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ABSTRACT 

In this paper, the integrated Production, Inventory and Distribution Routing Problem (PIDRP) is modelled as a 

one-to-many distribution system, in which a single warehouse or production facility is responsible for restocking a 

geographically dispersed customers whose demands are deterministic and time-varying. The demand can be 

satisfied from either inventory held at the customer sites or from daily production. A fleet of homogeeous 

capacitated vehicles for making the deliveries is also considered. Capacity constraints for the inventory are given 

for each customer and the demand must be fulfilled on time, without delay. The aim of PIDRP is to minimize the 

overall cost of coordinating the production, inventory and transportation over a finite planning horizon. We propose 

a MatHeuristic algorithm, an optimization algorithm made by the interpolation of metaheuristics and mathematical 

programming techniques, to solve the model. In this paper, we propose a two-phase solution approach to the 

problem. Phase I solves a mixed integer programming model which includes all the constraints in the original 

model except for the routing constraints. The model is solved by using Concert Technology of CPLEX 12.5 

Optimizers with Microsoft Visual C++ 2010. In phase 2, we propose a variable neighborhood search procedure as 

the metaheuristics for solving the problem. Computational experiment is conducted to test the effectiveness of the 

algorithm.  

Keywords: Production-Inventory-Distribution Routing Problem; MatHeuristics; Mixed Integer Programming; 

Variable Neighbourhood Search 

1.0   INTRODUCTION 

In the competitive business environment, many companies face problems with the inventory and distribution 

management. Thus, they keep searching for ways to design and manufacture new products, and distribute them in an 

efficient and effective manner. After years of focusing on reduction in production and operation costs, companies 

are beginning to look into distribution activities as the last component for cost reduction. At the planning level, the 

goal is to coordinate production, inventory, and delivery to meet customers demand so that the corresponding costs 

are minimized. Therefore, integrating production and distribution decisions is a challenging problem for 

manufacturers that are trying to optimize their supply chain. Although the supply chain management literature is 

extensive, the benefits and challenges of coordinated decision making within supply chain scheduling models have 

not been studied. In general, the problem of optimally coordinating production, inventory and transportation is 

called the production-inventory-distribution routing problem (PIDRP) that is know to be NP-hard [1]. The PIDRP is 

sometimes known as production routing problems [2]. 

 

Companies generally need to make decisions on production planning, inventory levels, and transportation in each 

level of the logistics distribution network in such a way that customer’s demand is satisfied at minimum cost. The 

PIDRP usually arises in the retail industry where customers or outlets rely on a central supplier or manufacturer to 

provide them with a given commodity on a regular basis. The integration of production, inventory, and distribution 

increases the complexity of the problem. PIDRP is defined by a combination of a capacitated lot-sizing problem and 

a capacitated, multi-period vehicle routing problem (VRP). A manufacturer must develop minimum cost production 

and distribution schedules for a single product that are sufficient to meet all customers demand over the planning 

horizon. The PIDRP is relevant in Vendor Managed Inventory where the supplier (manufacturer) monitors the 

inventory at the retailers and coordinate efficient resource utilitization to replenish the retailers. 
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2.0 LITERATURE REVIEW 

The PIDRP is different than the traditional VRPs because it requires multiple customer visits to satisfy demand 

spread out over an extended period of time. It is most similar to the inventory routing problem, IRP [3-6] and the 

periodic routing problem, PRP [7-9]. PIDRP can be catergorized based on the underlying assumptions. The number 

of production plants can be either single or multiple and producing single or multiple products. The inventory policy 

commonly employed is the maximum or order-up-to level or a combination of both policies. The distribution can be 

carried out by a fleet of homogeneous or hetrogeneous vehicle with limited capacity. For detail classifications we 

refer the readers to [2].    

There has been a large amount of researches in the areas relating to production, inventory and distribution routing 

problem. The first paper to discuss PIDRP is due to Chandra [10] and Chandra and Fisher [11] and the authors show 

the benefit of coordinating the three component which results in 3-20% cost savings compared to sequentially 

solving the problems separately. Lei et al [12] studied a multi-facility PIDRP with heterogeneous fleet that was 

motivated by a chemical manufacturer with international customers. The authors proposed a two-phase solution 

approach where the problem is decomposed into phase 1 in which the model is solved as a mixed integer 

programming problem subject to all the constraints in the original model except that the transporter routings are 

restricted to direct shipment between facilities and customer sites. The potential inefficiency of the direct shipment 

is then solved in Phase 2 where heuristic procedure is applied to solve an associated consolidation problem that is 

formulated as a capacitated transportation problem with additional constraints. Testing showed that the approach 

gave good solutions to instances with up to 50 customer sites over 2 to 4 periods. 

