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Breast cancer is one of the major issues in the field of oncology, reported with a higher prevalence rate in women worldwide. In
attempt to reveal the potential biomarkers for breast cancer, the findings of differentially glycosylated haptoglobin and osteonectin
in previous study have drawn our attention towards glycoproteins of secretome from the MCF-7 cancer cell line. In the present
study, further analyses were performed on the medium of MCF-7 cells by subjecting it to two-dimensional analyses followed by
image analysis in contrast to the medium of human mammary epithelial cells (HMEpC) as a negative control. Carboxypeptidase
A4 (CPA4), alpha-l-antitrypsin (AAT), haptoglobin (HP), and HSC70 were detected in the medium of MCF-7, while only CPA4
and osteonectin (ON) were detected in HMEpC medium. In addition, CPA4 was detected as upregulated in the MCF-7 medium.
Further analysis by lectin showed that CPA4, AAT, HP, and HSC70 were secreted as N-glycan in the medium of MCF-7, with HP also
showing differentially N-glycosylated isoforms. For the HMEpC, only CPA4 was detected as N-glycan. No O-glycan was detected
in the medium of HMEpC but MCEF-7 expressed O-glycosylated CPA4 and HSC70. All these revealed that glycoproteins could be
used as glycan-based biomarkers for the prognosis of breast cancer.

1. Introduction cells responsible for multidrug resistance. Meanwhile, Isobe
et al. [5] demonstrated the regulation of tumorigenicity in
breast cancer stem cells by the miR-142 micro-RNA through
the canonical WNT signaling pathway. For different reasons,
breast cancer has accounted for over 25% of all cancers diag-
nosed and causes death in a significant proportion of cases
[6-8]. Based on the statistical reports of the American Cancer
Society, estimated 231,840 new invasive breast cancer cases
are expected to be diagnosed among the female population
in the US in 2015 and it is estimated that 40,290 deaths from

the disease will be reported in the same period.

Breast cancer occurs predominantly in the female popula-
tion. A few cases of breast cancer were reported in males,
increasing the deaths reported worldwide. Breast cancer is
a type of carcinoma formed in milk ducts and glands. If
untreated, the cancer tissues will grow abnormally and spread
to surrounding tissues. Different causes have been proposed
for the development of breast cancer [1, 2]. Of all the factors
involved, older women and those with a family history of
breast cancer have a higher chance of being affected by
breast cancer. Apart from these factors, the involvement of

noncoding RNA and micro-RNA in cancer progression has
also been reported [3-5]. Gopinath et al. [4] have revealed
that noncoding RNA resides in the vault particles of cancer

The higher incidence rate for breast cancer is mainly due
to a failure to detect it in the early stages. Breast tomosyn-
thesis, 3D imaging techniques, and digital mammography
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are the methods currently used to diagnose breast cancer. In
addition, several other detection systems have also been
proposed [9-13]. These analyses help to some extent in the
stage-specific diagnosis of breast cancer; however, these
detection systems are hindered by the higher expectation of
additional biomarkers expressed during the cancer develop-
ing stages [10]. The present study analyzes the excretion of
proteins during the growth of MCF-7 cancer cells compared
to normal HMEpC cells. Excreted proteins were evaluated
with the assistance of proteomics using two-dimensional
analyses followed by imaging analyses. Moreover, the focus
of this study is the analyses of glycoproteins, as these proteins
are involved in the posttranslational modifications which
could contribute to tumorigenesis [14, 15]. Hence, these
observations might lead to the discovery of biomarkers for
early diagnosis of breast cancer.

2. Materials and Methods

2.1. Cell Culture. Human breast cancer cell line MCF-7 (cat-
alogue number HTB-22) and human mammary epithelial cell
HMEpC (catalogue number 830K-05a) were purchased from
ATCC and Cell Applications, respectively. MCE-7 cells were
cultured in Dulbecco’s modified Eagle’s medium (DMEM)
containing 10% fetal bovine serum (Invitrogen, CA, USA).
For HMEpC, cells were cultured in Mammary Epithelial Cell
Growth Medium (Cell Applications, CA, USA) as recom-
mended by a manufacturer. Both cell lines were maintained
in a humidified atmosphere of 5% CO, at 37°C. The cells were
kept separately and handled individually to prevent cross-
contamination. Cell growth was monitored and maintained
at logarithmic growth phase.

