
AN ITERATIVE PROCEDURE FOR PRODUCTION-INVENTORY-DISTRIBUTION ROUTING

PROBLEM

Dicky Lim Teik Kyee
1
 and Noor Hasnah Moin

2*

1,2
Institute of Mathematical Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia.

E-mail:
1
dickylim@siswa.um.edu.my,

2
noor_hasnah@um.edu.my

ABSTRACT

In this paper, the integrated Production, Inventory and Distribution Routing Problem (PIDRP) is modelled as a

one-to-many distribution system, in which a single warehouse or production facility is responsible for restocking a

geographically dispersed customers whose demands are deterministic and time-varying. The demand can be

satisfied from either inventory held at the customer sites or from daily production. A fleet of homogeeous

capacitated vehicles for making the deliveries is also considered. Capacity constraints for the inventory are given

for each customer and the demand must be fulfilled on time, without delay. The aim of PIDRP is to minimize the

overall cost of coordinating the production, inventory and transportation over a finite planning horizon. We propose

a MatHeuristic algorithm, an optimization algorithm made by the interpolation of metaheuristics and mathematical

programming techniques, to solve the model. In this paper, we propose a two-phase solution approach to the

problem. Phase I solves a mixed integer programming model which includes all the constraints in the original

model except for the routing constraints. The model is solved by using Concert Technology of CPLEX 12.5

Optimizers with Microsoft Visual C++ 2010. In phase 2, we propose a variable neighborhood search procedure as

the metaheuristics for solving the problem. Computational experiment is conducted to test the effectiveness of the

algorithm.

Keywords: Production-Inventory-Distribution Routing Problem; MatHeuristics; Mixed Integer Programming;

Variable Neighbourhood Search

1.0 INTRODUCTION

In the competitive business environment, many companies face problems with the inventory and distribution

management. Thus, they keep searching for ways to design and manufacture new products, and distribute them in an

efficient and effective manner. After years of focusing on reduction in production and operation costs, companies

are beginning to look into distribution activities as the last component for cost reduction. At the planning level, the

goal is to coordinate production, inventory, and delivery to meet customers demand so that the corresponding costs

are minimized. Therefore, integrating production and distribution decisions is a challenging problem for

manufacturers that are trying to optimize their supply chain. Although the supply chain management literature is

extensive, the benefits and challenges of coordinated decision making within supply chain scheduling models have

not been studied. In general, the problem of optimally coordinating production, inventory and transportation is

called the production-inventory-distribution routing problem (PIDRP) that is know to be NP-hard [1]. The PIDRP is

sometimes known as production routing problems [2].

Companies generally need to make decisions on production planning, inventory levels, and transportation in each

level of the logistics distribution network in such a way that customer’s demand is satisfied at minimum cost. The

PIDRP usually arises in the retail industry where customers or outlets rely on a central supplier or manufacturer to

provide them with a given commodity on a regular basis. The integration of production, inventory, and distribution

increases the complexity of the problem. PIDRP is defined by a combination of a capacitated lot-sizing problem and

a capacitated, multi-period vehicle routing problem (VRP). A manufacturer must develop minimum cost production

and distribution schedules for a single product that are sufficient to meet all customers demand over the planning

horizon. The PIDRP is relevant in Vendor Managed Inventory where the supplier (manufacturer) monitors the

inventory at the retailers and coordinate efficient resource utilitization to replenish the retailers.

mailto:dickylim@siswa.um.edu.my
mailto:noor_hasnah@um.edu.my

2.0 LITERATURE REVIEW

The PIDRP is different than the traditional VRPs because it requires multiple customer visits to satisfy demand

spread out over an extended period of time. It is most similar to the inventory routing problem, IRP [3-6] and the

periodic routing problem, PRP [7-9]. PIDRP can be catergorized based on the underlying assumptions. The number

of production plants can be either single or multiple and producing single or multiple products. The inventory policy

commonly employed is the maximum or order-up-to level or a combination of both policies. The distribution can be

carried out by a fleet of homogeneous or hetrogeneous vehicle with limited capacity. For detail classifications we

refer the readers to [2].

