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Abstract 

Mesenchymal stem cells (MSCs) are considered a potential tool for cell based regenerative therapy 
due to their immunomodulatory property, differentiation potentials, trophic activity as well as 
large donor pool. Poor engraftment and short term survival of transplanted MSCs are recognized 
as major limitations which were linked to early cellular ageing, loss of chemokine markers during ex 
vivo expansion, and hyper-immunogenicity to xeno-contaminated MSCs. These problems can be 
minimized by ex vivo expansion of MSCs in hypoxic culture condition using well defined or 
xeno-free media i.e., media supplemented with growth factors, human serum or platelet lysate. In 
addition to ex vivo expansion in hypoxic culture condition using well defined media, this review 
article describes the potentials of transient adaptation of expanded MSCs in autologous serum 
supplemented medium prior to transplantation for long term regenerative benefits. Such transient 
adaptation in autologous serum supplemented medium may help to increase chemokine receptor 
expression and tissue specific differentiation of ex vivo expanded MSCs, thus would provide long 
term regenerative benefits. 

Key words: Mesenchymal stem cell, hyper-immunogenicity, chemokine receptors, xenogenic, autologous, al-
logeneic. 

Introduction 
The lineage committed progenitor cells or 

unipotent stem cells maintain cellular homeostasis [1]. 
Mesenchymal stem cells or mesenchymal stromal cells 
(MSCs) originated in bone-marrow, adipose tissue, 
dental pulp are involved in such homeostasis [2]. The 
number of MSCs increases in the peripheral blood 
during skeletal muscle injury [3] and osteoporosis [4]. 
Higher numbers of circulatory MSCs are also ob-
served immediately after ischemic stroke and myo-
cardial infarction [5, 6]. However, natural regenera-
tive process alone is insufficient to repair a diseased or 
injured organ in case of myocardial infarction, stroke 
and spinal cord injuries because of the limited indig-
enous supply of the stem cells [7, 8]. Hence, adjunc-
tive treatment such as stem cell based regenerative 

therapy has been given considerable attentions [7]. 
Due to pluripotency, embryonic stem cells 

(ESCs) are initially considered as the best source of 
stem cells for regenerative therapy [9]. Ethical issues 
over the use of ESCs compel researchers to search for 
suitable alternative [10]. In recent years, researchers 
developed a technology to generate induced pluripo-
tent stem cells (iPSCs) that share characteristics of 
ESCs [11, 12]. Epigenetic memory, teratoma formation 
and immunogenicity related to the therapeutic poten-
tials of iPSCs are yet to be resolved [13, 14]. Mean-
while, due to multi-differentiation potential, im-
munomodulatory effects, trophic functions, vasculo-
genesis potential of MSCs as well as its large donor 
pool make MSCs as the potential source for regenera-

 
Ivyspring  

International Publisher 



Int. J. Biol. Sci. 2015, Vol. 11 
 

 
http://www.ijbs.com 

325 

tive therapy [2, 15, 16].  
For each regenerative therapy, 50-400 million 

MSCs are required [17, 18]. The presence of very low 
number of MSCs within the tissues makes it impossi-
ble to isolate such a large number of MSCs from a 
single donor. Recently, derivation of MSCs from ESCs 
and iPSCs has been reported [19-23]. MSCs from these 
sources can also be used for cell based therapy and 
tissue engineering. Thus iPSCs may resolve pa-
tient-specific MSCs scarcity [20, 21, 23]. However, 
regardless of the sources, ex vivo expansion of MSCs 
prior transplantation is required to yield enough 
MSCs for cell based therapy [18, 24].  

