lemma 2.2. It follows from (1.1) and (2.7) that

$$P = (4m + 7 - f_1)I - (3 + f_2)\xi \otimes \eta - (3 + f_3) \sum_{a=1}^{3} \xi \otimes \eta_a - \sum_{a=1}^{3} \phi \xi_a \otimes \eta_a \phi$$

where $P = A^2 - hA$. Since $A\phi \xi_a = 0$, we have $0 = P\phi \xi_a = 4m + 8 - f_1$. Hence $f_1 = 4m + 8$ and

$$P = -I - (3 + f_2)\xi \otimes \eta - (3 + f_3) \sum_{a=1}^{3} \xi \otimes \eta_a - \sum_{a=1}^{3} \phi \xi_a \otimes \eta_a \phi.$$

It follows that

$$\begin{align*}
PX &= -X, \quad X \in \mathcal{H} \\
P\xi &= -(4 + f_2)\xi \\
P\xi_a &= -(4 + f_3)\xi_a.
\end{align*}$$

(3.1)

By (3.1), we see that at each point, M has, at most, six distinct principal curvatures where each of them is a solution of one of the following equations:

$$\begin{align*}
z^2 - hz + 1 &= 0 \\
(3.3)
z^2 - hz + 4 + f_2 &= 0 \\
(3.4)z^2 - hz + 4 + f_3 &= 0.
\end{align*}$$

Now we consider the maximal open dense subset $M_0 \subset M$ such that the multiplicities of the principal curvatures of M are constant on each connected component of M_0. For each principal curvature λ, denote by \mathcal{Y}_λ the distribution on M_0 foliated by principal directions corresponding to λ.

We shall consider four cases: (i) $-3 \neq f_2 \neq f_3$, (ii) $-3 = f_2 \neq f_3$, (iii) $f_2 = f_3 \neq 0$, (iv) $f_2 = f_3 = 0$.

Case (i) $-3 \neq f_2 \neq f_3$. It is clear that $\xi \in \mathcal{Y}_\lambda$ for the principal curvature λ satisfying (3.3) by virtue of Lemma 3.3. Hence ξ is principal on M_0.

Case (ii) $-3 = f_2 \neq f_3$. In this case, $\mathcal{H} \oplus \Re \xi$ is invariant under A. If $\mathcal{H} \oplus \Re \xi = \mathcal{Y}_\lambda$ for a principal curvature λ satisfying (3.2), then M is Hopf. Hence, we assume that
\(\mathcal{H} \oplus \mathbb{R} \xi = \mathcal{I}_\lambda \oplus \mathcal{I}_\mu \), where \(\lambda \), \(\mu \) are two distinct solutions for (3.2). By applying Lemma 3.2, we obtain \(\xi \) is principal on \(M_0 \).

Case (iii) \(f_2 = f_3 \neq 0 \). Under this hypothesis, Lemma 3.1 gives

\[
0 = \phi \mathcal{A} \xi + \sum_{a=1}^{3} \phi_a \mathcal{A} \xi_a
= 2 \sum_{a=1}^{3} g(A \xi, \xi_a) \phi_a \xi_a + \phi(A \xi)^{2\xi} + \sum_{a,b=1}^{3} g(A \xi_a, \xi_b) \phi_a \phi_b + \sum_{a=1}^{2} \phi_a (A \xi_a)^{2\xi}
\]

where \(X^{2\xi} \) denotes the projection of \(X \) onto \(\mathcal{H} \). Note that the second and forth terms are tangent to \(\mathcal{H} \), the third term is tangent to \(\mathcal{D}^\perp \) and the first term is tangent to \(\phi \mathcal{D}^\perp \), we obtain \(g(A \xi, \xi_a) = 0 \). Consequently, \(\mathcal{H} \oplus \mathbb{R} \xi \) is invariant under \(A \). With the same argument as in the preceding case, we obtain \(\xi \) is principal on \(M_0 \).

Case (iv) \(f_2 = f_3 = 0 \).

In this case, \(\mathcal{H} \) and \(\mathcal{D}^\perp \oplus \mathbb{R} \xi \) are both invariant under \(A \). Suppose that \(\xi \) is not principal on an open subset \(G \) of \(M_0 \). Then by a suitable choice of orthonormal frame \(\{\xi_1, \xi_2, \xi_3\} \) on \(\mathcal{D}^\perp \), we may write

\[
A \xi = \alpha \xi + \beta \xi_3
\]

with \(\beta \neq 0 \). By Lemma 3.3, we obtain

\[
A \xi_3 = \beta \xi + \gamma \xi_3
\]

where \(h = \alpha + \gamma \) and \(\beta^2 = \alpha \beta - 4 \). These imply that \(\mathbb{R} \xi \oplus \mathbb{R} \xi_3 \) is invariant under \(A \). Hence, by applying suitable orthogonal transformation, we obtain

\[
A(a_j \xi + b_j \xi_3) = \alpha_j (a_j \xi + b_j \xi_3), \quad j \in \{1, 2\}
\]

\[
A \xi_1 = \alpha_1 \xi_1
\]

where \(a_j^2 + b_j^2 = 1 \), \(a_j b_j \neq 0 \) and \(a_1 a_2 + b_1 b_2 = 0 \).

