

th Workshop on______ SPECIALTY OPTICAL FIBERS AND THEIR APPLICATIONS

Conference Program Luited Nations Cultural Organization 4 - 6 November 2015 Hotel ICON, Hong Kong

 \odot

Sponsors:

FIBERCORE

THORLABS

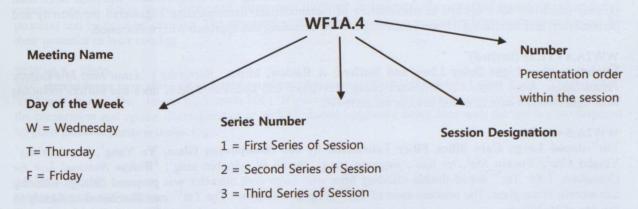
INTERNATIONAL YEAR OF LIGHT

2015

Agenda of Sessions Hotel ICON, Hong Kong

me and restantifies for options.	Tuesday, 3 November	Oplants Group Ov is dreed
18:30—21:30	Welcome Drink, Pool Deck	Contraction Contraction

Wednesday, 4 November		
08:00-08:30	Registration	
08:30—08:45	Welcome Remarks, Silverbox Ballroom	
08:45—10:05	WW1A • Recent Achievements in Specialty Optical Fibers, Silverbox Ballroom	
10:05—10:35	Coffee Break in Exhibition Hall	
10:35—12:10	WW2A • Novel Materials and Functions I, Silverbox Ballroom	
12:10—13:40	Lunch	
13:40—15:20	WW3A • Novel Materials and Functions II, Silverbox Ballroom	
15:20—15:50	Coffee Break in Exhibition Hall	
15:50—17:40	WW4A • Non-silica Fibers, Silverbox Ballroom	


Thursday, 5 November	
08:00-08:30	Registration
08:30—10:20	WT1A • Fiber Lasers I, Silverbox Ballroom
10:20—10:50	Coffee Break in Exhibition Hall
10:50—12:20	WT2A • Fiber Lasers II, Silverbox Ballroom
12:20—13:50	Lunch
13:50—14:55	WT3A • Nonlinear Effects in Photonic Crystal Fibers, Silverbox Ballroom
. 14:55—16:15	WT4A • Poster Session & Coffee Break in Exhibition Hall
and the second s	Social Events
16:15—21:00	Victoria Harbour Cruise, 16:15 - 18:30
	Conference Dinner at Hotel ICON, 19:00 - 21:00

4th Workshop on Specialty Optical Fiber and Their Applications

.....

Friday, 6 November		
08:00-08:30	Registration	
08:30—10:10	WF1A • New Fibers Development, Silverbox Ballroom	
10:10—10:40	Coffee Break in Exhibition Hall	
10:40—12:05	WF2A • Hollow Core Fibers and Bragg Fibers, Silverbox Ballroom	
12:05—13:35	Lunch	
13:35—14:35	WF3A • New Telecom Applications, Silverbox Ballroom	
14:35—15:35	Trade Talks	
15:35—16:05	Coffee Break in Exhibition Hall	
16:05—17:35	WF4A • Fiber Sensing, Silverbox Ballroom	
17:35—17:45	Closing Remarks	

Explanation of Session Codes

4 = Fourth Series of Session

Abstracts

Wednesday, 4 November

08:45 -- 10:05

WW1A • Recent Achievements in Specialty Optical Fibers

WW1A.1 • 08:45 (Plenary)

Special or Specialty Optical Fibres?, David N. Payne¹; ¹Univ. of Southampton, UK. As well as their wellknown functions in telecommunications, special fibres enable applications as diverse as sensors, high-power lasers and imaging. What are the challenges and where to next?

WW1A.2 • 09:45 (Invited)

Pushing the limits in the fabrication and properties of soft glass and silica optical fibers, Heike Ebendorff-Heidepriem¹; ¹Univ. of Adelaide, Australia. This paper reviews progress in the fabrication of optical fibers made from novel glasses and/or exhibiting new structures. These fibers push the boundaries in materials and optical properties for laser, nonlinearity and sensing applications.

10:35 -- 12:10

WW2A • Novel Materials and Functions I

Presider: Jacques Albert; Carleton Univ., Canada

WW2A.1 • 10:35 (Invited)

New Materials and Functions - Novel Fibre Materials and Fabrication Methods, John Ballato¹, Peter Dragic²; ¹Clemson Univ., USA; ²Univ. of illinois Urbana Champaign, USA. Recent advances in the fabrication of optical fibres have opened the door to a myriad of novel compositions, hence performance attributes. This paper highlights compositions and characteristics of novel molten core-derived silica-based fibres.

WW2A.2 • 10:55 (Invited)

Semiconductor Optical Fibers, Anna C. Peacock¹, Fariza Suhailin¹, Li Shen¹, Natasha Vukovic¹, Sakellaris Mailis¹, Noel Healy¹; ¹Univ. of Southampton, UK. We review the recent advancements in the fabrication and application of semiconductor optical fibers. Particular focus is placed on novel materials and device designs for use in optical signal processing systems.

WW2A.3 • 11:15 (Invited)

Metamaterial Fibres, Simon C. Fleming¹, Alexander . Argyros¹, Juliano G. Hayashi¹, Shicheng Xue¹, Geoff Barton¹, Boris Kuhlmey¹; ¹Univ. of Sydney, Australia. Fibre drawing is a versatile micro- and nano-fabrication process which we have applied to manufacture of metamaterials, demonstrating engineered permittivity and permeability, and fabricating a hyperlens. Prospects for extending this approach will be discussed.

WW2A.4 • 11:35 (Invited)

Miniature Slow Light Delay Lines and Buffers: A Review, Misha . Sumetsky¹; ¹Aston Inst. of Photonic Technologies, Aston Univ., UK. Miniature planar waveguide and fiber-based delay lines and buffers including slow light resonant structures and devices are reviewed.

WW2A.5 • 11:55

Tm³⁺-doped Large Core Silica Fiber Fabricated by the Nanoporous Glass, Yu Yang¹, Luyun Yang¹, Yingbo Chu¹, Yunxiu Ma¹, lei liao¹, jinggang peng¹, jinyan li¹, yingbin xing¹; ¹Wuhan National Lab for Optoelectr, USA. Tm³⁺ doped double cladding fiber with large core diameter was prepared through sintering nanoporous silica glass. The concentration of Tm³⁺ is up to 6000ppm . The Tm³⁺ ions distributed uniformly in the size of 30/400µm.

13:40 -- 15:20

WW3A • Novel Materials and Functions II

Presider: Claude Aguergaray; Alphanov, France

WW3A.1 • 13:40 (Invited)

New functions and materials - multimaterial fibers in biology and nanotechnology, Lei Wei¹; ¹Nanyang Technological Univ., Singapore. Multimaterial fiber devices are fabricated from materials with disparate optical, electronic, and mechanical properties using scalable preform-to-fiber processing. Here we present recent progress in fiber-neuron interface and the fabrication of structured nanoparticles.