An alternative approach using Greedy Randomized Adaptative Search Procedure (GRASP) is proposed by Boudia et 

al. [13]. The PIDRP considered comprises of a single production facility that produces single product. The 

originality of the approach is to tackle production and routing decisions concurrently instead of resorting to classical 

two-phase approaches which are still widely used in practice. The two principal difficulties in the GRASP design 

were to randomize the construction of a trial solution without altering solution quality too much and to develop a 

local search able to modify both the production plan and the sets of trips on each period. The GRASP considered 

embeds improvement by a reactive tabu search algorithm for solving the PIDRP. Similarly, Bard and Nananukul 

[14] developed a reactive tabu search algorithm for solving the PIDRP. An essential component of their 

methodology was the use of an allocation model in the form of MIP to find good feasible solutions that were used as 

starting points for the tabu search. The neighborhood consisted of swap and transfer moves. Path relinking was also 

used in post-processing phase to seek out marginal cost reductions.  

Armentano et al. [15] extended the ideas in [13, 14] to include multiple products. The authors presented two 

heuristic approaches that allow trajectories with feasible and infeasible solutions. The first approach is a tabu search 

with short memory that uses a compound move at each iteration involving the shift of an amount of an item 

delivered in a given period to every preceding and succeeding period, the determination of a new route, and the 

calculation of a new production plan over the time horizon. While the second approach makes use of path relinking 

that is integrated with tabu search, such that every tabu search local minimum is linked with the farthest solution of 

a pool of elite solutions. The approaches were tested on a set of small and large generated instances with multiple 

items. Besides, the approach were also tested on a set of single item instances [13] and they outperformed the 

memetic algorithm suggested by Boudia and Prins [16] and the reactive tabu search developed by Bard and 

Nananukul [14]. 

Due to the complexity of PIDRP, few researchers have proposed exact algorithms. Amongst them is Bard and 

Nananukul [1] which combined heuristic within the exact branch and price framework. The approach exploits the 

efficiency of heuristics and the precision of branch and price. The authors devised a new branching strategy to 

accommodate the unique degeneracy characteristics of the master problem and the algorithms were tested on 

instances with up to 50 customers and 8 time periods. Adulyassak et al. [17] proposed a branch-and-cut algorithms 

for both both PIDRP and IRP for the maximum level (ML) and order-up-to level (OU) inventory replenishment 

policies. The algorithms were tested on IRP and PRP instances with up to 35 customers, three periods, and three 

vehicles and the authors extended to parallel implementation to be able to solve larger instances. The largest 

instance for PIDRP on a multicore machine is 35 customers, six periods, and three vehicles. 

We refer the readers to the review paper by Sarmento and Nagi [18] and the recent review by Adulyasak et al. [2] 

which gives a comprehensive state of the art of PIDRP. 



The paper is organized as follows. Section 3 reviews the description of PIDRP and its mathematical formulation. In 

Section 4, the two phase methodolody we proposed to solve the problem is discussed in detail. In Section 5, we 

present the computational results to evaluate the performance of the algorithm. Finally, we present our conclusions 

in Section 6. 

3.0 PROBLEM DESCRIPTION AND MATHEMATICAL FORMULATION 

We consider a production, inventory and distribution routing problem (PIDRP) similar to one proposed by [19]. The 

problem consists of a single production facility that produces a single product and distributes it to a set of    

customers with time varying and non-negative demands     in each period and can be stored as the inventory by 

incurring unit holding cost at the production facility as well as the customer sites. If production takes place at the 

facility in period   , then a setup cost     is incurred for           . In constructing delivery schedules, each 

customer can be visited at most once per period (split delivery is not allowed) and each of the   homogeneous 

vehicles can make at most one trip per period. In this study, the initial inventories at the production facility and 

customers’ sites are assumed to be zero. 