Several in vitro, in vivo and clinical studies re-
ported encouraging regenerative potentials of MSCs 
[25-28]. However, low number of engrafted MSCs is 
considered as a major drawback for long term func-
tional benefits [29, 30]. Different strategies were at-
tempted to minimize such drawback such as in-
tra-arterial delivery instead of intravenous delivery to 
avoid accumulation of MSCs in the lung [31, 32]; and 
modification of cell surface molecules through chem-
ical, genetic and coating techniques to promote selec-
tive adherence to particular organs or tissues [33]. 
Several modifications in ex vivo or in vitro culture en-
vironment have also given due attention to overcome 
insufficient engraftment of MSCs such as culturing 
MSCs in hypoxic environment for partial [34] or entire 
[35] period of time; and culturing MSCs in medium 
that mimics the hypoxic condition [36]. Culture envi-

ronment have an influential effect on cellular ageing 
and chemokine marker expression that may affect 
trafficking and engraftment of MSCs following trans-
plantation [17, 18, 37]. In addition, there are safety 
concerns regarding hyper-immunogenicity to MSCs 
expanded in xenogenic serum [38] that might be a 
cause of acute rejection of transplanted MSCs.  

To resolve the issue of poor engraftment of 
MSCs, this article elaborates the advantages and 
drawbacks of different approaches of ex vivo MSCs 
culture techniques. Finally a two phase ex vivo MSCs 
culture strategy is proposed as a possible way to 
produce clinical grade MSCs to enhance engraftment 
and regenerative outcomes. In phase 1, MSCs are ini-
tially isolated and expanded in human platelet lysate 
or pooled allogeneic AB-serum supplemented me-
dium followed by the phase 2 where the expanded 
MSCs are cultured in autologus serum (patients’ own) 
supplemented medium mainly to adapt the MSCs 
prior to transplantation (Figure 1).  

Causes behind Poor Engraftment of 
MSCs Following Transplantation 

For clinical trials, MSCs are mostly expanded in 
xenogenic serum supplemented media and incubated 
in ambient oxygen condition (Table 1). Use of MSCs 
(both autologous and allogeneic) for therapeutic 
purposes has been proven safe [41-55]. Clinical trials 
that used autologous MSCs to treat multiple system 
atrophy, renal transplant rejection, multiple sclerosis, 

ischemic cardiomyopathy, spinal 
cord injury and liver failure 
shown to have short term regen-
erative benefits or partial im-
provement [41, 42, 44, 46, 47, 50, 
53, 55]. Clinical trials with al-
logeneic MSCs have also been 
shown significantly increased 
overall survival of graft-versus- 
host disease patients; improved 
forced expiration volume and 
global symptom score, and re-
duced infarct size in cardiovas-
cular disease patients; improved 
Ankel Brachial Pressure Index in 
critical limb ischemia patient; 
and increased osteopoetic cell 
engraftment in patient with os-
teogenesis imperfecta [43-45, 48, 
49, 54]. However, none of them 
have been reported the long term 
benefits from MSCs therapy.  

 
 

 
Figure 1: Steps to produce clinical grade MSCs for long term regenerative benefits. Isolation and 
expansion of MSCs in platelet lysate or pooled allogeneic AB-serum supplemented medium followed by 
adaptation in autologous serum (patients’ own serum) supplemented medium. Hypoxic (2-5% oxygen) culture 
condition will be favourable for both the initial isolation and expansion later for adaptation [18, 36, 37, 39, 40]. 
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Table 1: List of completed clinical trials using ex vivo expanded MSCs. 

Clinical trial 
No. 

Source 
of 
MSCS 

Serum 
Sup-
plement 

Disease Treated Dose  
No. of treatment 

Route of 
Administra-
tion 

Phase Design Refer-
ences 

NCT00395200 Au BM FBS  Multiple Sclerosis 1-2 ×106 cells/ kg BW 
Single 

Intravenous  I & II Non-randomized, Safety/efficacy study, Single 
group assignment, Open label  

[41, 42] 

NCT00504803 Allo BM Irradi-
ated FBS 

Graft-versus-host-disease -  
Single 

Intravenous II Non-randomized, Safety/efficacy study, Single 
group assignment, Open label 

[43] 

NCT01087996 Au BM 
Allo BM 

- Ischemic cardiomyopathy 20/100/200 ×106 cells 
Single 

Transendo-
cardial  

I & II Randomized, Safety/efficacy study, Parallel as-
signment, Open label 

[44] 

NCT00114452 Allo BM - Myocardial infarction 0.5/1.6/5 ×106 cells / 
kg BW 
Single 