Firstly, suppose that \(\mathcal{H} = \mathcal{I}_\lambda \), where \(\lambda \) is a solution for (3.2). Then we have

\[
g((\nabla X A)(a_j \xi + b_j \xi_3), Y) = g(\alpha_j (a_j \phi + b_j \phi_3) AX - A(a_j \phi + b_j \phi_3) AX, Y)
= (\alpha_j \lambda - \lambda^2) g((a_j \phi + b_j \phi_3) X, Y)
\]
for any $X, Y \in \mathcal{H}$. Hence it follows from the Codazzi equation that

$$0 = -g((\nabla_X A)Y - (\nabla_Y A)X, a_j \xi + b_j \xi_3) - 2g((a_j \phi + b_j \phi_3)X, Y)$$

$$= (\lambda^2 - \alpha_j \lambda - 1)g((a_j \phi + b_j \phi_3)X, Y).$$

Since $(a_j \phi + b_j \phi_3)\xi_3(1) = (a_j - b_j)\phi|\xi_3(1)$ and $(a_j \phi + b_j \phi_3)|\xi_3(-1) = (a_j + b_j)\phi|\xi_3(-1)$, we have

$$\lambda^2 - \alpha_j \lambda - 1 = 0, \quad j \in \{1, 2\}.$$

This implies that $\alpha_1 = \alpha_2$ and so ξ is principal on G, which is a contradiction.

Next, we consider the case $\mathcal{H} = \mathfrak{T}_\lambda \oplus \mathfrak{T}_\mu$, where λ, μ are two distinct solutions of (3.2). We shall show that this case indeed cannot occur too. With a similar calculation on $g((\nabla_X A)Y - (\nabla_Y A)X, \xi_1) = -2g(\phi_1 X, Y)$, where $X, Y \in \mathcal{H}$, we obtain

$$(3.5) \quad 2A \phi_1 AX - \alpha_1 (\phi_1 A + A \phi_1) X - 2\phi_1 X = 0$$

for any $X \in \mathcal{H}$. It follows that $(A \phi_1 A \phi_1 - \phi_1 A \phi_1 A)|\mathcal{H} = 0$. Since \mathcal{H} is invariant under both A and $\phi_1 A \phi_1$, there exists at each point of G an orthonormal basis $\{X_1, \cdots, X_{2m-4}, \phi_1 X_1, \cdots, \phi_1 X_{2m-4}\}$ on \mathcal{H} in which each of them is a principal direction. If there exists X_j such that $AX_j = \lambda X_j$ and $A \phi_1 X_j = \mu \phi_1 X_j$, then (3.5) gives

$$2\lambda \mu - \alpha_1 (\lambda + \mu) - 2 = 0.$$

Since λ, μ are distinct solutions for (3.2), $\lambda + \mu = h$ and $\lambda \mu = 1$. It follows that $\alpha_1 h = 0$. However, this contradicts the fact that α_1 is a solution for (3.4) with $f_3 = 0$. Hence, $\phi_1 \mathfrak{T}_\lambda \subset \mathfrak{T}_\lambda$ and $\phi_1 \mathfrak{T}_\mu \subset \mathfrak{T}_\mu$. It follows from (3.5) that

$$\lambda^2 - \alpha_1 \lambda - 1 = \mu^2 - \alpha_1 \mu - 1 = 0.$$

Hence, we have $\lambda \mu = -1$. But this contradicts the fact that $\lambda \mu = 1$. Hence, this case cannot occur.

After all the above considerations, we obtain ξ is principal on M_0. Since M_0 is dense, we conclude that M is Hopf. By Theorem 2.4, M is an open part of a real hypersurface of type B. It follows from [2, Prop. 2] that $\mathcal{H} = \mathfrak{T}_\lambda \oplus \mathfrak{T}_\mu$, where $\lambda = \cot r, \mu = -\tan r, r \in [0, \pi/4]$. Since λ and μ are not solutions of (3.2), such a real hypersurface does not exist and this completes the proof.
4 Examples of \((\eta_a, \theta)\)-Einstein real hypersurfaces

In this section, we shall show that real hypersurfaces of type \(A\) in \(G_2(C^{m+2})\) are \((\eta_a, \theta)\)-Einstein (more precisely, \((\eta_a, e)\)-Einstein).

