Teoh Ming-Li^{1, 2} Wong Chiew-Yen³ Phang Siew-Moi^{2, 4}

¹Faculty of Pharmacy, SEGi University College, Selangor, Malaysia

²Institute of Ocean and Earth Sciences, IPS Building, University of Malaya, Malaysia

³Faculty of Pharmacy, MAHSA

A29. Effect of increased CO₂ and temperature on growth, photosynthesis and lipid content of tropical *Chlorella*

Elevated temperature and carbon dioxide (CO₂) level are some of the factors causing global warming. Very little is known about how global warming will affect the tropical microalgae. The aim of this study was to investigate the temperature and CO₂ sensitivity of the photosynthetic process of two tropical *Chlorella* species (*Chlorella vulgaris* UMACC 001 and *Chlorella* UMACC 014). We grew the cultures of the two *Chlorella* species under four conditions: (1) 28°C and 375ppm CO₂ (control), (2) 28°C and 750ppm CO₂ (high CO₂), (3) 32°C and 375ppm CO₂ (high temperature), and (4) 32°C and 750ppm CO₂ (combined factors). Elevated temperature and CO₂ level stimulated the growth of both *Chlorella* species, except for *Chlorella* UMACC 014 where there was

University College, Kuala Lumpur, Malaysia

⁴Institute of Biological Sciences, University of Malaya, Malaysia

no marked difference on the growth when grown under control and high temperature conditions. The optimum growth condition for Chlorella vulgaris IJMACC 001 was at 32°C + 750ppm CO₂ at light intensity of 601 umol photons m⁻² s⁻¹. Elevated CO₂ condition stimulated the production of carotenoid and lipid in both Chlorella species. In general, the growth and physiology of both tropical Chlorella species showed a much greater positive response to elevated CO2 and temperature.