Moreover, it is assumed that at the end of planning horizon all inventories (both at the production facility and 

customers’ sites) is required to be zero. It is also assumed that all deliveries takes place at the beginning of the 

period and arrive at the time to satisfy demand for at least that day. The objective is to construct a production plan 

and delivery schedule which minimizes production, inventory at the production facility and customers’ sites and 

distribution costs while fulfilling customers’ demand. The number of vehicles is given and the total delivery 

quantity must not exceed vehicle capacity. 

The following notations are used in the development of the mathematical formulation. 

Indices 

           indices for customers, where   denotes the depot 

             index for periods 

           set of customers;          and       

            set of periods in the planning horizon;          and       

Parameters 

               demand of customer   in period   

        number of vehicles 

                   vehicle capacity 

                  transportation cost from customer   to customer   

     production capacity  

      fixed production setup cost 

       unit production holding cost 

     
   maximum inventory level at the production facility 

    
    unit inventory holding cost at customer site      

        
  maximum inventory level at the customer site,     

Decision Variables 

        1 if customer   immediately precedes customer   on a delivery route in period  ; 0 otherwise 

       load on a vehicle immediately before making a delivery to customer   in period   

      amount delivered to customer   in period    

     production quantity in period   

    
  inventory at the production facility at the end of period   

       1 if there is production facility; 0 otherwise 

          
  inventory at customer site   at the end of period    

The PIDRP can be formulated as follows 
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The objective function (1) expresses the minimization of the sum of transportation costs, production setup costs, 

holding costs at the production facility and the holding costs at the customer sites. Constraints (2) and (3) represent 

the equations of inventory flow balance for production facility and customers respectively. The total amount 

available for delivery on day   is limited by the amount in inventory at the production facility in period     as 

indicated in (4). (5) limits production in period   to the capacity of the production facility, and (6) allows production 

in period  . (7) ensures that if customer   is serviced in period  , then it must have a successor on its route, and the 

route continuity is enforced by (8). (9) limits the number of vehicles that depart form the production facility in 

period   to the number of vehicles available  , and (10) keeps track of the load on the vehicles. The value of   
    is 

specified to be as small as possible while ensuring that (10) is feasible. The amount delivered to each customer is 

limited by the parameter    
    in (11). The variable bounds are specified in (12) and (13). 

4.0 SOLUTION METHODOLOGY 

In this study, we propose a two phase solution approach to solve the PIDRP model. Allocation model which is the 

simplified version of model above is solved in phase 1 to determine the production capacity, amount delivery to 

customers and inventories at both production facility and customers’ sites. The initial solution to the problem is 

found in this phase. In phase 2, the delivery routes for each period are constructed based on the customer allocations 

obtained from phase 1 using giant tour and Dijkstra’s algorithm. Next, variable neighborhood search (VNS) is 

developed to improve the initial solutions.  

4.1   Initial Solution 

An initial solution can be found in phase 1 by solving the allocation model as a mixed integer programming (MIP) 

to get a set of feasible allocations. The routing variables,      and the associated constraints (7)-(10) are removed 

and aggregated vehicle capacity constraint are introduced to the allocation model. The formulation without routing 

components requires some additional notations:    
 represents the fixed cost of making a delivery to customer    on 

day  ,    
  represents the variable cost of delivering one item to customer   on day  , and    

  takes the value 1 if a 

delivery is made to customer   on day   and 0 otherwise. 



As in Nananukul [19],  we divide the problem into two cases. For problem instances with        , the routing 

costs on any period   are approximated by the cost of a round trip between the depot and customer   (round trip 

value     ), so we use surrogate cost term     
    

 
   with    

       for all   and  . In this instance,    
  is set to 

zero. Whereas for the problem instances with        , we set    
     

    for all   and  , and the variable cost 

term     
       is used for replacement, where    

  is approximated by the cost of making a delivery to customer   

directly from the depot divided by the total demand of customer    in period   (i.e.,    
        ). Since in our 

instances,         , we set the variables    
     

    and the allocation model is simplified as follows. 
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The primary difference between models (1) and (1a) is that the routing variables (    ) and related constraints have 

been removed. (14)  limit the total amount that can be delivered in period   to a fixed percentage of the total 

transportation capacity, and provides a hedge against the need for split deliveries. The authors in [19] showed that a 

value of     always yielded feasible solutions.  