Intravenous  
 

I Randomized, Safety study, Parallel assignment, 
Double blind (Subject, Caregiver, Investigator, 
Outcomes assessor) 

[45] 

NCT00658073 Au BM - Renal transplant rejection 1-2×106 cells/ kg BW 
Twice 

Intravenous  - Randomized, Efficacy study, Parallel assignment, 
Open label 

[46] 

NCT00734396 Au BM FBS Renal transplant rejection 1×106 cells/ kg BW 
Twice 

Intravenous  I & II Non-randomized, Safety/efficacy study, Single 
group assignment, Open label 

[47] 

NCT00883870 Allo BM - Critical limb ischemia 2×106 cells/kg BW 
Single 

Intramuscu-
lar (gas-
trocnemius 
muscle) 

I & II Randomized, Safety/efficacy study, Parallel as-
signment, Double blind (Subject, caregiver, inves-
tigator) 

[48] 

NCT00823316 Allo 
UCB 

FBS Graft rejection and 
graft-versus-host-disease 

1 & 5 ×106 cells/ kg BW 
Single 

Intravenous I & II Randomized, Safety/efficacy study, Parallel as-
signment, Open label 

[49] 

NCT00911365 Au BM FBS Multiple system atrophy 40×106 cells 
Multiple 

Intra arterial 
(1 time) 
Intravenous 
(3 times) 

II Randomized, Parallel assignment, Single blind 
(subject) 

[50] 

NCT01274975 Au AD FBS Spinal cord injury 400×106 cells 
Single 

Intravenous  I Randomized, Safety study, Single group assign-
ment, Open label 

[51] 

NCT00683722 Allo BM - Coronary obstructive 
pulmonary disorder. 

100×106 cells  
Multiple 

Intravenous  II Randomized, Safety/efficacy study, Parallel as-
signment, Double blind (subject, caregiver, inves-
tigator, outcomes assessor) 

[52] 

NCT00956891 Au BM FBS Liver failure ≈100×106 cells 
Single  

Hepatic 
artery 

- Case Control, retrospective [53] 

NCT00187018 Allo BM FBS Osteogenesis imperfecta 0.68-2.75×103 cells/kg 
BW 
Single 

Intravenous - Non-Randomized, Safety/Efficacy Study, Single 
Group Assignment, Open Label 

[54] 

NCT00816803 Au BM Serum 
free 

Spinal cord injury 2×106 cells/ kg BW 
Multiple 

Lumbar 
puncture 

I & II Safety/Efficacy Study, Parallel Assignment, Single 
Blind (Outcomes Assessor) 

[55] 

Au, Autologous; Allo, Allogeneic; BM, Bone marrow; UCB, Umbilical cord blood; AD, Adipose derived. 

 
 
Prior to transplantation, MSCs are generally ex-

panded in ex vivo culture conditions. Oxygen concen-
tration of this culture environment is higher than 
MSCs’ natural niche and the media contains xenoan-
tigen [56, 57]. This culture conditions resulted in te-
lomere shortening, early senescence, loss of chemo-
kine receptors, and xeno-contamination in cultured 
MSCs [18, 37, 38]. Use of these ex vivo expanded MSCs 
may exhibit post-transplantation hy-
per-immunogenicity, improper trafficking and poor 
engraftment which in turn might result in failure of 
long term regenerative benefits. 

Post-transplantation hyper-immunogenicity to 
MSCs cultured in xenogenic serum 

MSCs are able to prevent expression of 
co-stimulatory molecules such as CD40, CD80, CD83 
and CD86 and induce expression of inhibitory mole-
cules such as B7-H1, B7-H4 and human leukocyte 
antigen G (HLA-G). At the same time, MSCs were 
reported to secrete soluble factors such as prosta-
glandin E2 (PGE2), transforming growth factor 
(TGF)-β, interleukin 10 (IL-10), nitric oxide (NO), 
hepatocyte growth factor (HGF) and indola-
min-2,3-dioxygenase (IDO). These properties help 

MSCs to inhibit proliferation and function of cytotoxic 
T cells (TC), natural killer (NK) cells and B cells, as 
well as prevent differentiation of monocytes into an-
tigen-presenting dendritic cells (DCs). Notably, IDO 
plays an important role in activating immunosup-
pressive regulatory T cells (Tregs), facilitating differen-
tiation of monocytes into M2 macrophages, and in-
hibit helper T cells (TH) and TC cells [58-60]. These 
immunomodulatory properties, makes MSCs a “uni-
versal donor” for stem cell based regenerative therapy 
[61].  

