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Abstract—Recently, decision support system (DSSs) have be-
come more widely accepted as a support tool for use with tele-
health systems, helping clinicians to summarize and digest what
would otherwise be an unmanageable volume of data. One of the
pillars of a home telehealth system is the performance of unsu-
pervised physiological self-measurement by patients in their own
homes. Such measurements are prone to error and noise artifact,
often due to poor measurement technique and ignorance of the
measurement and transduction principles at work. These errors
can degrade the quality of the recorded signals and ultimately de-
erade the performance of the DSS system, which is aiding the clin-
ician in their management of the patient. Developed algorithms for
automated quality assessment for pulse oximetry and blood pres-
sure (BP) signals were tested retrospectively with data acquired
from a trial that recorded signals in a home environment., The
trial involved four aged subjects who performed pulse oximetry
and BP measurements by themselves at their home for ten days,
three times per day. This trial was set up to mimic the unsuper-
vised physiological self-measurement as in a telehealth system. A
manually annotated “gold standard™ (GS) was used as the refer-
ence against which the developed algorithms were evaluated after
analyzing the recordings. The assessment of pulse oximetry signals
shows 95% of good sections and 67% of noisy sections were cor-
rectly detected by the developed algorithm, and a Cohen’s Kappa
coefficient (k) of 0.58 was obtained in 120 pooled signals. The BP
measurement evaluation demonstrates that 75 % of the actual noisy
sections were correctly classified in 120 pooled signals, with 97 %
and 91 % of the signals correctly identified as worthy of attempting
systolic and/or diastolic pressure estimation, respectively, with a
mean error and standard deviation of 2.53 & 4.20 mmHg and
1.46 £ 5.29 mmHg when compared to a manually annotated GS.
These results demonstrate the feasibility, and highlight the poten-
tial benefit, of incorporating automated signal quality assessment
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algorithms for pulse oximetry and BP recording within a DSS for
telehealth patient management.

Index Terms—Blood pressure (BP), pulse oximetry, signal
quality.

1. INTRODUCTION

USEFUL telehealth medical records are dependent to the
quality of data in the databases [1]. There are two main cri-
teria of data quality; the precision (accuracy) and the complete-
ness. Accuracy is the belief that data are correct, and complete-
ness is the impression that data are recorded in the database [2].
A study by Aronsky et al. has used routinely recorded com-
puterized patient records in a decision support system (DSS) to
assess the risk of mortality in patients with community-acquired
pncumonia. The data quality issue affected 27.9% of the DSS
output, with the system underestimating the patient’s risk of
mortality [3]. The study above indicated that a DSS using poor
data quality may generate and send false recommendations to
clinical users. Consequently, the quality of data area becomes a
significant and fundamental issue in the design of a DSS [1]-[5].
Three studies have examined the impact of data quality on
DSS performance. However, two of the studies analyzed medical
data recorded in supervised clinical environments and the third
study used simulated data [1]-[3]. It can easily be argued that
home telehealth data quality is going to affect the performance
of a DSS, as the measurement is performed in an unsupervised
environment [6].
Thus, to ensure the guidance provided by the DSS is reliable,

the quality of the data used in the system should be assessed
prior to utilization. The data collected by the home telehealth
system should be free from erroneous values [2], [3].
Measured home telehealth vital sign data, such as peripheral
blood oxygen saturation (SpOs), heart rate (HR), and systolic
and diastolic blood pressures are derived automatically from
acquired signals. Currently, to our knowledge, there are no stan-
dard approaches in handling contaminated raw signals in such
unsupervised telehealth recordings. Therefore, if an extracted
measurement parameter is of concern because it is excessively
high or low, it is difficult to determine the credibility of the
given parameter [7]. Pulse oximetry is a noninvasive method for
monitoring a patient’s oxygen (Oo) saturation. Heart rate can
also be derived from the signal. SpO» represents the estimates
of the oxygen saturation (SaOs) value; that is the ratio of oxy-
genated hemoglobin (HbOs) to the combined amount of HbO,
and deoxygenated hemoglobin (Hb) present in arterial blood.



The way of measuring SpO» using pulse oximetry is based on
the principle of photoplethysmography (PPG). A typical PPG
probe uses two wavelengths (red and infrared) and each wave-
length is preferentially absorbed by HbO; or Hb in the blood.
This enables the derivation of SpOs estimate using a general
empirical linear approximation [8].

Despite the considerable advantages obtained by employing
pulse oximetry for SpO; estimation, there are some factors that
may degrade the accuracy of the estimation. The introduction
of ambient light at the photodetector, wearing nail polish, poor
blood perfusion of the peripheral tissues, motion artifact (in-
cluding the relative movement between the fingertip and the
oximetry probe), are all well-known sources of error [9].