4.2   Variable Neighborhood Search  

Variable neighborhood search was initially proposed by Mladenovic and Hansen [20] for solving combinatorial and 

global optimization problems. The main reasoning of this metaheuristic is based on the idea of a systematic change 

of neighborhoods within a local search method. Exploration of the search space is carried out by the local search 

which allows the algorithm to jump from one neighborhood to another. This allows the algorithm to escape from the 

local optimum.  

Let us denote a finite set of pre-selected neighborhood structures with   , where           , where      refers 

to the maximum number of neighborhood  used, and       the set of solutions in the  th neighborhood of  . The 

stopping condition may be maximum number of iterations, maximum number of iterations between two 

improvements or maximum CPU time allowed. There are three phases of the main VNS: Shaking, Local Search, and 

Move or Not. The basic VNS heuristic comprises the steps given in Fig. 1. The flow chart of the VNS is outlined in 

Fig. 2. 

 

 

 

 

 

 

 

Fig. 1. Steps of basic VNS 

Neighborhood Structures 

There  are  several  ways  that  can  be  used  to  define  the  neighborhood  structure,  for example: 1-interchange (or 

vertex substitution), symmetric difference between two solutions, Hamming distance, vertex deletion or addition, 

node based or path based and k-edge exchange. As PIDRP is almost similar to IRP, it comprises of three important 

components; the production, inventory and routing. However the tradeoff between inventory holding cost at the 

customers site and the traveling costs. The choice of a suitable neighborhood structure in an PIDRP is not straight 

forward. The neighborhood can be defined as the symmetric difference between the different clusters within the 

same period or the symmetric difference between the numbers of customers visited in each period. 

Initialization. Step 0: Define a set of neighborhood structures   ,           , that will be used in the  

                                     search and a set of local searches   ,           ; generate an initial solution  ;  

                                     choose a stopping condition; 

Repeat the following steps until the stopping condition is met: 

    Step 1: Set    ; 

  Step 2: Until       , repeat the following steps: 

     (a) Shaking. Generate a point    at random from the     neighborhood of   (        ) 

           (b) Local Search. Apply some local search method with    as initial solution; 

        denote with    the so obtained local optimum; 

    (c) Move or not. If this local optimum is better than the incumbent, move there (    ),  

                                                         and go back to (1); otherwise, set      .     



In this study our neighborhood comprises of four type of neighborhood structure: as a distance function,  that is the 

cardinality   of   the   symmetric   difference   between   any   two   solutions    and    written as          

        using the forward and backward transfer, the swap and the tranfer (insertion). The individual neighborhood 

structure is described in details in Section 4.2.1. 

 

 

Fig 2. Flow chart of VNS 
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4.2.1 Step 0: Initialization 

The initial solution is obtained in two steps; (a) construct a giant tour using the sweep algorithm as descibed in [21] 

and (b) find the corresponding optimal fleet size by constructing cost network and subsequently applying Dijkstra’s 

algorithm which provides an initial feasible solution that contains routes. First, a giant tour is constructed that 

includes all the customers obtained in phase 1. We define a tour         with               , the set of 

nodes representing all the customers’ positions in the tour, and                       form the arcs which 

maintain the order of the customers, together with a distance cost    . Define a path starting from the depot to the 

closest customer, and this step is repeated at each node       where             with   denoting the total 

number of customers to be served in the current period, until the last customer is reached. In order to apply 

Dijkstra’s algorithm, we first construct a cost network considering customer data, capacity constraint, distance 

constraint, and vehicle unit variable and fixed costs. For illustration, consider 12 customers making up the following 

giant tour                                 with customer demand                             . Assume 

that there is only one type of vehicle, with maximum capacity of 10 units. Let     be the distance between node   and 

node  . 

We start to construct this cost network by calculating the cost from the depot, denoted by  , to customer   and from 

this customer to the depot (return journey) as the cost of arcs    . This is express as               . If the 

total demand of both customers   and   does not violate the capacity constraint of the vehicle, we calculate the cost 

of the arcs     as                     . We continue with this cost construction until the vehicle is full, 

and then we start using the next vehicle. Fig. 3 shows that we can only have customers       and   can then be 

visited by the vehicle. The process is continued until there is no more arcs connecting the last customer in the giant 

tour. In general, the cost of arc    is defined as in        . 