2.2. Sampling of Growth Medium. The cells were cultured
in 75 cm” flasks until 80% confluence and the used growth
media were then removed. The cells were washed three times
with phosphate buffered saline (PBS) (Invitrogen), pH 74,
and incubated for another 24 h in serum-free media. Serum-
free media were harvested, centrifuged at 2000 xg to remove
cell debris, and kept in —80°C until further processing. Before
being subjected to two-dimensional electrophoresis (2D-
E), the harvested media were concentrated 100-fold using
Vivaspin concentrators (10,000 molecular weight cut-off;
Sartorius) and impurities were removed with 2D Clean-Up
Kit (GE Healthcare Bio-Sciences, Uppsala, Sweden).

2.3. Two-Dimensional Electrophoresis (2D-E) and Silver Stain-
ing. 2D-E was carried out as previously described [16].
Immobilized pH gradient (IPG) strips (GE Healthcare Bio-
Sciences) with length of 13 cm and immobilized pH gradients
of 3-10 and 4-7 were used. The broad range pH 3-10 IPG
strip was used to view the overall protein distribution of the
sample, while the pH 4-7 IPG strip was used to produce
a higher resolution of the protein profile. Concentrated
protein samples from growth media were rehydrated with
IPG strips in a rehydration buffer (8 M urea, 2 M thiourea,
20 mM dithiothreitol, 4% CHAPS, and 0.5% pharmalyte) and
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incubated overnight. The strips were then subjected to iso-
electric focusing (IEF) using the Ettan IPGphor IT IEF system
(GE Healthcare Bio-Sciences). The strips were subsequently
equilibrated and applied onto the 8-18% gradient gels for sec-
ond dimensional separation. The SDS-PAGE was performed
using the Hoefer SE 600 Ruby system (GE Healthcare Bio-
Sciences). The 2D-E gels were silver stained according to
Heukeshoven and Dernick [17]. For mass spectrometry, gels
were silver stained as described by Shevchenko et al. [18] with
modification.

2.4. Con A (Concanavalin A) Affinity Chromatography for
N-Linked Glycosylation Analysis. Ten milliliters of harvested
medium was added to 2mL of Con A Sepharose (GE Health-
care Bio-Sciences, Uppsala, Sweden) and gently shaken
overnight at 4°C. The mixture was subsequently loaded
into a 0.8 x 4cm Poly-Prep column (BioRad Laboratories,
Hercules, CA, USA) and equilibrated with an equilibration
buffer (20 mM Tris-HCI, 0.5M NaCl, pH 7.4). The column
was washed with 50 mL of equilibration buffer to remove
unbound proteins (nonglycosylated and O-glycosylated pro-
teins); and bound N-glycoproteins were eluted with 0.3 M
methyl-a-D-glucopyranoside. Chromatographic process was
monitored at the absorbance of 280 nm. The eluted frac-
tions were pooled and concentrated 100-fold using Vivaspin
concentrators (10,000 molecular weight cut-off; Sartorius).
Concentrated eluate was further desalted using 2D Clean-
Up Kit (GE Healthcare Bio-Sciences, Uppsala, Sweden) and
subjected to 2D-E.

2.5. Western Blotting and Champedak Galactose Binding
Lectin Detection for O-Linked Glycosylation Analysis. Pro-
teins in 2D-E growth media gel were electroblotted onto a
nitrocellulose membrane (0.45 ym) using Multiphor II Nov-
aBlot Kit (GE Healthcare Bio-Sciences, Uppsala, Sweden).
The blotted membrane was then incubated with 5% skimmed
milk in Tween TRIS-buffered saline (T'TBS) for 1 hour at
room temperature to block nonspecific protein binding sites.
The membrane was then washed 3 times with TTBS, 15 min
each. Detection of transferred O-glycosylated proteins was
performed by incubation with champedak galactose binding
lectin conjugated to horseradish peroxidase at a concentra-
tion of approximately 1ug/mL, overnight at 4°C. The purity
and specificity of this lectin to interact with O-glycosylated
proteins were described previously [19]. After the incubation,
the membrane was washed twice and developed using freshly
prepared 3,3 -diaminobenzidine (Dako, Glostrup, Denmark)
in 50 mL of TRIS-buffered saline mixed with 50 yL of H,0,.
Reaction was terminated by washing the membrane twice
with deionized distilled water, 5min each. The developed
membrane was air-dried and scanned with GS-710 Imaging
Densitometer (Bio-Rad).