WW3A.2 • 14:00 (Invited)

Liquid and Metallic Nanowires in Fibers: A Novel Base for Nanophotonics and Optofluidics, Markus Schmidt^{1,2}; ¹Leibniz Inst. of Photonic Technology, Germany; ²Otto Schott Inst. of Material Research, Germany. Liquid and metallic nanowires inside microstructured optical fibers provide new functionalities for various fields such as plasmonics and biophotonics. Here I review our results on spiraling plasmons, nanoparticle tracking and coherent mid-IR light generation.

WW3A.3 • 14:20

Fabrication of planar waveguides in oxyfluoride glass-ceramics by simple heat-treatment, Kummara Venkata Krishnaiah^{2,3}, Yannick Ledemi¹, Raman KASHYAP^{2,3}, Younes Messaddeq¹; ¹COPL, Univ Laval, Canada; ²The Fabulas Lab, 2Dept. of Engineering Physics, Canada; ³Dept. of Electrical Engineering Polytechnique Montreal, Canada. Planar waveguides were fabricated by heat-treatment of oxyfluoride glasses. The formation of transparent nanocrystallized layers of 1 to 5 micrometers thickness with an increased refractive index was evidenced during the ceramization treatments applied on the glass.

WW3A.4 • 14:35

Novel Wearable RF Textile-Integrated Antennas Made from Multi-Material Fibers, Stepan Gorgutsa¹, Mazen Khalil¹, Victor Bélanger-Garnier¹, Jeff Viens¹, Benoit Gosselin², Sophie Larochelle², Younes Messaddeq1; 1COPL, Canada; 2Univ. Laval, Canada. In this work, we present the emissive performance of wearable radio-frequency (RF) textiles made from multi-material fibers, for body area network applications through ISM (2.4 GHz) bands.

WW3A.5 • 14:50

Ytterbium-doped oxyfluoride nano-glass-ceramic fibers for laser cooling, Kummara Venkata Krishnaiah^{1,2} Yannick Ledemi¹, Elton Soares de Lima Filho^{2,3}, Galina Nemova^{2,3}, Younes Messaddeq¹, Raman KASHYAP^{2,3}; ¹COPL, Univ Laval, Canada; ²Dept. of Engineering Physics, École Polytechnique de Montréal, Canada; ³Dept. of Electrical Engineering, École Polytechnique de Montréal, Canada. Ytterbium doped oxyfluoride nano-glassceramic optical fibers were fabricated using two different techniques: the crucible technique (direct-melt process) and by preform drawing. The structural and photoluminescence properties have been characterized for their potential in laser cooling.

WW3A.6 • 15:05

Yb³⁺ doped large core silica fiber based on glass phase-separation technology, Luyun Yang¹, Yingbo Chu¹, Yu Yang¹, Nengli Dai¹, jinyan li¹, Yunxiu Ma¹; ¹Wuhan National Lab for Optoelectronics, China. We report on the preparation and optical characteristics of an Yb³⁺ doped large core silica fiber with the active core prepared by glass phase-separation technology.

15:50 - 17:40WW4A • Non-silica Fibers

Presider: John Ballato; Clemson Univ., USA

WW4A.1 • 15:50 (Invited)

Smart Fibers for Sensing, Shahraam Afshar, Tanya Monro¹; ¹Univ. of South Australia, Australia. We present a new class of optical fibers which allow electrical and chemical, in addition to optical, functionalities to be combined in one device providing an ideal platform for sensing applications.

WW4A.2 • 16:10

Chalcogenide Glass Fiber Tape, Yannick Ledemi², Jerome Lapointe¹, Steeve Morency², Ye-Jin Yu², Younes Messaddeq², Raman Kashyap¹; ¹Polytechnique de Montreal, Canada; ²Canada Excellence Research Chair in Photonic Innovations, COPL, Univ. of Laval, Canada. Meter long lengths of chalcogenide glass fiber tape with a thickness of 300 microns and an aspect ratio of ~10:1, have been fabricated by a double crucible technique for the first time to the authors' knowledge.

WW4A.3 • 16:25

Indium Fluoride Glass Fibers for Mid-Infrared applications, Mohammed Saad¹, Robert Pafchek¹, Paul Foy¹, Zack Jiang¹, David Gardner¹, Patrick Hawkins¹; ¹Thorlabs Inc, USA. Abstract: Indium fluoride fibers have a wide transmission window from 0.3 to 5.5 micron. This opens the door to new applications, in aerospace, supercontinuum sources, and spectroscopy and fiber lasers. We report multimode and single mode indium fluoride glass fibers with good optical attenuation.

WW4A.4 • 16:40

Hollow Core Antiresonant Fibers in Borosilicate Glass, Walter Belardi¹, Nicholas White¹, Joris Lousteau¹, Xian Feng¹, Francesco Poletti¹; ¹Optoelectronics Research Centre, Univ. of Southampton, UK. We report the first hollow-core optical fibers made of low quality borosilicate glass. Their negligible material absorption loss stemming from ultralow mode-glass overlap opens up the prospect of using cheap glasses in the optoelectronics industry.

WW4A.5 · 16:55 (Tutorial)

New Trends in POF for Telecommunications, Yasuhiro Koike¹; ¹ Keio Photonics Research Institute, Japan. As the new era of 4K/8K displays has arrived, tremendously high bit-rate transmission is needed. However, the metal interfaces are not suitable for its EMI problem and bulkiness. High-Speed GI-POF has been attracting a great deal of attention as a strong candidate as the new interface owing to the intrinsic properties of polymer.

Thursday, 5 November

08:30 -- 10:20

WT1A • Fiber Lasers I

Presider: Heike Ebendorff-Heidepriem; Univ. of Adelaide, Australia

WT1A.1 • 08:30 (Invited)

Hollow-core Fiber Gas Lasers, William J. Wadsworth¹, Adrain L. love¹, Jonathan C. Knight¹; ¹Dept. of Physics, Univ. of Bath, UK. Hollow core optical fibers offer the opportunity to re-imagine gas lasers in a compact and flexible form. Discharge pumped atomic gas lasers take advantage of the favourable characteristics of narow discharges, without diffraction problems.

WT1A.2 • 08:50 (Invited)

Novel Fibers for High Performance Lasers and Amplifiers, Michalis Zervas¹; ¹Optoelectronics Research Centre, Univ. of Southampton, UK. We review the main active and passive fiber designs for generation and delivery of high average/peak power in current fiber laser systems. Mitigation strategies of nonlinear effects and issues related to transverse modal instabilities will be discussed.

WT1A.3 • 09:10 (Invited)

Thulium and Holmium Doped Fibre Lasers for 2 µm Applications, Alexander Hemming², Nikita Simakov². John Haub², Adrian Carter¹; ¹Nufern, Australia; ²Cyber and Electronic Warfare Division, Defence Science and Technology Organisation, Australia. We will present recent results on thulium fibre lasers and their application to pumping fibre and solid-state based holmium-doped lasers and amplifiers. Resonantly pumped holmiumdoped silica fibre devices utilising these pump sources will be discussed.