                       
   
                       (15) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Construction of cost network 

After creating the cost network, whose origin is depot     and the destination is the last node in the giant tour, 

Dijkstra’s algorithm is applied to obtain the initial feasible solution. This procedure is repeated for each period 

considered. After an initial feasible solution is found, set         and proceed to Step 1. 

 

               

                  

                         

                             

                                  

                  

                         

                             

                                       

                    

                      

                              



Defining the stopping condition can differ from one program to another. Most algorithms adopt the maximum 

number of iterations as tje stopping condition. Other criteria such as maximum running time or cpu time allowed, or 

number of iterations between two improvements can also be defined in the algorithm.  

 

4.2.2 Step 2(a): Shaking 

In this step, a solution    is picked randomly from the     neighborhood of the current solution,  . This will ensure 

that the solution is not far from the current best solution  . We consider four moves, forward transfer, backward 

transfer, swap and transfer for VNS. The steps of the forward and backward transfer in the shaking step are as 

follows. The algorithm of the shaking step is shown in Fig. 4.  

 
Fig. 4. The algorithm of shaking step 

 

4.2.2.1 Neighborhood Structure 

We consider four neighborhood structures for each   : forward and backward transfers, swap and transfer. The aim 

of the forward transfer is to reduce the inventory holding cost without increasing drastically the transportation cost. 

In the backward transfer the preference is given to the suppliers with the lower holding cost in order to determine 

whether the transportation and the inventory holding cost can be futher consolidated. Examples of the forward and 

backward transfers are illustrated in Figure 1 and 2, respectively. In these example we assume that the coordinate of 

the 5 customers are                         ,                  and the depot is located at        the holding 

cost per unit for each customer are                     and      and the vehicle capacity is   . Note 

that the routing are separated by zeros and     and     are the pick-up quantity and the inventory respectively. 

 

Forward Transfer  

Fig. 5 illustrates a forward transfer and the selection of period and supplier to be transferred is biased towards 

customers with high holding cost. In this example, we select customer in the period 1. Note that we limit the transfer 

to at most 2 periods only. This is to ensure that the increase in the routing cost is not exceedingly high. 

The demand for customer 1 in period 1, 2, and 3 are             and      . From the figure       and 

     , the resultant holding cost for periods 1, 2 and 3 are 81, 24 and 36 respectively, and the total cost, including 

the routing cost for all 3 periods is 240.3398. Customer 1 is not visited in the period 2 and 3, so we apply forward 

transfer by inserting customer 1 to period 3 according to the best insertion. Note that inserting customer 1 in period 

2 results in the violation of vehicle capacity constraint. The saving after the transfer is 240.3398-153.4129= 86.9269.  

 

 

Set num=1  

While (num<=k) do    //the number of changes depend on the value of k  

{  

 Randomly generate the value of r where 0<r<1. Define p1, p2 and p3  

if (r<=p1)      // the value of p1 represent the chosen probability    

          Apply forward transfer  

  elseif (p1<r<=p2)  

          Apply backward transfer 

  elseif(p2<r<=p3) 

          Apply swap 

  else 

           Apply transfer  

  endif  

   num=num+1  

}  

 



                          

Before Period Route 

       

Route Cost Holding Cost 

  

           

  

  1 0 2 5 0 1 0 3 4 0 24.1156 81 
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0 4 

       

  

  

           

  

  3 0 2 0 5 4 0 

   

18.1756 36 
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4 

 

0 0 

     

  

Total Cost                      51.3398 189 

                          

After Period Route 

       

Route Cost Holding Cost 

  

           

  

  1 0 2 5 0 1 0 3 4 0 24.1156 33 

      
 

2 3 

 

6 

 

2 5 

  

  

      

 

0 1 

 

2 

 

0 1 

  

  

  

           

  

  2 0 2 3 0 

     

9.0486 24 

      

 

2 5 

       

  

      

 

0 4 

       

  

  

           

  

  3 0 2 0 1 5 4 0 

  

21.5450 36 

      

 

6 

 

4 2 4 

    

  

      

 

4 

 

0 0 0 

    

  

Total Cost                      60.4129 93 

 

 Fig.5. Example of Forward  Transfer 

 

Backward Transfer  

The selection of period and customer to be transferred is favorable toward the lower holding cost in the backward 

tranfer shown in Fig. 6. In this example, we select customer 4 in the period 5. The saving is found by increasing the 

inventory cost and decrease in routing.  