There has been a large amount of researches in the areas relating to production, inventory and distribution routing

problem. The first paper to discuss PIDRP is due to Chandra [10] and Chandra and Fisher [11] and the authors show

the benefit of coordinating the three component which results in 3-20% cost savings compared to sequentially

solving the problems separately. Lei et al [12] studied a multi-facility PIDRP with heterogeneous fleet that was

motivated by a chemical manufacturer with international customers. The authors proposed a two-phase solution

approach where the problem is decomposed into phase 1 in which the model is solved as a mixed integer

programming problem subject to all the constraints in the original model except that the transporter routings are

restricted to direct shipment between facilities and customer sites. The potential inefficiency of the direct shipment

is then solved in Phase 2 where heuristic procedure is applied to solve an associated consolidation problem that is

formulated as a capacitated transportation problem with additional constraints. Testing showed that the approach

gave good solutions to instances with up to 50 customer sites over 2 to 4 periods.

An alternative approach using Greedy Randomized Adaptative Search Procedure (GRASP) is proposed by Boudia et

al. [13]. The PIDRP considered comprises of a single production facility that produces single product. The

originality of the approach is to tackle production and routing decisions concurrently instead of resorting to classical

two-phase approaches which are still widely used in practice. The two principal difficulties in the GRASP design

were to randomize the construction of a trial solution without altering solution quality too much and to develop a

local search able to modify both the production plan and the sets of trips on each period. The GRASP considered

embeds improvement by a reactive tabu search algorithm for solving the PIDRP. Similarly, Bard and Nananukul

[14] developed a reactive tabu search algorithm for solving the PIDRP. An essential component of their

methodology was the use of an allocation model in the form of MIP to find good feasible solutions that were used as

starting points for the tabu search. The neighborhood consisted of swap and transfer moves. Path relinking was also

used in post-processing phase to seek out marginal cost reductions.

Armentano et al. [15] extended the ideas in [13, 14] to include multiple products. The authors presented two

heuristic approaches that allow trajectories with feasible and infeasible solutions. The first approach is a tabu search

with short memory that uses a compound move at each iteration involving the shift of an amount of an item

delivered in a given period to every preceding and succeeding period, the determination of a new route, and the

calculation of a new production plan over the time horizon. While the second approach makes use of path relinking

that is integrated with tabu search, such that every tabu search local minimum is linked with the farthest solution of

a pool of elite solutions. The approaches were tested on a set of small and large generated instances with multiple

items. Besides, the approach were also tested on a set of single item instances [13] and they outperformed the

memetic algorithm suggested by Boudia and Prins [16] and the reactive tabu search developed by Bard and

Nananukul [14].

Due to the complexity of PIDRP, few researchers have proposed exact algorithms. Amongst them is Bard and

Nananukul [1] which combined heuristic within the exact branch and price framework. The approach exploits the

efficiency of heuristics and the precision of branch and price. The authors devised a new branching strategy to

accommodate the unique degeneracy characteristics of the master problem and the algorithms were tested on

instances with up to 50 customers and 8 time periods. Adulyassak et al. [17] proposed a branch-and-cut algorithms

for both both PIDRP and IRP for the maximum level (ML) and order-up-to level (OU) inventory replenishment

policies. The algorithms were tested on IRP and PRP instances with up to 35 customers, three periods, and three

vehicles and the authors extended to parallel implementation to be able to solve larger instances. The largest

instance for PIDRP on a multicore machine is 35 customers, six periods, and three vehicles.

We refer the readers to the review paper by Sarmento and Nagi [18] and the recent review by Adulyasak et al. [2]

which gives a comprehensive state of the art of PIDRP.

The paper is organized as follows. Section 3 reviews the description of PIDRP and its mathematical formulation. In

Section 4, the two phase methodolody we proposed to solve the problem is discussed in detail. In Section 5, we

present the computational results to evaluate the performance of the algorithm. Finally, we present our conclusions

in Section 6.

3.0 PROBLEM DESCRIPTION AND MATHEMATICAL FORMULATION

We consider a production, inventory and distribution routing problem (PIDRP) similar to one proposed by [19]. The

problem consists of a single production facility that produces a single product and distributes it to a set of

customers with time varying and non-negative demands in each period and can be stored as the inventory by

incurring unit holding cost at the production facility as well as the customer sites. If production takes place at the

facility in period , then a setup cost is incurred for . In constructing delivery schedules, each

customer can be visited at most once per period (split delivery is not allowed) and each of the homogeneous

vehicles can make at most one trip per period. In this study, the initial inventories at the production facility and

customers’ sites are assumed to be zero.