In contrast, MSCs are described as immune eva-
sive rather than immune privileged since differenti-
ated MSCs or MSCs treated with interferon gamma 
(INF-γ) exhibit significantly higher expression of 
MHC class I and MHC class II. If mismatched, these 
MHC class I and MHC class II act as a source of hy-
per-immunogenicity thus the “universal donor” role 
of MSCs remains questionable [62, 63]. Besides, MSCs 
expanded in fetal bovine serum (FBS) supplemented 
media can be contaminated with bovine proteins that 
remains after multiple washings [64]. MSCs contam-
inated with N-glycolylneuraminic acid (Neu5Gc) 
xenoantigen [65, 66] originating from FBS potentially 
cause immunological reaction after transplantation 
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with anti-Neu5Gc antibodies present in human serum 
[67, 68]. Binding of anti-Neu5Gc antibody present in 
the human serum to xenoantigen Neu5Gc may cause 
post-transplantation lysis of the MSCs (Figure 2). An-
tibody dependent lysis of MSCs may take place in two 
ways: (i) complement-dependent cytotoxicity (CDC) 
and (ii) NK cell based antibody dependent 
cell-mediated cytotoxicity (ADCC).  

 MSCs cytotoxicity by complement activated 
membrane attack complex regardless of their source 
(autologous or allogeneic) has been reported in both 
in vivo and in vitro studies [66, 69]. However, CDC was 
less to autologous MSCs and this effect was greatly 
reduced when CD55 was highly expressed by MSCs 
[69]. In contrast, MSCs that show expression of com-
plement regulatory proteins such as CD46, CD55, and 
CD59 are reported to be resistant to CDC [66]. The 
role of MSCs secreted factor H on inhibiting comple-
ment activation has also been reported [70]. For cell 
mediated cytotoxicity, higher phagocytic activity and 
ADCC was reported for the Neu5Gc-contaminated 
MSCs. In addition, reduced Neu5Gc contamination 
was reported to reduce cell mediated phagocytosis 
and lysis of the MSCs expanded in human serum 
supplemented medium [66]. Thus, CDC and ADCC to 
xeno-contaminated MSCs may lead to the acute rejec-
tion of transplanted cells [65, 66, 71]. Therefore, the 
effect of xenogenic serum on poor engraftment of 
transplanted MSCs regardless of autologous or al-
logeneic source should not be overlooked. Moreover, 
FBS supplemented media are potential source of viral 
or bacterial infections [72] and prions transmission 
[73].  

Aging of MSCs during in vitro or ex vivo ex-
pansion 

In standard culture conditions, MSCs reach se-
nescence after a limited number of cell division [17]. 

Cellular ageing or replicative senescence affects pro-
liferation and differentiation potentials of stem cells 
[74-77]. Senescence can be triggered by gradual loss of 
telomere repeat sequences, DNA damage and 
de-repression of the INK4/ARF locus [78]. Without any 
detectable telomere loss, oxidative stress-induced 
premature senescence may also take place in cultured 
cells [79, 80].  

Among the different mechanisms of cellular ag-
ing, gradual loss of telomere sequence has been stud-
ied the most. Telomere is a guanine-rich DNA repeat 
sequence of the chromosomal end [81]. A reverse 
transcriptase named ‘telomerase’ plays key role in 
maintaining the telomeric repeats. Usually in rapidly 
proliferating germ cells and ES cells telomerase is 
highly expressed. After birth, telomerase level within 
cells including in MSCs gradually diminishes [81]. As 
a result, telomere repeat sequences in MSCs is gradu-
ally lost at a similar rate to non-stem cells [82]. Basic 
fibroblast growth factor (bFGF) was reported to 
maintain long telomeres without up-regulation of 
telomerase expression [83, 84]. However, the possible 
effect of bFGF on reduced differentiation potential 
and priming of MSCs should be taken into considera-
tion when used in regenerative therapy [85].  