Let \(M\) be a real hypersurface of type \(A\) in \(G_2(C^{m+2})\), that is, a tube of radius \(r\) around a totally geodesic \(G_2(C^{m+1})\). Let \(J_1 \in \mathfrak{g}\) such that \(J_1 N = JN, x \in M\). Then we have

\[
\theta = \theta_1, \quad \eta_1(\xi) = 1, \quad \eta_2(\xi) = \eta_3(\xi) = 0
\]

\[
\xi_1 = \xi = -\theta_1 \xi, \quad \xi_2 = \theta_1 \xi_2 = \phi \xi_3, \quad \xi_3 = \theta_1 \xi_3 = -\phi \xi_2.
\]

Note that, under this setting, we have \(\sum_{a=1}^{3} \phi \xi_a \otimes \eta_a \phi = \sum_{a=2}^{3} \xi_a \otimes \eta_a\). Hence, the Ricci tensor \(S\) is descended to

\[
S = hA - A^2 + (4m + 7)\mathfrak{X} + \theta - 6\xi \otimes \eta - 2 \sum_{a=2}^{3} \xi_a \otimes \eta_a.
\]

(4.1)

It follows from [2, Prop. 3] that \(M\) has constant principal curvatures

\[
\alpha = \sqrt{8} \cot(\sqrt{8}r), \quad \beta = \sqrt{2} \cot(\sqrt{2}r), \quad \lambda = -\sqrt{2} \tan(\sqrt{2}r), \quad \mu = 0
\]

where \(r \in [0, \pi/\sqrt{8}]\), and \(\Sigma_\alpha = \mathbb{R} \xi, \Sigma_\beta = \mathbb{R} \xi_2 \oplus \mathbb{R} \xi_3, \Sigma_\lambda = \mathfrak{H}_1(-1), \Sigma_\mu = \mathfrak{H}_1(1)\). Note that

\[
\beta + \lambda = \alpha, \quad \beta \lambda = -2,
\]

\[
h = \alpha + 2\beta + (2m - 2)\lambda = 3\beta + (2m - 1)\lambda.
\]

We set

\[
\begin{cases}
 f_1 = 4m + 4 + (m - 1)\lambda^2 = 4m + 4 + 2(m - 1)\tan^2 \sqrt{2}r \\
 f_2 = 0 \\
 f_3 = 2\beta^2 - 4m = 4 \cot^2 \sqrt{2}r - 4m \\
 f_4 = 4 - (m - 1)\lambda^2 = 4 - 2(m - 1)\tan^2 \sqrt{2}r.
\end{cases}
\]

(4.2)

By (4.1), we obtain the followings:

\[
SX = (4m + 8)X = f_1 X + f_4 \theta X
\]

\[
SY = (h\lambda - \lambda^2 + 4m + 6) = ((2m - 2)\lambda^2 + 4m)Y = f_1 Y + f_4 \theta Y
\]

\[
S \xi_b = (h\beta - \beta^2 + 4m + 6)\xi_b = (2\beta^2 + 8)\xi_b = f_1 \xi_b + f_3 \xi_b + f_4 \theta \xi_b
\]

\[
S \xi = (h\alpha - \alpha^2 + 4m)\xi = (2\beta^2 + (2m - 2)\lambda^2)\xi = f_1 \xi + f_2 \xi + f_4 \theta \xi
\]

for any \(X \in \mathfrak{H}_1(1), Y \in \mathfrak{H}_1(-1)\) and \(b \in \{2, 3\}\). Hence we have proved the following.

Theorem 4.1. Let \(M\) be a tube of radius \(r\) around a totally geodesic \(G_2(C^{m+1})\) in \(G_2(C^{m+2})\). Then \(M\) is \((\eta_a, \theta)\)-Einstein with \(f_1, f_3, f_4\) where are constants given in (4.2).
In particular, by setting $f_4 = 0$ and $f_3 = 0$ respectively in (4.2), we obtain the following.

Corollary 4.2. Let M be a tube of radius r around a totally geodesic $G_2(\mathbb{C}^{m+1})$ in $G_2(\mathbb{C}^{m+2})$ with $\cot^2(\sqrt{2}r) = (m-1)/2$. Then M is η_a-Einstein with $f_1 = 4m + 8$ and $f_3 = -2(m+1)$.

Corollary 4.3. Let M be a tube of radius r around a totally geodesic $G_2(\mathbb{C}^{m+1})$ in $G_2(\mathbb{C}^{m+2})$ with $\cot^2(\sqrt{2}r) = m$. Then M is θ-Einstein with $f_1 = 4m + 4 + 2(m - 1)/m$ and $f_4 = 4 - 2(m - 1)/m$.

References