Moreover, it is assumed that at the end of planning horizon all inventories (both at the production facility and

customers’ sites) is required to be zero. It is also assumed that all deliveries takes place at the beginning of the

period and arrive at the time to satisfy demand for at least that day. The objective is to construct a production plan

and delivery schedule which minimizes production, inventory at the production facility and customers’ sites and

distribution costs while fulfilling customers’ demand. The number of vehicles is given and the total delivery

quantity must not exceed vehicle capacity.

The following notations are used in the development of the mathematical formulation.

Indices

 indices for customers, where denotes the depot

 index for periods

 set of customers; and

 set of periods in the planning horizon; and

Parameters

 demand of customer in period

 number of vehicles

 vehicle capacity

 transportation cost from customer to customer

 production capacity

 fixed production setup cost

 unit production holding cost

 maximum inventory level at the production facility

 unit inventory holding cost at customer site

 maximum inventory level at the customer site,

Decision Variables

 1 if customer immediately precedes customer on a delivery route in period ; 0 otherwise

 load on a vehicle immediately before making a delivery to customer in period

 amount delivered to customer in period

 production quantity in period

 inventory at the production facility at the end of period

 1 if there is production facility; 0 otherwise

 inventory at customer site at the end of period

The PIDRP can be formulated as follows

Tt Ni Nj Tt Tt Tt Ni

C

it

C

i

P

t

P

tijtij IhIhfzxc
0 0 0 \ \

min

 (1)

subjects to:

Ni

itt
P
t

P
t TtwpII 01 , (2)

 TtNidwII itit
C
ti

C
it ,,1, (3)

TtNiIw P
t

Ni

it

 ,,1
 (4)

 \, 0TtCzp tt (5)

Ni

C

ii Idp 010
 (6)

TtNix

ij
Nj

ijt

,,1

0

 (7)

TtNjxx

ji
Ni

ji
Ni

jitijt

,,

0 0

 (8)

TtKx
Nj

jt

,0 (9)

 TtNjNixGwyy ijttititjt ,,,1 0

max
 (10)

TtNixGw
Nj

ijtitit

,,
0

max
 (11)

 NiIITtNiIIII C

i

PC

i

C

it

PP

t ,0;\,;0,0 max,max (12)

 0,0,0,1,0,1,0 ittittijt wpQyzx and integer, TtNji ,0 (13)

where

tl ilit dQG ,minmax
 and

Ni tl ilt dQG

,minmax

The objective function (1) expresses the minimization of the sum of transportation costs, production setup costs,

holding costs at the production facility and the holding costs at the customer sites. Constraints (2) and (3) represent

the equations of inventory flow balance for production facility and customers respectively. The total amount

available for delivery on day is limited by the amount in inventory at the production facility in period as

indicated in (4). (5) limits production in period to the capacity of the production facility, and (6) allows production

in period . (7) ensures that if customer is serviced in period , then it must have a successor on its route, and the

route continuity is enforced by (8). (9) limits the number of vehicles that depart form the production facility in

period to the number of vehicles available , and (10) keeps track of the load on the vehicles. The value of
 is

specified to be as small as possible while ensuring that (10) is feasible. The amount delivered to each customer is

limited by the parameter
 in (11). The variable bounds are specified in (12) and (13).

4.0 SOLUTION METHODOLOGY

In this study, we propose a two phase solution approach to solve the PIDRP model. Allocation model which is the

simplified version of model above is solved in phase 1 to determine the production capacity, amount delivery to

customers and inventories at both production facility and customers’ sites. The initial solution to the problem is

found in this phase. In phase 2, the delivery routes for each period are constructed based on the customer allocations

obtained from phase 1 using giant tour and Dijkstra’s algorithm. Next, variable neighborhood search (VNS) is

developed to improve the initial solutions.

4.1 Initial Solution

An initial solution can be found in phase 1 by solving the allocation model as a mixed integer programming (MIP)

to get a set of feasible allocations. The routing variables, and the associated constraints (7)-(10) are removed

and aggregated vehicle capacity constraint are introduced to the allocation model. The formulation without routing

components requires some additional notations:
 represents the fixed cost of making a delivery to customer on

day ,
 represents the variable cost of delivering one item to customer on day , and

 takes the value 1 if a

delivery is made to customer on day and 0 otherwise.