Previous study has also shown that highly con-
fluenced MSCs (100%) aged faster than the cells pas-
saged at lower confluency (60-70%). During in vitro 
culture of MSCs, initial dense population showed 
prolonged population doubling time, higher expres-
sion of senescence associated β-galactosidase, and 
increased cell cycle arrest along with increased intra-
cellular reactive oxygen species (ROS). However, dif-
ference in telomere length and alteration in p53 ex-
pression was not observed [80]. Contrary to this ob-
servation, the presence of ROS causes Wharton’s jelly 
derived MSCs to be irregularly enlarged and flattened 
with granular cytoplasm and induce higher expres-

sion of other senescent markers 
namely p53, p21, p16 and lysosomal 
β-galactosidase [86]. Studies have 
also been reported that ambient 
culture environment cause higher 
ROS generation within cultured 
cells including MSCs compared to 
hypoxic culture environment 
(2-5%), and ROS is also responsible 
for faster telomere shortening and 
cellular senescence [17, 37]. 

These evidences suggest that 
aging of MSCs in culture is inevita-
ble. It might not be possible to stop 
the aging process completely, yet it 
can be delayed and reduced by us-
ing proper growth factors and ma-

 
Figure 2: Immune response to transplanted xeno-contaminated MSCs. N-glycolylneuraminic 
acid (Neu5Gc) in FBS contaminates MSCs during ex vivo expansion. Anti-Neu5Gc antibody present in 
human serum may bind to the xeno-contaminated MSCs following transplantation. As a result, natural killer 
(NK) cells may bind to the antibody coated cells through Fc-gamma receptors (FcγR) and cause lysis by 
antibody dependent cell mediated cytotoxicity (ADCC). Anti-Neu5Gc antibody may also activate com-
plement-dependent cytotoxicity (CDC) and cause lysis through membrane attack complex. 
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nipulating the culture practice and environment. As 
the success of stem cell based therapy depends on 
both the self-renewal and differentiation (towards the 
target cell populations) of the transplanted cells fol-
lowing engraftment [87], it is important to produce 
higher number of MSCs with longer telomere and 
regenerative potentials for successful regenerative 
therapy.  

Ex vivo expansion in xenogenic serum may 
lead to improper trafficking and engraftment 
of the transplanted MSCs 

Site specific trafficking and engraftment of 
transplanted MSCs are important in cell based regen-
erative therapy. These events are assisted by the af-
finity of chemokine receptors on MSCs (CXCR4, 
CXCR7, CX3CR1) to the chemokines (SDF-1, frac-
talkine) [34, 88-92]. Loss of these chemokine receptors 
during their in vitro or ex vivo expansion [93] is 
thought to affect the regenerative outcomes. Growth 
factors like platelet-derived growth factor (PDGF)-AB, 
PDGF-BB, insulin-like growth factor-1 (IGF-1), HGF, 
epidermal growth factor (EGF) and angiopoietin-1 
(Ang-1) work as chemoattractants for MSCs [90, 
94-97]. Inflammatory cytokine such as tumor necrosis 
factor alpha (TNF-α) also helps migration of MSCs 
towards the site of chemokines [90, 92]. All these 
paracrine signalling molecules are of primary im-
portance for tissue specific migration and engraftment 
of MSCs. In vivo composition of these cytokines may 
vary depending on the type and stage of pathological 
conditions. Once isolated and expanded in ex vivo 
culture media, MSCs could embrace different cyto-
kine composition, depending on the type of serum 
supplement. In other words, media supplementation 
with xenogenic serum, allogeneic human serum, 
platelet lysate or growth factors do not represent in 
situ cytokine composition of the serum of the patients 
undergoing stem cell based regenerative therapy. 
Therefore, paracrine signals to ex vivo expanded MSCs 
in those media supplement might cause improper 
trafficking consequently poor homing and engraft-
ment. 