WT1A.4 • 09:30 (Invited)

Bismuth-doped Optical Fibers: Advances and New Developments, Evgeny M. Dianov¹, Sergei V. Firstov¹, Mikhail A. Melkumov¹; ¹Russian Academy of Sciences, Russia. Recent results on luminescence properties of various Bi-doped fibers, the nature of Bi-related NIR emitting centers and the development of efficient Bi-doped fiber laser and optical amplifiers are presented.

WT1A.5 • 09:50

Diode Pumped Bi-doped Fiber Laser Operating at 1360nm, Naresh Kumar Thipparapu¹, Andrey A. Umnikov¹, Saurabh Jain¹, Pranabesh Barua¹, Jayanta K. Sahu¹; ¹Univ. of Southampton, UK. Bi-doped phosphosilicate fibers are fabricated by MCVD-solution doping technique under different oxidation conditions. Fibers are evaluated for unsaturable loss and laser performance. A 22mW all-fiber Bi-laser is demonstrated at 1360nm by LD pumping at 1267nm.

WT1A.6 • 10:05

Tm³⁺ or Ho³⁺ Doped Fluorotellurite Microstructure Fiber for 2µm Lasing, Chuanfei Yao¹, Zhixu Jia¹, Shunbin Wang¹, Chunfeng He¹, Guanshi Qin¹, Weiping Qin¹; ¹Jilin Univ., China. Tm³⁺ (or Ho³⁺)-doped fluorotellurite microstructured fibers are fabricated by using a rod-in-tube method. By using resonance pumped method, all-fiber lasing at 1896nm and 2074nm are obtained from Tm³⁺ or Ho³⁺-doped fluorotellurite microstructured fibers, respectively

10:50 - 12:20

WT2A • Fiber Lasers II

Presider: Walter Margulis; Acreo Swedish ICT AB, Sweden

WT2A.1 • 10:50 (Invited)

Ultra Large Mode Area Fibres with Aperiodic Cladding Structure for High Power Fibre Lasers, Philippe Roy^{1,2}, Romain DAULIAT^{1,3}, Aurelien Benoit^{1,2}, Dia Darwich^{1,2}, Jens Kobelke³, Kay Schuster³, Stephan Grimm³, François Salin⁴, Raphaël Jamier^{1,2}; ¹Universite de Limoges, France; ²Xlim-CNRS, France; ³Leibniz Inst. of Photonic Technology, Germany; ⁴EOLITE Systems, France. This communication presents the latest designs, fabrication steps and first results of large mode area fibres with aperiodic cladding structure for high power singlemode emission. Pre-compensation of thermal loading and first laser emission are detailed.

WT2A.2 • 11:10 (Invited)

Advances in Integration of Photonic Crystal Fibers in High-power Fiber Laser, *Claude Aguergaray*¹; ¹*Alphanov, France.* Amongst others, we present a fully monolithic 40µm core, Yb-doped photonic-crystal-fiber amplifier module producing up to 210W average power at 1064nm in thermally controlled packaging, showing excellent peak-to-peak stability (<1%fluctuations) over 25 days at >100W.

WT2A.3 • 11:30 (Invited)

High Pulse Energy Stable Wave-break Soliton in a Long Ring-cavity Fiber Laser, Xijia Gu¹, Jiaqi Zhou¹; ¹Dept. of Electrical and Computer Engineering,, Ryerson Univ., Canada. We demonstrated an all-fiber 50-nJ pulse energy dissipative soliton laser mode-locked by a nonlinear amplified loop mirror (NALM). Further increasing NALM pump power leads to stable twin-solitons separated in tenth of ns in every round-trip.

WT2A.4 • 11:50

High-power Efficient Yb-doped Fiber Laser with Low Quantum Defect, Guancheng Gu¹, Zhengyong Liu², fanting Kong¹, Hwa Yaw Tam², ramesh shori³, Liang Dong¹; ¹Holcombe Dept. of Electrical and Computer Engineering, Clemson Univ., USA; ²Dept. of Electrical Engineering, The Hong Kong Polytechnic Univ., Hong Kong; ³SPAWAR System Center,, USA. Using an ytterbium-doped-phosphosilicate double-clad leakage channel fiber with ~50µm core and ~420µm cladding, we have achieved ~70% optical-to-optical efficiency at 1018nm. The much larger cladding enables use of high-power low-brightness diodes, a key for efficient kW operation.

WT2A.5 • 12:05

High Power Performance of Rod Fiber Amplifiers, Mette M. Johansen¹, Mattia Michieletto^{1,2}, Torben Kristensen², Thomas T. Alkeskjold², jesper Laegsgaard¹; ¹Danmarks Tekniske Universitet, Denmark; ²NKT Photonics, Denmark. An improved version of the DMF rod fiber is tested in a high power setup delivering 360W of stable signal power. Multiple testing degrades the fiber and transverse modal instability threshold from >360W to ~290W.

13:50 -- 14:55

WT3A • Nonlinear Effects in Photonic Crystal Fibers

Presider: Kyunghwan Oh; Yonsei Univ., South Korea

WT3A.1 • 13:50 (Invited)

Novel Microstructured Fibres for Supercontinuum Generation, Xin Jiang¹, Nicolas Joly^{2,1}, Fehim Babic¹, Rafal Sopalla¹, Rui Song³, Joris Lousteau^{4,5}, Daniel Milanese⁵, John C. Travers¹, Philip S. Russell^{1,2}; ¹Max-Planck-Inst. for the Science of Light, Germany; ²Dept. of Physics, Univ. of Erlangen-Nuremberg, Germany; ³College of Optoelectronic Science and Engineering, National Univ. of Defense Technology, China; ⁴Optoelectronic Research Centre, Univ. of Southampton, UK; ⁵Inst. of Materials Physics and Engineering DISAT, Politecnico di Torino, Italy. We report recent progress on the fabrication of photonic crystal fibre from ZBLAN and tellurite glasses and their application to generating broadband supercontinua.

WT3A.2 • 14:10 (Tutorial)

Nonlinear Effects in Novel Photonic Crystal Fibers, Nicolas Joly^{2,1}; ¹Universität Erlangen-Nürnberg, Germany; ²Max-Planck-Inst Physik des Lichts, Germany. We present recent nonlinear experiments realized in various types of solid-core and hollow-core photonic crystal fibers pumped with ultrashort pulses. Applications include UV-tunable source, multi-octave supercontinuum, and generation of correlated twin beams for quantum optics.