The measurement of blood pressure (BP) through noninva-
sive blood pressure monitors (NIBPMs) is highly vulnerable
to artifact such as patient movement; external vibration and
coughing that subsequently leads to degradation in the accuracy
of the measurement. When the measurement is contaminated
with motion artifact, the air flow in the deflating cuff is typically
interrupted, causing corruption of the small pressure oscillations
from ecach heartbeat, which constitutes the oscillometric wave-
form [10], as well as introducing acoustic artifact that will be
picked up by the microphone used to detect the Korotkoff sounds
[11], [12]. As well as pulse oximetry measurement, the motion
artifact is likely to occur in an unsupervised home environment.

Pulse oximetry and BP signal quality algorithms have been
developed by our research group to detect and eliminate artifact
in noise contaminated pulse oximetry signals and to assess the
quality of an NIBPM measurement, respectively [13], [14].

The main objective of this paper is to assess the performance

of the developed algorithms as in [13] and [14] when mea-
suring the quality of the respective signals acquired from self-
measurement performs by the subjects in their homes, which
involved the presence of a trainer nearby but not actually inter-
vening during the subject’s signal acquisition process. This is
a preliminary study before the developed algorithms are tested
with the actual data recorded in a telehealth system. The method-
ology for assessing the performance of the algorithms is by
comparing the output from each algorithm against a manually
annotated gold standard (GS).

II. METHODS

A. Subjects

In general, the preferred subjects for this study were aged
people (since home telehealth systems are commonly used with
older people) who were able to perform the physiological mea-
surement protocols. Therefore, the general criteria for inclu-
sion were: over 50 years old, able to operate a mouse using
the hand contralateral to the hand being measured, willing to
use a computer, independently living and ambulant. The spe-
cific exclusion criterion was peripheral vascular disease, since
it may cause physiological artifacts (this was determined from
information in a pretest questionnaire that was completed by
subjects beforehand). The study required subjects to perform
self-administered measurements of pulse oximetry and BP in
their own homes.
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There were four qualified subjects, two males (65 and 67 years
old) and two females (59 and 62 years old), who participated in
the study.

B. Data Acquisition

In this study, simultaneous electrocardiography (ECG) and
pulse oximetry, and simultaneous ECG and BP signals were
recorded using a data acquisition system, which was set up as
shown in Fig. 1. Note that the ECG was simultaneously recorded
in order to be used as a reference signal for pulse oximetry and
BP signals as described in detail in [13] and [14].

Signals were acquired from each subject for over ten days,
with the subject performing pulse oximetry and BP measure-
ments in a closed room at their homes three times per day:
before 9 A.M., between 1 PM. and 2 P.M. and after 5 P.M. This
condition was purposely set up to mimic the unsupervised tele-
health environment.

Before the study took place, subjects had a brief training
session on the study background and the measurement proto-
cols and devices. This session was conducted by a (rainer at
the subjects” homes. During the session, the trainer first briefly
explained the background of the study then verbally and prac-
tically explained each protocol that was to be performed to
measure pulse oximetry and BP. demonstrated in their home as
they would use it. Finally, in order for the subjects to familiarize
themselves with, and correctly perform the measurement proto-
cols, the trainer supervised while they practiced until they were
able to complete them unassisted.

On every occasion before the subject performed the pulse
oximetry and BP measurement during the study, the trainer
placed ECG leads on the subject, to ensure that a good quality
ECG as a reference signal would be acquired, and then, left the
subject’s house so that the subject could perform the measure-
ments unsupervised.



C. Measurement Protocol

The pulse oximetry recording was executed first, followed by
BP. The subject placed the BP cuff on an arm and clipped the
pulse oximelter on the middle finger, of the hand ipsilateral to
the BP cuff. On the provided computer screen, a measurement
graphical user interface (MGUI) was presented to the subject.

The subject started the pulse oximetry measurement by click-
ing the “Pulse Oximetry” icon using the hand contralateral to
the measured hand, causing a new window to appear on the
laptop screen, indicating that the measurement was being per-
formed. After 1 min, the window automatically closed and the
MGUI reappeared on the screen, indicating that 1 min of pulse
oximetry had been completed.

When measuring BP, the subject clicked on the “BP” icon
and a new pop-up window was displayed. After clicking the
“Start” icon electronically controlled mechanical pump auto-
matically started inflating the cuff. During this measurement,
cuff pressure, Korotkoff sounds, and the ECG signal were si-
multaneously recorded by the data acquisition system. When
this automated BP measurement was complete, the displayed
window automatically closed.