Approaches to Enhance Engraftment and 
Regenerative Benefits of Cultured MSCs 

In recent years, researchers have modified the 
culture media and environment (Figure 3) to improve 
engraftment efficiency of transplanted MSCs. Such 
modifications have shown partial improvement in the 
characteristics of MSCs. These modified ex vivo cul-
ture techniques have both advantages and limitations 
in producing clinical grade MSCs with higher en-
graftment potential. 

Culture of MSCs in xeno-free media  
From the very beginning of the development of 

synthetic cell culture medium by Harry Eagle in 1955, 
researchers were looking for suitable supplement to 
support cell viability and expansion. Animal serum 
especially FBS have been widely using to supplement 
media, as it provides almost all the necessary nutri-
ents needed for the survival and proliferation of cells 
in culture condition [98, 99]. However, the uncertainty 
over the composition and concentration of cytokines 
and growth factors of FBS, possibility of disease 
transmission, and Neu5GC mediated hy-
per-immunogenicity [99, 100] are considered as 
drawbacks of FBS when used for isolation and ex-
pansion of stem cells for therapeutic purpose [64, 66, 
101]. Hence, xeno-free media or well defined serum 
free media are being used as alternative [102-104]. 
Usually xeno-free media require different types of 
growth factors as supplement: recombinant human 
PDGF-BB, bFGF and TGF-β1 [105]. However, MSCs in 
both growth factors supplemented serum free media 
and FBS supplemented media showed similar growth 
kinetics and differentiation potential during in vitro 
expansion [105-107]. While, xeno-free media were 
found suitable for isolation and expansion of MSCs to 
maintain their multipotent differentiation capacity 
[102, 103], on the other hand there are also evidence 
that xeno-free medium does not support primary 
culture or isolation of MSCs. Indeed, after isolation of 
MSCs in any serum supplemented medium, MSCs 
can be further expanded and differentiated in 
xeno-free media [106, 107]. Moreover, xeno-free me-
dia does not offer solutions for early senescence, te-
lomere shortening, and loss of chemokine receptors 
that are needed for site specific migration, engraft-
ment and long term regeneration benefits.  

Human serum and platelet lysate as alterna-
tive to growth factors and FBS 

In the search for a solution to the problems re-
lated to severe immunogenicity to 
xeno-contamination caused by FBS, and limited isola-
tion and expansion of MSCs in serum free media, re-
searchers have proposed to use human serum, plasma 
and/or platelet lysate as possible replacement [56, 
108-110]. The potential of autologous human serum in 
supporting the in vitro isolation and expansion of 
MSCs has gained considerable attention [56, 111-113]. 
Autologous human serum has been reported to have 
positive effect on the proliferation [112, 114] and dif-
ferentiation potential of MSCs [56, 111, 114]. MSCs 
cultured in autologous human serum have shown 
more stable gene expression [56, 115] and higher mo-
tility [114] compared to MSCs cultured in FBS. 
Moreover, MSCs cultured in autologous serum sup-
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posed to be more effective in immunomodulation as it 
significantly decreased the percentage of INF-γ pro-
ducing activated T cells compared to MSC cultured in 
FBS [113]. Nonetheless, collection of blood from el-
derly, diseased and inflamed patients could be a lim-
iting factor for serum preparation for the ex vivo ex-
pansion of MSCs prior to transplantation [111, 116, 
117].  

In addition to the autologous serum, allogeneic 
human serum and human cord blood serum has also 
been considered as suitable alternative to FBS [108, 
118, 119]. However, it has been reported that alloge-
neic serum supplement during in vitro expansion of 
MSCs could cause over expression of genes that are 
responsible for growth arrest and cell death [56]. As 
opposed to that pooled allogeneic serum from adult 
AB-blood donors and pooled cord blood serum sup-
port isolation and expansion of MSCs while main-
taining its differentiation potentials, motility and 
immunosuppressive property [114, 117, 120-124]. 
Lower level of hemagglutinin in pooled cord blood 
serum compared to adult serum, and lack of A and B 
hemagglutinin in pooled allogeneic AB- serum was 
attributed to be behind the success [120].  