Initial routing for period 4 and 5, with the route cost 18.771591 and 24.36395 and 0 holding cost. According to the 

inventory updating mechanism, we transfer customer 4 in the period 5 to period 4. As the same customer is visited 

in period 4, so we embed it together, in which we note that the resulting transfer does not violate the capacity 

constraint. After the transfer of delivery amount by 2 units, we have a holding cost 6 with     . Customer 4 will 

be eliminated in period 5. The overall savings after the transfer is 64.2431 -58.5812= 5.6619.  

 



Before Period Route             Route Cost Holding Cost  

Transfer 

          

  

  4 0 1 5 0 4 0 

  

19.5035 18 

      
 

4 4 

 
4 

    

  

      
 

0 0 

 
0 

    

  

  

          

  

  5 0 1 5 3 0 4 0 

 

26.7396 0 

      

 

4 4 2 
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0 0 0 

 

0 

   

  

Total Cost                    46.2431 18 

  

          

  

After Period Route 

      

Route Cost Holding Cost 

Transfer 

          

  

  4 0 1 5 0 4 0 

  

19.5035 24 

      

 

4 4 

 
6 

    

  

      

 

0 0 

 
2 

    

  

  

          

  

  5 0 1 5 3 0 

   

15.0777 0 

      

 

4 4 2 

     

  

      

 

0 0 0 

     

  

Total Cost                    34.5812 24 

Fig.6. Example of Backward  Transfer 

Swap 

The swap involves an exchange of delivery quantities between two customers     in period     with quantity 

      and     in period     with quantity        , where     is the first period after     such that          . For 

customer   , the move considers the maximum portion of        that can be reassigned to period    without causing a 

shortage in period    to be exchanged with full amount       . If customer    was not scheduled for a delivery in 

period    , then he must be inserted into one of the    routes. In general, a swap produces a change in  

holding costs and a change in holding costs in period    and   . 

Transfer 

Similar to backward transfer but we limit the number of periods to be inserted to at least two preceding periods. 

(i.e.         ). The transfer examines each customer    one at a time and tries to reassign the delivery 

quantity       scheduled for    to the latest period, call it   , preceding    in which a delivery is scheduled for at least 

one customer  ; that is,                       for some     .  

We  also incorporate the concept of tabu search which forbid the movement of the customer for a few iterations if 

the customer is chosen to transfer or swap. In all the four moves, only moves that result in feasible solutions are 

allowed so it is necessary to check for violations of the production constraints and the inventory bounds at the plant 

and the customer sites, as well as the vehicle capacity constraint.   

 

 

 

 

 



4.2.3 Step 2(b): Local Search 

In our study, the local search consists of six refinement procedures adopted from Imran and Salhi [22]. The order of 

the refinement procedure is as follows: the 1-insertion inter-route as   , the 2-opt inter-route as   , the 2-opt intra 

route as   , the swap intra route as   , 1-insertion intra-route as   , and at last the 2-insertion intra-route as   . 

The process starts by generating a random feasible solution    from   , which is used as temporary solution. The 

multi-level approach then starts by finding the best solution    using   . If    is better than   , then       and the 

search return to   , otherwise the next refinement procedure,    is applied. This process is repeated until    cannot 

produce a better solution. 

4.2.4 Step 2(c): Move or Not 

If the solution obtained by the multi-level approach,   , is better than the incumbent best solution   , then set      
and the search returns to   . But if    is found to be worse or same as  , we generate    from the next neighborhood 

say       and go back to step (2b) again. The process is repeated until the search reaches      
. 

5.0 COMPUTATIONAL RESULTS 

All the algorithms are written in Microsoft Visual C++ 2010 and performed on 3.1 GHz processor with 8GB of 

RAM. The code for the allocation model were implemented as mixed integer programming in Concert technology of 

Microsoft Visual Studio 2010 linked to the CPLEX 12.5 libraries. CPU times were obtained using the time function 

in C++.  