14:55 -- 16:15 WT4A • Poster Session

WT4A.1 • Core-to-core Crosstalk Management as an Instrument for Constructing Multicore Fiber Based Devices, Lukasz Szostkiewicz¹, Anna Ziolowicz^{1,2}, Marek Napierala^{3,5}, Lukasz Ostrowski¹, Dawid Budnicki³, Beata Bienkowska³, Michalina Jozwik³, Anna Pytel³, Mariusz Makara³, Krzysztof Poturaj⁴, Pawel Mergo⁴, Tomasz Nasilowski³; ¹Polish Centre For Photonics and Fibre Op, Poland; ²Warsaw Univ. of Technology, Faculty of Physics, Poland; ³Inphotech Ltd., Poland; ⁴Lab of Optical Fibre Technology, Maria Curie-Sklodowska Univ., Poland; ⁵Inst. of Applied Physics, Military Univ. of Technology, Poland. We present multicore fiber based elements created by fine crosstalk management. We show all fiber 1x7 power splitter and WDM splitter.

WT4A.2 • Higher order modes management in hole-assisted fibers, Anna Ziolowicz^{1,5}, Michal Szymanski², Lukasz Ostrowski², Marek Napierala^{1,3}, Marta Filipowicz¹, Krzysztof Poturaj⁴, Mariusz Makara¹, Pawel Mergo⁴, Tomasz Nasilowski¹; ¹InPhoTech, Poland; ²Polish Centre For Fibre Optics and Photonics, Poland; ³Inst. of Applied Physics, Military Univ. of Technology, Poland; ⁴Faculty of Chemistry, Maria Curie-Sklodowska Univ., Poland; ⁵Faculty of Physics, Warsaw Univ. of Technology, Poland. We present an approach to crosstalk limitation and higher order modes suppression in multicore hole-assisted fibers. Our designed and fabricated fiber is compliant with singlemode fiber standards, hence can be utilized in space division multiplexing.

WT4A.3 • Five-core Fiber for Astronomy Spectrometer Application, Chen Gongdai¹, Yang Jing¹, Chunying Guan¹, Libo Yuan¹, Hua Bai², Xiangqun Cui²; ¹College of Science, Harbin Engineering Univ., China; ²Chinese Academy of Sciences Inst. of Optical Technology, Nanjing Astronomical Observatory, China. A novel special five-core fiber with one star-image transmission core centrally and four direction guiding cores around proposed to realize star-image guiding alignment, f-ratio matching, consistent transmission and accurate connection and control in the LAMOST.

WT4A.4 • Asymmetric Very Large Mode Area Fiber with Enhanced Higher Order Mode Delocalization, Zeinab S. Eznaveh¹, Jose E. Antonio-Lopez¹, Gisela Lopez-Galmiche¹, James Anderson¹, Axel Schulzgen¹, Rodrigo Amezcua Correa¹; ¹CREOL, Univ. of Central Florida, USA. A novel very-large-mode-area asymmetric rod-type fiber was fabricated and experimentally characterized. The fiber supports effective and robust singlemode operation for a core diameter of 66µm making it attractive for high power amplifier systems.

WT4A.5 • Side Firing Microstructured Optical Fiber for Surgical Applications, Jose E. Antonio-Lopez¹, Ori Weisberg², Moshe Eshkol², Axel Schulzgen¹, Rodrigo Amezcua Correa¹; ¹CREOL, USA; ²Asymmetric Medical, Israel. A novel microstructered optical fiber is presented. The fiber design allows the light to be concentrated to only one side by bending the fiber, enabling simple and intuitive use of the fiber in surgical procedures.

WT4A.6 • 3D Bending Sensor Combining Multicore Fiber with a Mode-Selective Photonic Lantern, Amy Van Newkirk¹, Amado M. Velázquez-Benítez¹, Jose E. Antonio-Lopez¹, Jacques Albert², Rodrigo Amezcua Correa¹, Axel Schulzgen¹; ¹CREOL, the College of Optics and Photonics, Univ. of Central Florida, USA; ²Dept. of Electronics, Carleton Univ., Canada. A bending sensor is demonstrated using the combination of a mode-selective photonic lantern and a multicore fiber, for simultaneous measurements of bending direction and radius of curvature.

WT4A.7 • Fabrication and properties of a new class of Chromium doped nano-phase separated Yttria-Alumina-Silica glass core optical fiber, Debjit Dutta¹, Anirban Dhar¹, Alexander Kiryanov², SHYAMAL DAS¹, Sandip Bysakh¹, Mukul Paul¹; ¹CSIR-Central Glass and Ceramic Research, India; ²Centro de Investigaciones en Optica, Mexico. Fabrication of chromium doped optical fiber within nano-phase separated yttria-alumina-silica glass core through Modified Chemical Vapor Deposition (MCVD) process with solution doping technique followed by thermal annealing is presented with their material and optical characterization.

WT4A.8 • Background Attenuation of Al-doped Fibers Produced with Vapor Phase Doping Technique, Stanislav Čampelj¹, Luka Perpar¹, Peter Lukan¹, Janko Štajner¹, Aljaz Ramšak¹, Andraz Lenardič¹, Borut Lenardic¹; ¹Optacore d.o.o., Slovenia. The influence of Al concentration on the background attenuation of alumosilicate fibers produced with vapor phase doping technique were investigated. Preforms were produced using CDS-03 chelate system. Background losses were reduced to 2dB/km at 1200nm.

WT4A.9 • Focused Ion Beam Structuring of Exposed-Core Microstructured Optical Fibers, Stephen Warren-Smith¹, Ricardo M. André^{1,2}, Jan Dellith¹, Manfred Rothhardt¹, hartmut bartelt¹; ¹Leibniz Inst. of Photonic Technology, Germany; ²INESC Porto and Dept. of Physics and Astronomy, Faculty of Sciences, Univ. of Porto, Portugal. Focused ion beam milling has been employed to create micro-structured features onto an exposed-core microstructured optical fiber. Here we detail results for fabricating and characterizing Fabry-Perot cavities using this method.

WT4A.10 • Optical properties of Tm³⁺-doped microstructure fiber fabricated by plasma non-chemical vapor deposition, Changming xia¹, Guiyao Zhou¹, Jiantao liu¹, wei zhang¹, ying han¹, jinhui yuan¹; ¹Guangdong provincal key Lab of nanophotonic functional materials and devices, South china normal Univ., China. The optical properties and fabrication technology of Tm³⁺ doped microstructure fibers based on a new fabrication process of plasma non-chemical vapor deposition in our lab are detailedly analyzed.

WT4A.11 • Yb 3+ doped three-core photonic crystal fiber prepared by porous glass for high power, Yingbo Chu¹, Yu Yang¹, Yingbo Wang¹, Xiang Shen¹, Nengli Dai¹, Haiqing Li¹, jinggang peng¹, jinyan li¹, Luyun Yang¹, Yunxiu Ma¹; ¹Wuhan National Lab for Optoelectronics, China. A new type of Yb3+ doped three cores photonic crystal fiber based on porous glass realizes the high doped rare earth and obtain single mode transmission and equal field amplitude in all the active cores.