Among the different types of supplement from 
human source, platelet lysate was considered to be the 
best alternative to FBS because of its superiority in 
maintaining growth potential, genetic stability, im-
munomodulatory properties, and differentiation po-
tential [110, 113, 125-130]. However, to produce clini-
cal grade MSCs platelets free of infectious agents are 
of vital importance to prevent any possibility of dis-
ease transmission. 

 Transient adaptation of expanded MSCs in 
autologous serum supplemented media prior 
to transplantation  

Despite the advantages of using the platelet ly-
sate or allogeneic serum for ex vivo expansion, the 
microenvironment of the culture media with those 
supplement vary significantly compared to that of the 
patients’ diseased organ. Hence, to make the ex vivo 
expanded MSCs accustomed with new microenvi-
ronment upon transplantation, incubation of the 
MSCs in well-defined or xeno-free media supple-
mented with freshly prepared autologous serum 
might be proven useful (Figure 4). Regeneration is a 
complex process and a large number of autocrine and 
paracrine signalling factors play a vital role in pro-
moting this [131, 132]. Effect of cytokines, chemokines 
and growth factors on enhancing the chemotaxis and 
site specific migration of MSCs have been reported 
[90, 95, 133, 134]. Furthermore, enhanced site specific 
migration potential has been shown in MSCs 
pre-incubated with inflammatory cytokine TNF-α [90, 

92]. In recent years researchers have acknowledged 
that the regenerative properties of microvesicles have 
been overlooked for years [135, 136]. Microvesicles are 
small (30-1000 nm) membranous vesicles released 
from the activated healthy cells or demaged cells 
during membrane blebbing [135, 137-139]. Rozmys-
lowicz et al. reported the transfer of CXCR4 receptor 
from the surface of platelets or megakaryocytes to the 
surface of CD4+/CXCR4-null cells through mi-
crovesicles [140]. Microvesicles are also able to trans-
fer mRNA and miRNA from the cell of origin to the 
receiver cells [135, 141-143]. Induced epigenetic 
changes following internalization of microvesicles by 
receiver cells have been recognized as a universal 
phenomenon [135, 139, 144-146].  

Several human and animal studies reported the 
increase of inflammatory cytokines, chemokines, 
growth factors and microvesicles in blood circulation 
following stroke and ischemic heart disease [5, 136, 
147-151]. If the expanded MSCs are meant for trans-
plantation in such pathological conditions where in-
flammatory cytokines, chemokines, growth factors 
and circulatory microvesicles are increased, positive 
response of the transplanted cells to the host micro-
environment is highly important for successful re-
generative therapy.  

Notably, chemokines and inflammatory cyto-
kines in the patients’ freshly prepared autologous 
serum have the potential to enhance migratory po-
tential of MSCs by inducing the expression of chemo-
kine markers during incubation [5, 90, 92, 148]. 
Meanwhile, microvesicles present in the patients’ au-
tologous serum could enhance MSCs’ migratory 
properties by delivering chemokine markers and as 
well as potentially cause epigenetic changes of MSCs 
by transferring host mRNA or miRNA [135, 137-139, 
142-146]. Expression of chemokine markers on MSCs, 
transiently incubated in autologus serum, may facili-
tate tissue specific migration and engraftment. At the 
same time, the tissue specific modified cell population 
may produce microvesicles similar to that of injured 
tissues and organs [144] following engraftment. In 
turn, it might facilitate the migration and homing of 
circulatory MSCs and prevent apoptosis of cells in 
injured tissues or organs [136]. Since the number of 
circulatory MSCs and progenitor cells in circulation 
was found to be increased within 24 hours following 
stroke and myocardial infarction [5, 6, 8], incubation 
of MSCs for similar time period, i.e., 24 hours, would 
be considered sufficient for the transient ex vivo ad-
aptation of the expanded MSCs. 