As in Nananukul [19], we divide the problem into two cases. For problem instances with , the routing

costs on any period are approximated by the cost of a round trip between the depot and customer (round trip

value), so we use surrogate cost term

 with

 for all and . In this instance,
 is set to

zero. Whereas for the problem instances with , we set

 for all and , and the variable cost

term
 is used for replacement, where

 is approximated by the cost of making a delivery to customer

directly from the depot divided by the total demand of customer in period (i.e.,
). Since in our

instances, , we set the variables

 and the allocation model is simplified as follows.

 \\0

min
Tt Ni

C
it

C
i

Tt Ni Tt

P
t

P
it

C
it

Tt

ttIP IhIhwezf (1a)

Additional new constraint:

Ni

it TtQKw ,8.0 (14)

The primary difference between models (1) and (1a) is that the routing variables () and related constraints have

been removed. (14) limit the total amount that can be delivered in period to a fixed percentage of the total

transportation capacity, and provides a hedge against the need for split deliveries. The authors in [19] showed that a

value of always yielded feasible solutions.

4.2 Variable Neighborhood Search

Variable neighborhood search was initially proposed by Mladenovic and Hansen [20] for solving combinatorial and

global optimization problems. The main reasoning of this metaheuristic is based on the idea of a systematic change

of neighborhoods within a local search method. Exploration of the search space is carried out by the local search

which allows the algorithm to jump from one neighborhood to another. This allows the algorithm to escape from the

local optimum.

Let us denote a finite set of pre-selected neighborhood structures with , where , where refers

to the maximum number of neighborhood used, and the set of solutions in the th neighborhood of . The

stopping condition may be maximum number of iterations, maximum number of iterations between two

improvements or maximum CPU time allowed. There are three phases of the main VNS: Shaking, Local Search, and

Move or Not. The basic VNS heuristic comprises the steps given in Fig. 1. The flow chart of the VNS is outlined in

Fig. 2.

Fig. 1. Steps of basic VNS

Neighborhood Structures

There are several ways that can be used to define the neighborhood structure, for example: 1-interchange (or

vertex substitution), symmetric difference between two solutions, Hamming distance, vertex deletion or addition,

node based or path based and k-edge exchange. As PIDRP is almost similar to IRP, it comprises of three important

components; the production, inventory and routing. However the tradeoff between inventory holding cost at the

customers site and the traveling costs. The choice of a suitable neighborhood structure in an PIDRP is not straight

forward. The neighborhood can be defined as the symmetric difference between the different clusters within the

same period or the symmetric difference between the numbers of customers visited in each period.

Initialization. Step 0: Define a set of neighborhood structures , , that will be used in the

 search and a set of local searches , ; generate an initial solution ;

 choose a stopping condition;

Repeat the following steps until the stopping condition is met:

 Step 1: Set ;

 Step 2: Until , repeat the following steps:

 (a) Shaking. Generate a point at random from the neighborhood of ()

 (b) Local Search. Apply some local search method with as initial solution;

 denote with the so obtained local optimum;

 (c) Move or not. If this local optimum is better than the incumbent, move there (),

 and go back to (1); otherwise, set .

In this study our neighborhood comprises of four type of neighborhood structure: as a distance function, that is the

cardinality of the symmetric difference between any two solutions and written as

 using the forward and backward transfer, the swap and the tranfer (insertion). The individual neighborhood

structure is described in details in Section 4.2.1.

Fig 2. Flow chart of VNS

Start

Initialization. Generate an initial solution, .

Set . Define

Set . Define

 Shaking step. Find a random

feasible solution form

Local search. until

Move or Not.Improvement of

the incumbent best, ?

Yes

No

Set

 ?
Yes

Set

 ?

No

Yes

Stop

No

4.2.1 Step 0: Initialization

The initial solution is obtained in two steps; (a) construct a giant tour using the sweep algorithm as descibed in [21]

and (b) find the corresponding optimal fleet size by constructing cost network and subsequently applying Dijkstra’s

algorithm which provides an initial feasible solution that contains routes. First, a giant tour is constructed that

includes all the customers obtained in phase 1. We define a tour with , the set of

nodes representing all the customers’ positions in the tour, and form the arcs which

maintain the order of the customers, together with a distance cost . Define a path starting from the depot to the

closest customer, and this step is repeated at each node where with denoting the total

number of customers to be served in the current period, until the last customer is reached. In order to apply

Dijkstra’s algorithm, we first construct a cost network considering customer data, capacity constraint, distance

constraint, and vehicle unit variable and fixed costs. For illustration, consider 12 customers making up the following

giant tour with customer demand . Assume

that there is only one type of vehicle, with maximum capacity of 10 units. Let be the distance between node and

node .