WT4A.12 • All-fiber Tunable Devices Based on Photonic Crystal Fibers with Integrated Electrodes, Pedro Torres¹, Erick Reyes-Vera^{1,2}, Yamile Cardona-Maya¹, Nelson D. Gómez-Cardona^{1,2}; ¹Universidad Nacional de Colombia, Colombia; ²Instituto Tecnológico Metropolitano, Colombia. Photonic crystal fibers with integrated electrodes are a promising technology to actively control light inside a fiber. Here, we report on the birefringence properties of this specialty fiber and present an all-fiber tunable multifunctional device.

WT4A.13 • Yb-doped Pedestal Aluminosilicate Fiber through Vapor Phase Doping for High Power Laser Applications, Maitreyee Saha¹, Sourav Das Chowdhury¹, Atasi Pal¹, Mrinmay Pal¹, Ranjan Sen¹; ¹Central Glass & Ceramics Res Inst, India. Presenting fabrication process and characteristics of large core Yb-doped optical fibers with pedestal design using vapor phase doping technique. Preforms have uniform step-index profiles. Fibers exhibit good optical properties, suitable for high power laser applications.

WT4A.14 • Er^{3+} doped low-hydroxyl fluorotellurite microstructured fibers for 2.7 µm laser applications, Zhixu Jia¹, Chunfeng He¹, Chuanfei Yao¹, Shunbin Wang¹, Guanshi Qin¹, Weiping Qin¹; ¹Jilin Univ., China. We developed a novel Er^{3+} -doped low-hydroxyl fluorotellurite microstructured fiber (EDFTMF) and demonstrated intense emissions at ~2.7 µm from a 5 cm long EDFTMF with the excitation of a 980 nm laser for the first time

WT4A.15 • Optical Frequency Comb Generation from a Bismuth-Based Actively Mode-Locked Fiber Ring Laser, Yutaka Fukuchi¹, Hiroki Shirane¹; ¹Tokyo Univ. of Science, Japan. We demonstrate widely wavelength-tunable and ultra-flat optical frequency comb generation from an actively mode-locked short-cavity laser employing a short-length bismuth-oxide-based nonlinear erbium-doped fiber. A 10GHz-spaced frequency comb with a 10dB bandwidth of 250GHz is generated.

WT4A.16 • Optically tunable monolayer graphene saturable absorber for the control of pulsed fiber laser operation, Jinhwa Gene¹, Hwan Seong Jeong², Nam Hun Park², Sun Young Choi², Fabian Rotermund², Dong-II Yeom², Byoung Yoon Kim¹; ¹Physics, KAIST, South Korea; ²Dept. of Physics and Dept. of Energy Systems Research, Ajou Univ., South Korea. We propose a tunable in-line saturable absorber through the optical control of monolayer graphene transferred onto the side-polished fiber. The nonlinear saturable absorption of graphene significantly changes with applied optical power, resulting in various pulsed laser operations in a fiber laser.

WT4A.17 • Radiation-Hardened Co-Doped Optical Fiber for High-Power 1.5µm Amplifier, Emmanuel Pinsard¹, Arnaud Laurent¹, Thierry Robin¹, Benoit Cadier¹; ¹*iXBLUE*, *France*. We present the performances of a 10W output power optical amplifier operating at 1.5µm under gamma irradiation. For a total dose of 100krad, a limited gain variation of -0.012dB/krad under gamma-radiation has been observed.

WT4A.18 • Stability study of ultra-long Random distributed feedback fiber laser based on Erbium fiber, Iñaki A. Litago¹, María Ángeles Quintela¹, Hany S. Roufael¹, Jose-Miguel Lopez-Higuera¹; ¹Univ. of Cantabria, Spain. A stability study of an ultra-long Random distributed feedback fiber laser (RDF-FL) is presented in this paper. Stable typical random laser radiations for 50 km to 300 km of SMF cavity lengths at given pump powers has been achieved.

WT4A.19 • Stable at High Temperatures LPG's Inscribed by a Femtosecond Fiber Laser, Hany S. Roufael¹, Antonio Quintela¹, Mauro Lomer¹, Jose-Miguel Lopez-Higuera¹; ¹Universidad de Cantabria, Spain. Femtosecond laser inscribed LPGs stable at high temperatures are presented. The LPGs are written in the cladding of standard monomode optical fiber, near to the core. The achieved devices have been experimentally tested at extremely high temperatures proving their remarkable stability even at 1000°C

WT4A.20 • Specklegram interference fiber sensing, Mauro Lomer¹, Luis Rodriguez-Cobo¹, Iñaki Aporta¹, Jose Miguel Lopez-Higuera¹; ¹Universidad de Cantabria, Spain. Experimental results from interference between the speckle patterns generated by multimode fibers are presented. This scheme can increase the multiplexing capability of fiber specklegram sensors by encoding extra perturbations within the fringes resulting from the Michelson interferometer.

WT4A.21 • A Tunable All-Fiber Laser Based on a Stress-Optic Phase Modulator and a Chirped Fiber Bragg Grating, Zhangwei Yu^{1,2}, Micke Malmström¹, Oleksandr Tarasenko², Walter Margulis^{1,2}, Fredrik Laurell¹; ¹Dept. of Applied Physics, Royal Inst. of Technology (KTH), Sweden; ²Dept. of Fiber Optics, Acreo Swedish ICT AB, Sweden. A tunable single-wavelength Erbium-doped all-fiber laser was experimentally demonstrated. The tuning is obtained with a stress-optic phase modulator based on a twin-hole fiber and a chirped fiber Bragg grating in a medium birefringence fiber.

WT4A.22 • **Pockels Fibers by Optical Poling,** Isabel C. Carvalho³, Oleksandr Tarasenko¹, Alexandre Camara⁴, Joao M. Pereira³, Walter Margulis^{1,2}; ¹Acreo Swedish ICT AB, Sweden; ²Applied Physics, Royal Inst. of Technology, Sweden; ³Physics, Pontificia Universidade Catolica do Rio de Janeiro, Brazil; ⁴Instituto de Fisica, Universidade Estadual do Rio de Janeiro, Brazil. Silica fibers with internal electrodes biased with HV are poled when simultaneously excited by green light. The chi2 induced measured through the Pockels effect at 1.55 μm reaches ~0.11 pm/V. Poling and erasure are studied.

WT4A.23 • A microspherical resonator embedded inside a microstructured optical fiber taper, Maria-Georgia Konstantinou¹, Kyriaki Kosma¹, Walter Margulis², Stavros Pissadakis¹; ¹FORTH-IESL, Greece; ²Dept. of Fiber Photonics, ACREO, Sweden. The integration of a microspherical whispering gallery mode (WGM) resonator inside a microstructured optical fiber taper is demonstrated. Preliminary WGM spectra of this in-fiber resonator in transmission mode are presented and discussed.