 Maintenance of hypoxic condition for genetic 
stability and stemness of MSCs 

Tissues where the MSCs reside are hypoxic in 
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nature [57, 152-154]. In vitro hypoxic culture condi-
tions (2-5% oxygen) help MSCs to grow faster while 
maintaining homogeneity, differentiation potential, 
increased chemokine receptors expression and retard 
the cellular ageing process as well [17, 18, 35, 37, 39]. 
Biosafety issue related to aneuploidy in expanded 
MSCs caused by oxidative stress [17] can be resolved 
by using hypoxic culture conditions [18]. Hypoxia 
inducible factor (HIF) especially HIF-1 plays an im-
portant role in maintaining the regenerative potential 
at hypoxic environment. Under hypoxic conditions, 
the lack of O2 causes the prolyl-hydroxylation process 
to be suppressed resulting in stability of HIF-1α and 
this will facilitate translocation of its to nucleus. After 
nuclear translocation, it binds with HIF-1β to form the 

heterodimer. Then the HIF-1 heterodimer binds to a 
hypoxia-response element (HRE) in the target genes, 
associated with co-activators such as CBP/p300, and 
regulates the transcription of genes involved in me-
tabolism, angiogenesis, cell migration and cell fate. 
Besides, through Notch signalling, HIF-1α regulate 
the expression of genes (e.g. HES and HEY) that 
maintain proliferation of cells [18]. To provide MSCs 
natural niche like oxygen concentration isolation, ex-
pansion and adaptation of MSCs should be done in 
hypoxic (2-5% oxygen) conditions. This culture envi-
ronment will facilitate proliferation, site specific mi-
gration, and prevent early aging of MSCs. Moreover, 
hypoxic culture environment may increase biosafety 
by reducing aneuploidy [17, 18].  

 

 
Figure 3: Effect of culture media supplement on in vitro or ex vivo expansion of MSCs, and their suitability for clinical applications. FBS, allogeneic 
serum (pooled AB-serum), platelet lysate and autologous serum supplemented media support isolation and expansion of MSCs. Presence of xenoantigen in FBS make 
its use controversial. Although xeno-free media do not support isolation, they support further expansion of MSCs isolated in any serum supplemented media. MSCs 
expanded in xeno-free media and media supplemented with platelet lysate, pooled allogeneic AB-serum or autologous serum are considered appropriate for 
regenerative therapy as they are free from any xeno-contamination. Abbreviations are: MSC, Mesenchymal stem cells; FBS, fetal bovine serum. [↓= decrease; ↑= 
increase; ↓↑= regular/unchanged; ×=absent; √ = present; ?= controversial; NA= data not available] 

 

 
Figure 4: Possible effects of adaptation of expanded MSCs in autologous serum supplemented media on engraftment and regenerative efi-
ciency. A) Cytokines and other soluble factors present in the freshly prepared autologous serum may increase chemokine receptor (CCR) expression on MSCs. 
Microvesicles present in the serum may deliver chemokine receptors that might enhance chemotactic properties of incubated MSCs. Expression of chemokine 
receptors may facilitate tissue specific migration and further regenerative benefits. B) In addition, mRNA or miRNA packed in microvesicle may be delivered to MSCs 
during incubation that could aid in tissue specific differentiation. Upon transplantation, these tissue specific differentiated cells may produce microvesicles similar to 
the cells within the injured tissues. This may help tissue specific migration of circulatory progenitors or MSCs and enhance regenerative outcomes. 
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Conclusion 
MSCs have tremendous potential in regenerative 

medicine. It is the store house of several cytokines and 
paracrine signalling factors that facilitates the process 
of regeneration. For successful translation of the use 
of MSCs from bench side to bedside, ex vivo expansion 
of MSCs prior to transplantation requires appropriate 
supplement to minimize the impact of xenogenic se-
rum. This article highlights comparative benefits of 
human platelet lysate and pooled human-AB serum 
as supplement for expansion of MSCs and subsequent 
transient ex vivo adaptation of the expanded MSCs in 
autologus serum supplement media prior to trans-
plantation. Hypoxic culture environment must be 
maintained both for ex vivo expansion and adaptation. 
Collectively, ex vivo expansion using human platelet 
lysate and pooled human-AB serum and transient 
adaptation in autologus serum in hypoxic condition 
might prove useful in enhancing the regenerative po-
tential of MSCs.  
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