We start to construct this cost network by calculating the cost from the depot, denoted by , to customer and from

this customer to the depot (return journey) as the cost of arcs . This is express as . If the

total demand of both customers and does not violate the capacity constraint of the vehicle, we calculate the cost

of the arcs as . We continue with this cost construction until the vehicle is full,

and then we start using the next vehicle. Fig. 3 shows that we can only have customers and can then be

visited by the vehicle. The process is continued until there is no more arcs connecting the last customer in the giant

tour. In general, the cost of arc is defined as in .

 (15)

Fig. 3. Construction of cost network

After creating the cost network, whose origin is depot and the destination is the last node in the giant tour,

Dijkstra’s algorithm is applied to obtain the initial feasible solution. This procedure is repeated for each period

considered. After an initial feasible solution is found, set and proceed to Step 1.

Defining the stopping condition can differ from one program to another. Most algorithms adopt the maximum

number of iterations as tje stopping condition. Other criteria such as maximum running time or cpu time allowed, or

number of iterations between two improvements can also be defined in the algorithm.

4.2.2 Step 2(a): Shaking

In this step, a solution is picked randomly from the neighborhood of the current solution, . This will ensure

that the solution is not far from the current best solution . We consider four moves, forward transfer, backward

transfer, swap and transfer for VNS. The steps of the forward and backward transfer in the shaking step are as

follows. The algorithm of the shaking step is shown in Fig. 4.

Fig. 4. The algorithm of shaking step

4.2.2.1 Neighborhood Structure

We consider four neighborhood structures for each : forward and backward transfers, swap and transfer. The aim

of the forward transfer is to reduce the inventory holding cost without increasing drastically the transportation cost.

In the backward transfer the preference is given to the suppliers with the lower holding cost in order to determine

whether the transportation and the inventory holding cost can be futher consolidated. Examples of the forward and

backward transfers are illustrated in Figure 1 and 2, respectively. In these example we assume that the coordinate of

the 5 customers are , and the depot is located at the holding

cost per unit for each customer are and and the vehicle capacity is . Note

that the routing are separated by zeros and and are the pick-up quantity and the inventory respectively.

Forward Transfer

Fig. 5 illustrates a forward transfer and the selection of period and supplier to be transferred is biased towards

customers with high holding cost. In this example, we select customer in the period 1. Note that we limit the transfer

to at most 2 periods only. This is to ensure that the increase in the routing cost is not exceedingly high.

The demand for customer 1 in period 1, 2, and 3 are and . From the figure and

 , the resultant holding cost for periods 1, 2 and 3 are 81, 24 and 36 respectively, and the total cost, including

the routing cost for all 3 periods is 240.3398. Customer 1 is not visited in the period 2 and 3, so we apply forward

transfer by inserting customer 1 to period 3 according to the best insertion. Note that inserting customer 1 in period

2 results in the violation of vehicle capacity constraint. The saving after the transfer is 240.3398-153.4129= 86.9269.

Set num=1

While (num<=k) do //the number of changes depend on the value of k

{

 Randomly generate the value of r where 0<r<1. Define p1, p2 and p3

if (r<=p1) // the value of p1 represent the chosen probability

 Apply forward transfer

 elseif (p1<r<=p2)

 Apply backward transfer

 elseif(p2<r<=p3)

 Apply swap

 else

 Apply transfer

 endif

 num=num+1

}

Before Period Route

Route Cost Holding Cost

 1 0 2 5 0 1 0 3 4 0 24.1156 81

2 3

10

2 5

0 1

6

0 1

 2 0 2 3 0

9.0486 72

2 5

0 4

 3 0 2 0 5 4 0

18.1756 36

6

2 4

4

0 0

Total Cost 51.3398 189

After Period Route

Route Cost Holding Cost

 1 0 2 5 0 1 0 3 4 0 24.1156 33

2 3

6

2 5

0 1

2

0 1

 2 0 2 3 0

9.0486 24

2 5

0 4

 3 0 2 0 1 5 4 0

21.5450 36

6

4 2 4

4

0 0 0

Total Cost 60.4129 93

 Fig.5. Example of Forward Transfer

Backward Transfer

The selection of period and customer to be transferred is favorable toward the lower holding cost in the backward

tranfer shown in Fig. 6. In this example, we select customer 4 in the period 5. The saving is found by increasing the

inventory cost and decrease in routing.