D. GS Development

The GS development was based on the same methods applied
in [13] and [14], for pulse oximetry and BP, respectively. In
the development processes, two human experts (known as Rater
1 and Rater 2) for each signal first manually annotated the
recorded signal to classify any noise section in the signals. Then,
as a group of two (for each signal), any discrepancy in the
marking was reconciled.

E. Algorithm

1) Pulse Oximetry: The pulse oximetry noise detection al-
gorithm (NDA) is based on waveform morphology analysis of
the PPG to automatically identify noise artifact in contaminated
pulse oximetry waveforms. The output of the algorithm com-
prises sections of clean pulses free of various forms of artifact.
In a simulated environment, the performance of the algorithm
is compared to a manually annotated GS. The results show that
the algorithm can increase the accuracy of SpO, estimation as
well as HR derivation.

The pulse oximetry NDA has been designed to automatically
classify bad, poor, and good pulses in an artifact contaminated
pulse oximetry PPG signal. Three stages are involved in the clas-
sification process; 1) the pre-processing; 2) the removal of bad
pulses known as Morphological analysis I, and 3) the removal
of poor pulses Morphological analysis IT [13].

2) BP: The BP signal quality algorithm automatically as-
sessed the quality of a BP measurement by determining the
feasibility of accurately estimating the diastolic and systolic
pressures from various levels of artifact contaminated BP sig-
nals. A manually annotated reference scoring is developed and
compared to the performance of the algorithm. The results from
the laboratory testing demonstrate the robust performance of the

TABLE ]
INTERSCORER AGREEMENT ON 120 POOLED PPG SIGNALS—NOISE DETECTION

Measure Rater 1 v. Rater 2 Rater2 v. Rater |  Rater 1 v. GS  Rater 2 v. GS
Accuracy 94.86% 94.86% 95.26% 99.525
Sensitivity 04.84% 99.70% 99.85% 99.66%
Specificity 95.25% 53.00% 55.00% 98.30%
Cohen’s Kappa 0.66 0.66 0.68 0.97

algorithm, which indicates the readiness of the algorithm when
implemented into existing NIBPM devices.

The function of the signal quality algorithm is first to detect
noise sections (if any) from the raw signals. Then, the algorithm
determines if it is possible to estimate the systolic and diastolic
values from the waveform. The algorithm can be elaborated in
three stages: preprocessing, noise classification, and feasibility
of systolic and diastolic values estimation. A detailed descrip-
tion on the development of the BP signal quality and the BP
NDAs can be found in [14].

F. Algorithm Performance

A comparison was undertaken between the performances of
the developed algorithms [13], [14] with the relevant GS. When
evaluating the performance of the developed algorithms in clas-
sifying noise sections in the pulse oximetry signals, Cohen’s
Kappa coefficient, accuracy, sensitivity, and specificity were
calculated. When measuring the performance of the developed
algorithm for the BP signal quality estimation, the following
metrics were employed: the accuracy in determining if an esti-
mate of systolic or diastolic BP should be attempted; the error
in those estimated systolic and diastolic pressures (for signals
where attempting such an estimate was deemed appropriate) ;
and capability of classifying noise sections, as indicated by the
derived accuracy, sensitivity, and specificity. Moreover, the re-
sults from the developed algorithms and the GS were compared
by using Bland—Altman analyses [15].

III. RESULTS AND DISCUSSION

A total of 120 measurements for each signal (pulse oximetry
and BP) were recorded throughout the study.

A. Interscorer Agreement

1) Pulse Oximetry: Table I details the interscorer agreement
between the two experts when annotating the noise artifact in
the 120 PPG signals. All signals are pooled (o calculate the total
agreement between experts (Rater 1 and Rater 2) when iden-
tifying noise artifacts. Cohen’s Kappa coefficient, as shown in
Table I, shows low specificity of “Rater 2 v. Rater 1” and “Rater
1 v. GS” (53% and 55%, respectively) and the high specificity
of “Rater 2 v. GS” imply that the judgment in classifying noise
in the PPG signal during the reconciliation process was dom-
inantly influenced by Rater 2. The major contribution to these
results is simply caused by the discrepancy in classifying the
first and last pulses in each recorded signal. The discrepancy
from both experts occurred when the first and/or the last trough
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the unfiltered version of PPG.