WT4A.24 • Octave-spanning spectrum of mode-locked Er-doped fiber laser at 208MHz repetition rate in a dispersion-varying tellurite microstructured fiber, Fang Wang¹, Zhixu Jia¹, Chuanfei Yao¹, Shunbin Wang¹, Guanshi Qin¹, Changfeng Wu¹, Weiping Qin¹; ¹Jilin Univ., China. We demonstrated the generation of the octave-spanning spectrum from 800 to >2400 nm in a dispersion-varying-tellurite-microstructured-fiber pumped by an Er-doped fiber laser with a repetition rate of 208MHz and a pulse width of 71 fs

WT4A.25 • Ho³⁺/Yb³⁺ co-doped Tellurite glasses and fibers for 1.2 μm laser applications, Shunbin Wang¹, Zhixu Jia¹, Chuanfei Yao¹, Chunfeng He¹, Guanshi Qin¹, Weiping Qin¹; ¹Jilin Univ., China. Intense 1.2 μm fluorescence was observed in Ho³⁺/Yb³⁺co-doped tellurite glasses under the pump of a 915 nm LD. A relative gain of ~6.7 dB at 1176 nm was obtained from a Ho³⁺/Yb³⁺co-doped tellurite microstructured fiber

WT4A.26 • Carbon nanotube modified optical fiber surface with novel coating method for non-linear and SPR application, yang zhang¹; ¹Physics, Dalian Univ. of technology, China. Carbon nanotube deposition with dipping method on gold-coated optical fiber sensors has been proposed and demonstrated. The effects of carbon nanotubes on polarization-dependent coupling of light from the fiber to the coating and on the resulting refractometric sensor properties are investigated.

WT4A.27 • Type IIa Bragg gratings formed in active fibers, Yang Ran¹, Fu-Rong Feng¹, Bai-Ou Guan¹; ¹Jinan Univ., China. Type IIa gratings are formed in active fibers. The forming efficiency relies on the core diameter and the numerical aperture of the fiber. The proposed grating can be used as laser reflector with high temperature resistance.

WT4A.28 • A Novel Optical Microfiber Device Based on Mesoporous SiO₂ Nanospheres Arrays, Mingfei Ding¹, Yunyun Huang¹, Bai-Ou Guan¹; ¹Jinan, China. A novel optical microfiber device based on Ag@mesoSiOnnanospheres coated fiber taper is presented.And the combination of the special selectivity film and compact fiber shows good prospect in sensing, drug delivering and so on.

WT4A.29 • High sensitive thrombin protein detection using a plasmonic tilted fiber grating biosensor, Tuan Guo¹; ¹Jinan Univ., China. Plasmonic fiber-optic biosensor composed of a tilted fiber grating and nanometric coating has been proposed. *In-situ* thrombin protein detection with the detectable concentration of 1 μ M has been experimentally achieved.

WT4A.30 • In-situ protein detection based on cut-off mode monitoring of a tilted fiber Bragg grating biosensor, Jian Xu¹, Xuejun Zhang¹, Linzi Han¹, Liu Fu¹, Tuan Guo¹, Bai-Ou Guan¹; ¹Jinan universuty, China. Tilted fiber Bragg grating biosensor with refractive index sensitivity up to ~2000 dB/RIU over the range of 1.33 and 1.34 RIU has been demonstrated. In-situ protein detection with concentration of 2.5 uM has been achieved.

WT4A.31 • High sensitive thrombin protein detection using a plasmonic tilted fiber grating biosensor, Linzi Han¹, Ze Wu¹, Xuejun Zhang¹, Qiangqiang Fu¹, Jian Xu¹, Yong Tang¹, Tuan Guo¹, Bai-Ou Guan¹; ¹Jinan Univ., China. Plasmonic fiber-optic biosensor composed of a tilted fiber grating and nanometric coating has been proposed. In-situ thrombin protein detection with the detectable concentration of 1 μ M has been experimentally achieved.

WT4A.32 • In-situ glucose detection in human serum using a plasmonic tilted fiber grating with etched silver coating, Xuejun Zhang¹, Ze Wu², Jian Xu¹, Linzi Han¹, Qiangqiang Fu², Yong Tang², Tuan Guo¹, Bai-Ou Guan¹; ¹Jinan Univ., Inst. of Photonics Technology, China; ²Jinan Univ., Guangdong Province Key Lab of Molecular Immunology and Antibody Engineering, China. In-situ glucose detection in human serum has been achieved by using a silver-coated plasmonic tilted fiber grating. The concentration of the glucose is proportional to the etching rate and monitored by the SPR attenuation.

WT4A.33 • Design of Fundamental Mode Filter based on Long-Period Grating Fiber, Ming-Yang Chen¹, Jin Wei¹; ¹Inst. of Opt-Electronics and Communication Technologies, Jiangsu Univ., China. A long-period fiber grating(LPFG) that can selectively filter the fundamental mode in few-mode optical fiber is proposed. By applying a appropriate chosen surrounding material and an apodized configuration, high fundamental mode loss can be achieved.

WT4A.34 • Stable Operation of All-Optical Fibre Photoacoustic Sensors, LIN Yuechuan^{1,2}, Wei Jin^{1,2}, JUN Ma¹, Chao Wang¹, Fan Yang^{1,2}, Hoi Lut Ho^{1,2}; ¹The Dept. of Electrical Engineering, The Hong Kong Polytechnic Univ., Hong Kong; ²The Hong Kong Polytechnic Univ. Shenzhen Research Inst., China. Stable operation of graphene-diaphragm fiber-tip photoacoustic gas sensor is achieved by using a modified Sagnac interferometer. Detection limit of 1.5 ppm C_2H_2 in N_2 is demonstrated and system stability is <0.4 dB over 6 hours.

WT4A.35 • Collimated Fibers with Bragg Gratings for Strain Sensing of Rapidly Rotating Mechanical Structures, Garry Berkovic¹, Shlomi Zilberman¹, Ehud Shafir¹, Yair Saadi¹, Ohad Mazor¹, Tal Goichman¹; ¹Soreq Nuclear Research Center, Israel. Standard single mode fibers terminated with small diameter collimators are coupled to fiber Bragg gratings to demonstrate a generic approach for optical strain measurement in rapidly rotating structures which does not require optical ingress via the central rotation axis.

WT4A.36 • Long-Period Fiber Grating Inscribed in a Suspended-core Fiber by Femtosecond Laser Pulses, Yufeng Zhang^{1,2}, Yongqin Yu^{1,2}, Shuangchen Ruan^{1,2}, Chenlin Du^{1,2}, Wen Zhou^{1,2}; ¹College of Optoelectronic Engineering, Shenzhen Univ., China; ²Shenzhen Key Lab of Laser Engineering, China. A long-period fiber grating (LPFG) was inscribed in suspended-core fiber by femtosecond laser. The LPFG was insensitive to surrounding refractive index, and the sensitivities to temperature and strain were 4.8 pm/°C and - 1.65 pm/µ_E, respectively.

WT4A.37 • High Temperature Sensing head based on 45° Tilted Fiber End Fabricated by Femtosecond Laser in Thin Core Fiber, zhou wen^{1,2}, Yongqin Yu^{1,2}, Shuangchen Ruan^{1,2}, Yufeng Zhang^{1,2}; ¹Shenzhen Key Lab of Laser Engineering, Shenzhen Univ., China; ²College of Optoelectronic Engineering, Shenzhen Univ., China. A compact fiber sensing head based on 45° tilted fiber end in thin core fiber (TCF) for high temperature sensing is fabricated by femtosecond laser using line-scanning method.