Initial routing for period 4 and 5, with the route cost 18.771591 and 24.36395 and 0 holding cost. According to the

inventory updating mechanism, we transfer customer 4 in the period 5 to period 4. As the same customer is visited

in period 4, so we embed it together, in which we note that the resulting transfer does not violate the capacity

constraint. After the transfer of delivery amount by 2 units, we have a holding cost 6 with . Customer 4 will

be eliminated in period 5. The overall savings after the transfer is 64.2431 -58.5812= 5.6619.

Before Period Route Route Cost Holding Cost

Transfer

 4 0 1 5 0 4 0

19.5035 18

4 4

4

0 0

0

 5 0 1 5 3 0 4 0

26.7396 0

4 4 2

2

0 0 0

0

Total Cost 46.2431 18

After Period Route

Route Cost Holding Cost

Transfer

 4 0 1 5 0 4 0

19.5035 24

4 4

6

0 0

2

 5 0 1 5 3 0

15.0777 0

4 4 2

0 0 0

Total Cost 34.5812 24

Fig.6. Example of Backward Transfer

Swap

The swap involves an exchange of delivery quantities between two customers in period with quantity

 and in period with quantity , where is the first period after such that . For

customer , the move considers the maximum portion of that can be reassigned to period without causing a

shortage in period to be exchanged with full amount . If customer was not scheduled for a delivery in

period , then he must be inserted into one of the routes. In general, a swap produces a change in

holding costs and a change in holding costs in period and .

Transfer

Similar to backward transfer but we limit the number of periods to be inserted to at least two preceding periods.

(i.e.). The transfer examines each customer one at a time and tries to reassign the delivery

quantity scheduled for to the latest period, call it , preceding in which a delivery is scheduled for at least

one customer ; that is, for some .

We also incorporate the concept of tabu search which forbid the movement of the customer for a few iterations if

the customer is chosen to transfer or swap. In all the four moves, only moves that result in feasible solutions are

allowed so it is necessary to check for violations of the production constraints and the inventory bounds at the plant

and the customer sites, as well as the vehicle capacity constraint.

4.2.3 Step 2(b): Local Search

In our study, the local search consists of six refinement procedures adopted from Imran and Salhi [22]. The order of

the refinement procedure is as follows: the 1-insertion inter-route as , the 2-opt inter-route as , the 2-opt intra

route as , the swap intra route as , 1-insertion intra-route as , and at last the 2-insertion intra-route as .

The process starts by generating a random feasible solution from , which is used as temporary solution. The

multi-level approach then starts by finding the best solution using . If is better than , then and the

search return to , otherwise the next refinement procedure, is applied. This process is repeated until cannot

produce a better solution.

4.2.4 Step 2(c): Move or Not

If the solution obtained by the multi-level approach, , is better than the incumbent best solution , then set
and the search returns to . But if is found to be worse or same as , we generate from the next neighborhood

say and go back to step (2b) again. The process is repeated until the search reaches
.

5.0 COMPUTATIONAL RESULTS

All the algorithms are written in Microsoft Visual C++ 2010 and performed on 3.1 GHz processor with 8GB of

RAM. The code for the allocation model were implemented as mixed integer programming in Concert technology of

Microsoft Visual Studio 2010 linked to the CPLEX 12.5 libraries. CPU times were obtained using the time function

in C++.

In this paper, we used a data set provided by Boudia et al. [13] consisting of 30 instances of 50 customer problem

with a 20-period planning horizon and holding cost
 for all . These instances were randomly

generated on a Euclidean grid. For each customer , demand was uniformly distributed between and

the storage capacity
 . The vehicle capacities, and the number of vehicles, .