In this paper, we used a data set provided by Boudia et al. [13] consisting of 30 instances of 50 customer problem 

with a 20-period planning horizon and holding cost         
    for all    . These instances were randomly 

generated on a         Euclidean grid. For each customer  , demand was uniformly distributed between   and 

the storage capacity       
 . The vehicle capacities,          and the number of vehicles,       . 

Our tests were compared to the GRASP [13] and the Memetic Algorithm with Population Management (MA|PM) 

[16]. Column 2 and 3 give the best solutions for both GRASP and MA|PM. The last six columns illustrate results for 

our 2-phase methodology tabulating the best objective function, mean and standard deviation over the 10 runs. The 

last three columns display the computational time, its mean and standard deviation. We have improved 13 out of 30 

solutions as compared to Memetic Algorithm with Population Management and our results are superior on all 

instances when compared to GRASP.  

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 1. Results for 50 customer-20 period 

Inst. 

GRASP MA|PM Our Algorithm 

Total 

Cost 
Total Cost 

Best 

Cost 
Mean 

Stand. 

Dev. 

Time 

(s) 
Mean 

Stand. 

Dev. 

1 440505 378378 404597 410146.8 2946.97 280.06 278.54 20.77 

2 448695 403913 401127 404570.6 1786.47 280.93 289.07 16.49 

3 419730 409573 400791 405490.1 2892.42 272.31 290.23 18.19 

4 456398 399220 403574 407193.3 2867.57 318.56 299.18 14.43 

5 434466 422279 410873 414941.3 2245.13 334.20 308.56 19.10 

6 452564 407122 405087 410837.7 2810.77 264.38 290.72 22.01 

7 436812 414977 415684 419104.6 1972.51 383.79 360.96 18.78 

8 420935 379744 406108 409896.7 2489.10 300.89 323.40 23.31 

9 434789 407935 400572 403844.4 2097.15 266.50 274.85 10.55 

10 436221 396258 400522 402856.3 1487.82 264.99 273.42 28.89 

11 433890 402475 393563 397689.1 2326.93 253.19 307.12 26.52 

12 452705 358702 395480 398464.3 2146.70 291.24 272.32 19.75 

13 440771 371030 391643 395742.1 2995.11 247.49 249.72 10.91 

14 419412 406114 396787 400078.5 1734.72 265.80 278.29 23.32 

15 453875 373076 425952 430033.9 2023.24 395.34 386.90 25.28 

16 457310 379404 398141 402162.3 2326.66 323.48 320.12 19.13 

17 455663 406353 410069 413594.3 2052.57 314.83 287.58 26.08 

18 441685 401179 399072 403830.2 2984.88 319.18 328.93 19.77 

19 418896 406893 395170 398922.1 2125.64 231.14 258.18 19.24 

20 452183 398508 402284 405264.4 2050.40 248.47 282.96 22.99 

21 409677 397112 399349 404670.2 2366.29 295.42 298.62 14.42 

22 429116 358749 397730 401398.3 1902.57 261.51 280.58 14.87 

23 443184 407369 398835 404072.1 2601.56 269.61 266.60 12.08 

24 426113 369784 397148 400217.7 1600.80 265.54 290.78 12.61 

25 462245 411556 399765 403415.6 2192.09 274.23 265.09 20.54 

26 442029 408704 407799 412178.4 1984.58 288.01 294.74 22.83 

27 444695 366197 391664 395134.0 2379.64 249.91 285.31 15.94 

28 449894 401032 396648 399283.9 1816.52 301.78 280.60 16.68 

29 461555 384282 408039 412062.1 2760.34 274.71 276.22 22.31 

30 434006 369959 405064 409614.4 2343.33 269.12 282.85 24.19 

 

6.0  CONCLUSION 

In this paper, we propose a two phase methodology to solve the production-inventory-distribution routing problem 

(PIDRP). The problem is decomposed into two parts, allocation model to determine the amount to deliver and the 

inventory and routing algorithm.  The problem comprises of a single product, multi-period in a finite planning 

horizon. Phase 1 solves the mixed integer programming allocation model and routes are constructed using a giant 

tour procedure in phase 2 to form a feasible solution. The solution is then improved using the well known algorithm 

variable neighbourhood search. Testing on benchmark instances show that our proposed algorithm can obtain high 

quality solutions in a reasonable computational time.  
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