The Genetic Regulation of The Chromosomal \textit{yefM}-\textit{yoeB}\textsubscript{Spn} Toxin-Antitoxin Locus of \textit{Streptococcus pneumoniae}

Chan W.T.1, S.K. Khoo2, C. Nieto3, M. Espinosa3, J.A. Harikrishna1, C.C. Yeo2

1Department of Genetics, Faculty of Science, University Malaya
2Department of Biotechnology, Malaysia University of Science and Technology
3Centro de Investigaciones Biologicas, CSIC, Madrid

Toxin-antitoxin (TA) systems encoded on prokaryotic chromosomes have been found to have effects on genome stability, gene regulation, growth control and programmed cell death [Magnuson (2007) J. Bacteriol. 189: 6089 – 6092]. At least 3 TA loci have been identified in the chromosome of \textit{Streptococcus pneumoniae}. One of these loci, designated \textit{yefM}-\textit{yoeB}\textsubscript{Spn}, is homologous to the \textit{yefM}-\textit{yoeB} TA genes of \textit{E. coli}. Overexpression of the \textit{YoeB}\textsubscript{Spn} toxin led to cell growth arrest, which could be reversed by expression of its cognate antitoxin \textit{YefM}\textsubscript{Spn} in both \textit{S. pneumoniae} and \textit{E. coli}. This indicated that \textit{yefM}-\textit{yoeB}\textsubscript{Spn} is a functional TA system, [Nieto et al. (2007) J. Bacteriol. 189:1266-1278].

In the present study, we demonstrated using reverse-transcriptase PCR of total RNA of \textit{S. pneumoniae} that \textit{yefM}-\textit{yoeB}\textsubscript{Spn} were organized in a single operon, which is a norm for TA systems. Experiments using \textit{lacZ} transcriptional fusions in \textit{E. coli} DH5\textordmasculine{a} showed that the \textit{yefM}-\textit{yoeB}\textsubscript{Spn} genes were co-transcribed from two Σ^{70}-type promoters upstream of the \textit{yefM}\textsubscript{Spn} reading frame, designated \textit{yefM}\textsubscript{p1} and \textit{yefM}\textsubscript{p2}. Transcriptional fusion results also indicate that in the presence of the \textit{yefM}\textsubscript{Spn} reading frame, the promoter activity is increased by up to 3.7-fold. This indicated that the \textit{YefM}\textsubscript{Spn} antitoxin may possibly function as a transcriptional activator unlike other antitoxins which have been reported to act as transcriptional repressors. However when both the \textit{YefM}\textsubscript{Spn} antitoxin and the \textit{YoeB}\textsubscript{Spn} toxin were co-expressed, the \textit{YefM}\textsubscript{Spn}-mediated activation was negated. Gel shift assays indicate both \textit{YefM}\textsubscript{Spn} and \textit{YefM-YoeB}\textsubscript{Spn} complex bind to palindrome 2 (44 bp), which is centered 62 bp upstream of \textit{yefM}\textsubscript{Spn} and overlapped the \textit{yefM}\textsubscript{p1} and \textit{yefM}\textsubscript{p2} promoters whereas no binding was observed for palindrome 1 (46 bp), which is centered 196 bp upstream of the \textit{yefM}\textsubscript{Spn} start codon. How binding of \textit{YefM}\textsubscript{Spn} to palindrome 2 activates transcription from the \textit{yefM}\textsubscript{p1} and \textit{yefM}\textsubscript{p2} promoters is unknown.