2.6. Image Analysis. GS-710 Imaging Densitometer (Bio-
Rad) and PDQuest software (version 4.7.0, Bio-Rad) were
used to capture, store, and analyze protein spots on 2D-E
gels and lectin blots. PDQuest software matched the identical
spots in a series of gels and normalized the gels to compensate
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for any variations between gels, especially those caused by
varying experimental conditions. The analysis was normal-
ized by total density in gel, which accounts for the raw quan-
tity of each spot in a gel, divided by the total intensity value of
all the pixels in the image. The normalized spot quantity was
expressed as percentages of volume contributions (vol%) to
facilitate the data compilation. Data was checked manually to
eliminate possible error in matching pairs.

2.7 Statistical Analysis. All protein concentration values were
presented as mean of percentage volume (% volume) + SE.
The Student’s t-test was used to analyze the statistical differ-
ences between normal and cancer samples and to examine the
correlation between the variables. A p value of less than 0.05
(p < 0.05) was considered statistically significant.

2.8. Protein Identification with Mass Spectrometry (MS). The
resolved protein spots of interest were excised and subjected
to in-gel digestion using ProteoExtract All-in-One Trypsin
Digestion Kit (Merck, USA). Digested peptides were further
purified and concentrated using ZipTip C,g (Millipore, MA,
USA). Mass spectrometric analysis was performed at the Pro-
teomic Centre, Department of Biological Sciences, National
University of Singapore. Digested peptide was mixed with
1uL of CHCA (5 mg/mL of alpha-cyano-4-hydroxycinamic
acid in 0.1% trifluoroacetic acid and 50% acetonitrile in
deionized distilled water) and applied to a Matrix-Assisted
Laser Desorption/Ionization (MALDI) target plate. The mix-
ture was allowed to dry under ambient temperature to ensure
optimum crystal growth. The target plate with dried mixture
was then inserted into a mass spectrometer for analysis. The
peptide mass spectra were obtained by using the ABI 4800
Proteomics Analyzer MALDI-TOF/TOF Mass Spectrometer
(Applied Biosystems, Framingham, MA, USA).

For protein identification, mass spectra obtained were
searched for in the National Center for Biotechnology Infor-
mation nonredundant (NCBInr) protein database using the
MASCOT search engine (version 2.1; Matrix Science, Lon-
don, UK). Searches were performed with fixed modification
on carbamidomethylation of cysteines and variable modi-
fication of methionine oxidation. The following parameters
were used in the MASCOT peptide mass fingerprint search:
(i) enzyme: trypsin with one missed cleavage allowed, (ii)
species: Homo sapiens, (iii) mass value: monoisotopic, (iv)
peptide mass tolerance: +0.1 Da, and (v) peptide charge state:
1+. The same parameters were used in the MASCOT ion
search, except for peptide mass tolerance and fragment mass
tolerance which were set at 100 ppm and 0.2 Da, respectively.
A search score of more than 50 indicated identities or
extensive homology (p < 0.05).

3. Results and Discussion

Most of the aberrantly expressed proteins are acute phase
proteins, which altered their expression level in response to
the inflammation associated with the development of cancer
[20]. Cancer has been reported to cause unusual changes
in the protein expression of cells, either by increasing or

reducing the expression level or altering the posttranslational
modification of the proteins. Glycosylation is a type of exten-
sive posttranslational modification which has a significant
involvement in the functional alteration of proteins and, as
reported previously, the aberrant glycosylation in the can-
cerous cells [21-23]. Based on our preliminary study on the
glycosylation of proteins from human breast cancer cells, we
encountered the aberrant expression of osteonectin and hap-
toglobin [15]. In the present study, we have expanded this fur-
ther with the similar analysis and discovered the additional
candidates which undergo differential glycosylation, through
comparison of the secretome from MCF-7 cells with human
mammary epithelial cells (HMEpC). The MCF-7 cell line is
of luminal epithelial origin and is often used as a model for
estrogen receptor-positive tumors, while HMEpC are normal
epithelial cells derived from normal adult mammary glands.