TABLEII

INTERSCORER AGREEMENT RESULTS—POSSIBLE
SYSTOLIC AND DIASTOLIC DIFFERENCE

Example of initial pulses in the filtered version of the PPG when
(a) first trough further from x-axis and (b) first trough closer to x-axis. The
initial pulse in (b) becomes a poor pulse, although it might be a good pulse in

Approach Mean + standard deviation (mmHg) n

Possible systolic difference 1.85 £3.57 119

Possible diastolic difference 3.00 +£3.40 109
TABLE 111

INTERSCORER AGREEMENT ON 120 POOLED BP SIGNALS—NOISE
CLASSIFICATION DETECTION

Measure Rater 1 v. Rater 2 Rater 2 v. Rater | Rater 1 v. G§ Rater 2 v. GS
Accuracy 97.73% 97.73% 97.07% 97.28%
Sensitivity 92.39% 80.72% 93.24% 90.13%
Specificity 97.90% 99.81% 98.16% 97.35%

of the initial and the last pulses were closer to the x-axis. Fig. 2
(a) and (b) illustrates an example of two initial pulses with the
first trough further from and closer to the x-axis, respectively. It
should be noted that the scoring on pulse oximetry is based on
pulse-by-pulse assessment.

2) BP: Tables II and III show the interscorer agreement re-
sults between the two human scorers in identifying possible
systolic and diastolic events and classifying noise sections in
120 pooled signals, respectively.

For systolic and diastolic event, not all the systolic and/or
diastolic events were detectable by the experts in each signal,
due to the presence of noise that altered the visual and audio
characteristics of the signal. Consequently, from 120 signals,
only 119 signals were analyzed for systolic estimation, and 109
signals for diastolic estimation.

TABLEIV
ALGORITHM PERFORMANCE RESULTS—DEVELOPED ALGORITHM PPG [15]
VERSUS GS FOR VARIOUS SIGNAL CONDITIONS

Signal condition n I Accuracy (%) Sensitivity (%) Specificity (%)

Totally clean signal 18  undefined 93.80 £6.06 93.78 £0.06 undefined
Partly noisy signal 101 0.60 £0.25 01.73 +£0.46 94.52 + 0.03 75.23 £0.26
Totally noisy signal 1 undefined 51.68 undefined 52.00
Pooled signals 120 0.58 91.84 92471 66.71

The classification of signal condition {(except the pooled signals) is based on the manually
annotated GS.

B. Classification Performance

1) Pulse Oximetry: Table IV and Fig. 3 show the results of the
noise classification when comparing the output of the developed
algorithm with the GS. Note that in Table IV, “pooled signals”
(in signal condition column) refers to a single long record that
comprises the entire 120 signals.

In Table IV using the GS, from 120 pulse oximetry sig-
nals, 18 signals are totally clean, while only one consisted
entirely of noise. The remaining 101 signals contain at least
some noise. This demonstrates that approximately 85% (101 +
1) of the study data were contaminated with noise to some ex-
tent. However, the Cohen’s Kappa value of 0.58 (for all signals
pooled together) when detecting this noise, implies that the NDA
has successfully identified many of these noise sections in the
signals.

2) BP: Fig. 4 shows the results of the classification perfor-
mance of the BP NDA when compared with the GS for the 61

noise-contaminated signals. Figs. 5 and 6 show Bland—Altman
plots of possible systolic and diastolic pressures, respectively,
with the NDA compared with the GS. Figs. 7 and 8 show Bland—
Altman plots of possible systolic and diastolic pressures, respec-
tively, without the NDA compared with the GS. In the cases in
which the NDA and the GS could not determine the systolic
and diastolic pressures, these signals were excluded from the
calculation and the scatter plot.

In general, the noise classification from the experts (i.e., the
GS) shows that artifacts that could corrupt the signals do occur
when measuring pulse oximetry and BP in unsupervised home
environments. Moreover, only 15% of the recorded pulse oxime-
try (see Table IV) and less than half of the recorded BP signals
were free from noise artifacts. When observing the number of
noise-contaminated signals and the summarized duration of the
noise in these contaminated signals (as illustrated in Fig. 4),
it can be concluded that noise artifacts have a high tendency
(61.67% in this study) to occur during self-measurement of BP
in the home environment; but artifacts are likely to be of short
duration (less than 3 s in this study). Nevertheless, these arti-
facts could cause the measurement of BP to fail; in this study.
for example, four of the signals may have failed to give accu-
rate systolic pressure estimation and eight for diastolic pressure
estimation.

The Bland—Altman plots comparing systolic pressures (see
Fig. 5) estimated by the GS with those estimated by the de-
veloped algorithm, demonstrate that approximately 95% of the
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