Our tests were compared to the GRASP [13] and the Memetic Algorithm with Population Management (MA|PM)

[16]. Column 2 and 3 give the best solutions for both GRASP and MA|PM. The last six columns illustrate results for

our 2-phase methodology tabulating the best objective function, mean and standard deviation over the 10 runs. The

last three columns display the computational time, its mean and standard deviation. We have improved 13 out of 30

solutions as compared to Memetic Algorithm with Population Management and our results are superior on all

instances when compared to GRASP.

Table 1. Results for 50 customer-20 period

Inst.

GRASP MA|PM Our Algorithm

Total

Cost
Total Cost

Best

Cost
Mean

Stand.

Dev.

Time

(s)
Mean

Stand.

Dev.

1 440505 378378 404597 410146.8 2946.97 280.06 278.54 20.77

2 448695 403913 401127 404570.6 1786.47 280.93 289.07 16.49

3 419730 409573 400791 405490.1 2892.42 272.31 290.23 18.19

4 456398 399220 403574 407193.3 2867.57 318.56 299.18 14.43

5 434466 422279 410873 414941.3 2245.13 334.20 308.56 19.10

6 452564 407122 405087 410837.7 2810.77 264.38 290.72 22.01

7 436812 414977 415684 419104.6 1972.51 383.79 360.96 18.78

8 420935 379744 406108 409896.7 2489.10 300.89 323.40 23.31

9 434789 407935 400572 403844.4 2097.15 266.50 274.85 10.55

10 436221 396258 400522 402856.3 1487.82 264.99 273.42 28.89

11 433890 402475 393563 397689.1 2326.93 253.19 307.12 26.52

12 452705 358702 395480 398464.3 2146.70 291.24 272.32 19.75

13 440771 371030 391643 395742.1 2995.11 247.49 249.72 10.91

14 419412 406114 396787 400078.5 1734.72 265.80 278.29 23.32

15 453875 373076 425952 430033.9 2023.24 395.34 386.90 25.28

16 457310 379404 398141 402162.3 2326.66 323.48 320.12 19.13

17 455663 406353 410069 413594.3 2052.57 314.83 287.58 26.08

18 441685 401179 399072 403830.2 2984.88 319.18 328.93 19.77

19 418896 406893 395170 398922.1 2125.64 231.14 258.18 19.24

20 452183 398508 402284 405264.4 2050.40 248.47 282.96 22.99

21 409677 397112 399349 404670.2 2366.29 295.42 298.62 14.42

22 429116 358749 397730 401398.3 1902.57 261.51 280.58 14.87

23 443184 407369 398835 404072.1 2601.56 269.61 266.60 12.08

24 426113 369784 397148 400217.7 1600.80 265.54 290.78 12.61

25 462245 411556 399765 403415.6 2192.09 274.23 265.09 20.54

26 442029 408704 407799 412178.4 1984.58 288.01 294.74 22.83

27 444695 366197 391664 395134.0 2379.64 249.91 285.31 15.94

28 449894 401032 396648 399283.9 1816.52 301.78 280.60 16.68

29 461555 384282 408039 412062.1 2760.34 274.71 276.22 22.31

30 434006 369959 405064 409614.4 2343.33 269.12 282.85 24.19

6.0 CONCLUSION

In this paper, we propose a two phase methodology to solve the production-inventory-distribution routing problem

(PIDRP). The problem is decomposed into two parts, allocation model to determine the amount to deliver and the

inventory and routing algorithm. The problem comprises of a single product, multi-period in a finite planning

horizon. Phase 1 solves the mixed integer programming allocation model and routes are constructed using a giant

tour procedure in phase 2 to form a feasible solution. The solution is then improved using the well known algorithm

variable neighbourhood search. Testing on benchmark instances show that our proposed algorithm can obtain high

quality solutions in a reasonable computational time.

ACKNOWLEDGEMENT

This research received support from University of Malaya Research Grant UMRG RG116/10AFR and the first

author would like to acknowlegdge the support from MyMaster programme under Department of Higher Education,

Ministry of Education.

REFERENCES

[1] J. F. Bard, and N. Nananukul, “A branch-and-price algorithm for an integrated production and inventory

routing problem”. Computer & Operations Research, vol. 37, no. 12, 2010, pp. 2202-2217.

[2] Y. Adulyasak, J.-F. Cordeau, R. Jans, “The production routing problem: A review of formulations and

solution algorithms”. Computers & Operations Research, vol. 55, March 2015, pp. 141-152.