WT4A.38 • Bent Optical Fiber Bragg Grating Embedded in PDMS for Vertical Compression Load Sensor, Luo Niu¹, Chi Chiu Chan¹, Pui Wah Kong², Li Han Chen¹; ¹Nanyang Technological Univ., Division of Bioengineering, School of Chemical and Biomedical Engineering, Singapore; ²Nanyang Technological Univ., Physical Education and Sports Science Academic Group, National Inst. of Education, Singapore. In this letter, a bent FBG embedded in Polydimethylsiloxane (PDMS), is proposed to measure vertical compression load. Experiments show that the sensitivity is as high as 16.9 pm/N in the range of 0-350N.

WT4A.39 • Fiber Optic pH Sensor Based on Electrostatically Self-Assembled Polymer Multilayer, Raghunandhan Ravikumar¹, Li Han Chen², Chi Chiu Chan¹, Zhi Qiang Tou², Zu Peng²; ¹Nanyang Technological Univ., Singapore; ²Energy Research Inst. @ NTU, Singapore. A novel fiber optic pH sensor functionalized with electrostatically self-assembled (ESA) multilayers of chitosan(CH) and poly(acrylic acid)(PAA) has been implemented. Sensitivity of 0.7471 nm/pH was observed in the linear pH range of (2.86-6.86). **WT4A.40** • **PDMS Film Coated Fiber Volatile Organic Compounds Sensor,** Xiangping Ning^{1,2}, Li Han Chen³, Chun Liu Zhao¹, Chi Chiu Chan²; ¹Inst. of Optoelectronic Technology, China Jiliang Univ., China; ²School of Chemical and Biomedical Engineering, Nanyang Technological Univ., Singapore; ³Energy Research Inst. @NTU, Nanyang Technological Univ., Singapore. A novel fiber volatile organic compounds (VOCs) sensors by using the swelling behavior of the poly (dimethylsiloxane) (PDMS) have been proposed. The sensors was fabricated by coating PDMS on a fiber Fabry-Perot interferometer end-face.

WT4A.41 • Surface Plasmon Biosensor Based on a D-shaped Microstructured Optical Fiber with Rectangular Lattice, Lu Peng¹, Fukun Shi¹, Guiyao Zhou¹, Shu Ge¹, Zhiyun Hou¹, Changming Xia¹; ¹South China Normal Univ., China. We investigate the coupling characteristics of two structures via finite element method (FEM). It indicates that the influence on sensor sensitivity caused by birefringence at $d_1=0.8$ and the polarization by embedded ethanol is almost similar.

WT4A.42 • Non-contact Micro Vibration Measurement System Based on Non-equilibrium Optical Fiber Michelson Interferometer, Jie Zhang¹, Zhenguo Jing¹, Chuanqi Xing¹, Wei Peng¹; ¹Dalian Univ. Of Technology, China. In this paper, a non-equilibrium optical fiber Michelson interferometer is used to realize non-contact micro vibration measurement. The frequency response range of 10~300Hz and the displacement resolution of 2nm in vibration are realized.

WT4A.43 • A DNA Sensitive Biosensor in Weak Acid Condition based on Graphene Functional Taper Interferometer, Bo Yu¹; ¹Inst. of Photonics Technology, Jinan, China. A high sensitivity biosensor in weak acid environment based on graphene coated taper interferometer is presented. The biosensor demonstrates improved DNA concentration sensitivity of 0.84 nm/log M and lower detection limit of 1 pM. OCIS codes: (060.2370) Fiber optics sensors;(310.0310)Thin films.

Friday, 6 November

08:30 -- 10:10

WF1A • New Fibers Development

Presider: Wei Jin; The Hong Kong Polytechnic Univ., Hong Kong

WF1A.1 • 08:30 (Invited)

Playing Cellular Golf in Microstructured Fibres, Sebastián Estcheverry^{1,2}, Aziza Sudirman³, Fredrik Laurell², Walter Margulis^{1,2}; ¹Dept. of Optical Fibers, Acreo Swedish ICT AB, Sweden; ²Dept. of Applied Physics, Royal Inst. of Technology, Sweden; ³Cobolt AB, Sweden. We illuminate particles in a solution using fibers with cladding holes. Particles sufficiently near the fiber tip and with the correct optical signature are collected into the holes with good specificity, mimicking cell-collection for diagnostics.

WF1A.2 • 08:50 (Invited)

Low-temperature Manufacture of Optical Fibres, Gilberto Brambilla¹, Lieke Van Putten¹; ¹Univ. of Southampton, UK. Optical fibres are usually pulled from preforms at temperatures in the range 1900-2200 C. As some materials are unsuitable to be pulled at high temperatures, a method to draw fibres at temperatures as low as 1300C has been developed.

WF1A.3 • 09:10 (Invited)

Anderson Localization Fibres, Arash Mafi^{1,2}; ¹Dept. of Physics & Astronomy, Univ. of New Mexico, USA; ²Center for High Technology Materials, Univ. of New Mexico, USA. Recent advances in the theoretical and experimental understanding of disordered Anderson localization optical fibers are reviewed, potential applications are explored, and challenges in the fundamental understanding, design and optimization, fabrication, and device implementation are discussed.

WF1A.4 • 09:30 (Invited)

Rare Earth Doped Fiber Lasers Based on Zeolite Method, Yasushi Fujimoto¹; ¹Inst. of Laser Engineering, Osaka Univ., Japan. A unique functional optical silica glass fabrication method, zeolite method, is described. Zeolite method is very useful to make very short-length fiber with high rare-earth concentration, which implies the next generation's optical fibers.

WF1A.5 • 09:50 (Invited)

Soft Glass Highly Nonlinear Optical Fibers and their Applications, Yasutake Ohishi¹, Tonglei Cheng¹, Lei Zhang¹, Tong Hoang Tuan¹, Takenobu Suzuki¹; ¹Research Center for Advanced Photon Technology, Toyota Technological Inst., Japan. We report on a recent progress of soft glass microstructured optical fiber research. Performance of supercontinuum and optical parametric oscillator by exploiting the degenerate four-wave mixing parametric amplification will be presented.

10:40 -- 12:05

WF2A • Hollow Core Fibers and Bragg Fibers

Presider: Yasutake Ohishi; Toyota Technological Inst., Japan

WF2A.1 • 10:40 (Invited)

Hollow core fibers for optically pumped mid-IR fiber lasers, Jonathan C. Knight¹, Rosdi Hassan¹, fei Yu¹, William J. Wadsworth¹; ¹Univ. of Bath, UK. We report on demonstration of low-loss hollow-core fibers for the 3-5 µm spectral range formed from silica, and how they can be used to form the basis of a convenient, inexpensive and scalable mid-IR fiber laser.