[3] T. F. Abdelmaguid, and M. M. Dessouky, “A genetic algorithm approach to the integrated inventory

distribution problem”. International Journal of Production Research, vol. 44, no. 21, 2006, pp. 4445-4464.

[4] J. F. Bard, L. Huang, P. Jaillet, and M. Dror, “A decomposition approach to the inventory routing problem

with satellite facilities”. Transportation Science, Vol. 32, No. 2, 1998, pp. 189-203.

[5] B. Golden, A. Assad, and R. Dahl, “Analysis of a large scale vehicle routing problem with an inventory

component”. Large Scale Systems, Vol. 7, No.2-3, 1984, pp. 181-190.

[6] M. Dror, and M. Ball, “Inventory/routing: reduction from an annual to a short period problem”. Naval

Research Logistics Quarterly, Vol 34, No. 4, 1987, pp. 891-905.

[7] M. Gaudioso, and G. Paletta, “A heuristic for the periodic vehicle routing problem”. Transportation

Science, Vol. 26, No. 2, 1992, pp. 86-92.

[8] M. Mourgaya, and F. Vanderbeck, “Column generation based heuristic for tactical planning in multi-period

vehicle routing”. European Journal of Operational Research, Vol. 183, No. 3, 2007, pp. 1028-1041.

[9] P. Parthanadee, and R. Logendran, “Periodic product distribution from multi-depots under limited

supplies”. IIE Transactions on Scheduling & Logistics, Vol. 38, No. 11, 2006, pp. 1009-1026.

[10] P. Chandra, “A dynamic distribution model with warehouse and customer replenishment requirements”.

Journal of the Operational Research Society, Vol. 44, No. 7, 1993, pp. 681-692.

[11] P. Chandra, M. Fisher, “Coordination of production and distribution planning”. European Journal of

Operational Reserch, Vol. 72, No. 3, 1994, pp. 503-517.

[12] L. Lei, S. Liu, A. Ruszczynski, and S. Park, “On the integrated production, inventory and distribution

routing problem”. IIE Transactions on Scheduling & Logistics, Vol. 38, No. 11, 2006, pp. 955-970.

[13] M. Boudia, M. A. O. Louly, and C. Prins, “A reactive GRASP and path relinking for a combined

production-distribution problem”. Computers & Operations Research, Vol. 34, No. 11, 2007, pp. 3402-

3419.

[14] J. F. Bard, and N. Nananukul, “The integrated production-inventory-distribution routing problem

for a single commodity”. Journal of Scheduling, Vol. 12, No. 3, 2009, pp. 257-280.

[15] V. A. Armentano, A. L. Shiguemoto, and A. Lokketagen, “Tabu search with path-relinking for an

integrated production-distribution problem”. Computers & Operations Research, Vol. 38, No. 8, 2011, pp.

1199-1209.

[16] M. Boudia, C. Prins, “A memetic algorithm with dynamic population management for an integrated

production-distribution problem”. European Journal of Operational Research, Vol. 195, 2009, pp. 703-

715.

[17] Y. Adulyasak, J.-F. Cordeau, R. Jans, “Formulations and branch-and-cut algorithms for multi-vehicle

production and inventory routing problems”. INFORMS Journal on Computing, Vol. 26, No. 1, 2013, pp.

103-120.

[18] A.M. Sarmiento, R. Nagi, “A review of integrated analysis of production-distribution systems”. IIE

Transactions, Vol. 31, No. 11, 1999, pp. 1061-1074.

[19] N. Nananukul, “Lot-sizing and inventory routing for a production-distribution supply chain”. PhD

dissertion, Graduate Program in Operations Research and Industrial Engineering, The University of Texas,

Austin, 2008.

[20] N. Mladenovic, and P. Hansen, “Variable neighborhood search”. Computers and Operations Research,

Vol. 24, 1997, pp. 1097-1100.

[21] B. E. Gillett, and L. R. Miller, A heuristic algorithm for the vehicle dispatch problem. Operations

Research, Vol. 22, 1974, pp. 340-344.

[22] A. Imran, S. Salhi, and N. A. Wassan, “A variable neighborhood-based heuristic for heterogeneous fleet

vehicle routing problem”. European Journal of Operational Research, Vol. 197, No. 2, 2009, pp. 509-518.