WF2A.2 • 11:00 (Invited)

Hollow/Annular Core Fibres, Kyunghwan Oh¹; ¹Yonsei Univ., South Korea. A composite silica-air fiber with a one hole and one ring core is reviewed in terms of its unique waveguide structure, modal properties and applications in various photonic devices. Adiabatic mode transformation along the hollow optical fiber provides versatile in-line fiber optic applications. In contrast, concatenation of coreless silica fiber and fiber lens provides fiber-optic Fourier transformation for efficient Bessel beam generation.

WF2A.3 • 11:20

Combining Fluid Dynamics and Electromagnetics Modelling to Improve Hollow Core Photonic Band Gap Fibres, Greg T. Jasion¹, Eric R. Numkam Fokoua¹, John S. Shrimpton², David J. Richardson¹, Francesco Poletti¹; ¹Optoelectronics Research Centre, Univ. of Southampton, UK; ²Faculty of Engineering and the Environment, Univ. of Souothampton, UK. We combine two powerful simulation tools to predict geometry and optical properties of Hollow Core Photonic Band Gap fibres from their preform and draw parameters. Broad parametric sweeps allow identifying structures with optimum optical performance.

WF2A.4 • 11:35

High-power picosecond pulse delivery through hollow core photonic band gap fibers, Mattia Michieletto^{1,2}, Mette M. Johansen¹, Jens Kristian Lyngsø², Jesper Laegsgaard¹, Ole Bang¹, Thomas T. Alkeskjold²; ¹Technical Univ. of Denmark, Denmark; ²NKT Photonics Inc, Denmark. We demonstrated robust and bend insensitive fiber delivery of high power pulsed laser with diffraction limited beam quality for two different kind of hollow core photonic band gap fibers.

WF2A.5 • 11:50

Very Large Mode Area Pixelated Bragg Fibers, Yves Quiquempois¹, Jean-Paul Yehouessi¹, Olivier Vanvincq¹, Geraud Bouwmans¹, Andy cassez¹, Laurent Bigot¹; ¹Univ. of Lille, France. Generalized half-wave-stack condition combined with well-chosen hetero-structured cladding is used to design and realize scalable single-mode pixelated Bragg fibers with mode field diameter as large as 60 µm.

13:35 -- 14:35

WF3A • New Telecom Applications

Presider: Jonathan Knight; Univ. of Bath, UK

WF3A.1 • 13:35 (Invited)

Multicore Fibers, Axel Schulzgen¹, Amy Van Newkirk¹, James Anderson¹, Guillermo Salceda-Delgado¹, Zeinab S. Eznaveh¹, Jose E. Antonio-Lopez¹, Cen Xia¹, Guifang Li¹, Roy G. van Uden², Frans M. Huijskens², Hugo de Waardt², Ton A. Koonen², Chigo Okonkwo², Rodrigo Amezcua Correa¹; ¹CREOL, The College of Optics and Photonics, Univ. of Central Florida, USA; ²COBRA Research Inst., Dept. of Electrical Engineering, Eindhoven Univ. of Technology, Netherlands. Recent advances in fiber technology enable the fabrication of multi-core fibers tailored for various applications. Examples of multi-core fibers for ultra-high-density spatial division multiplexing in communications and for high temperature sensor applications will be presented.

WF3A.2 • 13:55 (Invited)

Multicore EDFA, Yukihiro Tsuchida¹; ¹Furukawa Electric, Japan. Multicore EDFA has been recently investigated toward a realization of space division multiplexing. We introduce a technology necessary for cladding-pumped MC-EDFA with batch amplification and demonstrate its low power consumptioin characteristics.

WF3A.3 • 14:15 (Invited)

Ultrafast laser inscription of 3D components for spatially multiplexed telecommunications, Robert R. Thomson¹; ¹Inst. of Photonics and Quantum Science, Heriot Watt Univ., UK. I will review the work that has been carried out using ultrafast laser inscription as a fabrication route to realize three-dimensional integrated fan-outs, photonic lanterns and mode-multiplexers for future applications in space-division multiplexed telecommunications.

14:35 - 15:35

Trade Talks

Presider: Alexis Mendez; MCH Engineering, LLC, USA

14:35 - 14:55

Making glass survive where no glass has ever gone before - the challenge of using optical fibers in harsh environments', Chris Emslie, Fibercore

14:55 - 15:15

Latest advances on specialty fiber probes for medical and sensing applications, Baishi Wang, Vytran LLC 15:15 - 15:35

Complex Assemblies Using Specialty Optical Fibers, Devinder Saini, Fiberguide

16:05 -- 17:35 WF4A • Fiber Sensing Presider: Xijia Gu; Ryerson Univ., Canada

WF4A.1 • 16:05 (Invited)

Lab-on-fiber Devices, Jacques Albert¹; ¹Carleton Univ., Canada. High sensitivity biochemical sensors based on the ability to control the amplitude, phase velocity, and polarization of the evanescent field of claddingguided modes at near infrared wavelengths in standard single mode fibers will be described.

WF4A.2 • 16:25 (Invited)

Optical Fibers in Medicine: Biophotonics at Work, David D. Sampson^{1,2}; ¹School of Electrical, Electronic & Computer Engineering, Univ. of Western Australia, Australia; ²Centre for Microscopy, Characterisation & Analysis, The Univ. of Western Australia, Australia. Optical fibers are widely used in medicine and biology for routine tasks such as beam delivery and video endoscopy, to more advanced systems such as nonlinear endoscopy and the Microscope-in-a-Needle platform. This talk will review basic principles and survey state-ofthe-art applications.

WF4A.3 • 16:45 (Invited)

Coatings for Harsh Environment Applications of Optical Fibers, Andrei A. Stolov¹, Jacob A. Wrubel¹, Jie Li¹, Michael Hines¹; ¹OFS Fitel LLC, USA. The paper reviews types of coatings used in specialty optical fibers with an emphasis on application at harsh conditions, including low and elevated temperatures, hot steam, high pressure, immersion in liquids and hydrogen-rich environments.

WF4A.4 • 17:05

Femtosecond Laser Inscription of Bragg and Complex Gratings in Low-Loss Polymer and Silica Optical Fibers, Kyriacos Kalli¹; ¹Electrical Engineering, Cyprus Univ. of Technology, Cyprus. The development of Bragg and superstructure gratings in coated glass and low-loss polymer optical fibers, using a femtosecond laser, is reported. The femtosecond laser operates in the green, which offers greater inscription efficiency.

WF4A.5 • 17:20

Fabrication of regenerated grating using carbon dioxide laser, Kok-Sing Lim¹, Man-Hong Lai¹, Dinusha Gunawardena¹, Harith Ahmad¹; ¹Universiti Malaya, Malaysia. Grating regeneration using CO₂ laser has been demonstrated. Bragg wavelength redshifts as the irradiated laser power is elevated. The grating reflectivity begins to decay as the induced temperature is approaching the erasure temperature. The grating is completely erased and regenerated afterward.