3.1. Typical Protein Profiles of MCF-7 and HMEpC Media.
Silver-stained 2D-E gels of HMEpC and MCF7 growth media
were scanned using GS-710 Imaging Densitometer and ana-
lyzed using PDQuest 2D gel analysis software. Interestingly,
the typical protein profile of MCF-7 medium differed consid-
erably from the representative profile of HMEpC medium,
with only some spots matched between them. Comparative
analysis on the gel images revealed several differentially
regulated proteins in both MCF7 and HMEpC media. A
total of 5 distinctive protein spots were detected, 3 spots
were exclusively expressed in MCF7 cells, one was in the
HMEpC cells, and the other one was found in both MCF7
and HMEpC. These protein spots were further subjected to
mass spectrometric analysis for protein identification.

Identification of protein spots of interest was performed
by using Proteomics Analyzer MALDI-TOF/TOF Mass Spec-
trometer. The mass spectra obtained were searched for in the
NCBInr protein database using the MASCOT search engine.
The mass spectra of all digested samples are shown in Sup-
plementary Figure 1 (in Supplementary Material available
online at http://dx.doi.org/10.1155/2015/453289). A search
score of more than 50, which indicates extensive homology,
was obtained for the five distinctive spots (Table1). The
proteins detected in the MCF-7 medium were identified as
carboxypeptidase A4 (CPA4), alpha-l-antitrypsin (AAT),
haptoglobin (HP), and HSC-70 (HSC70), whereas proteins
found in the HMEpC medium were identified as carboxypep-
tidase A4 (CPA4) and osteonectin (ON). Protein profile anal-
ysis using PDQuest 2D gel analysis software revealed that
there is a significantly higher expression of CPA4 in the MCEF-
7 cell line (increased by a factor of 3.41, p < 0.05), compared
to HMEpC.

3.2. Posttranslational Modification Study. Analyses of growth
media protein profiles were extended to include posttransla-
tional modification studies. The protein profiles were gener-
ated by detection with Concanavalin A (Con A) and HRP-
conjugated champedak galactose binding (CGB) lectin.

3.3. Detection of N-Glycoprotein Using Con A Chromatogra-
phy. Lectin Con A has high affinity towards alpha mannose,
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TABLE 1: Mass spectrometric identification of protein spots from MCF-7 and HMEpC growth media using MASCOT search engine and NCBI

database.
Mascot accession Theoretical Number of
Spot i i
pot name Protein name number Theoretical pI mass (Da) peaks matched Search score
CPA4 _Carboxypeptidase Az gi[254540196 8.49 43771 5 192
isoform 2 preproprotein
AAT Alpha-l-antitrypsin gil|177827 5.42 46787 2 85
HP Haptoglobin ¢i|223976 6.23 42344 2 70
Chain A, crystal structure
HSC70 of Hsc70 BAGI in complex gi[225698069 6.38 42120 3 178
with ATP
ON Osteonectin gi|338325 4.70 35260 1 81
14.8 16.8
120kDa © P pl48 pl6.8
120kDa
|
HSC70
'
‘ LY
] AAT * | *
L
[ T
CPA4
O cCPrA4 : @
30kDa 30kDa e

(a)

(b)

FIGURE 1: N-linked glycoproteins profile of (a) HMEpC growth medium, and (b) MCEF-7 growth medium. Media of both HMEpC and MCE-7
cells were subjected to Con A chromatography and 2D-E. CPA4 was detected as N-glycoprotein in HMEpC medium, while N-glycosylated

CPA4, AAT, HP, and HSC70 were detected in MCF7 medium.

and it is thus frequently used to purify and enrich N-linked
glycoproteins [24, 25]. The combination of lectin with 2D-E
analysis allowed screening for possible structural aberration
in oligosaccharide moieties of secreted proteins. When MCF-
7 and HMEpC media were subjected to Con A coupled
with 2D-E analysis, different profiles consisting of only N-
glycoproteins were obtained. The glycoprotein detected in the
HMEpC N-glycoprotein profile was only CPA4 (Figure 1(a)).
In contrast, N-glycoproteins detected in the MCF-7 medium
included CPA4, AAT, HP, and HSC70 (Figure 1(b)). As pre-
viously reported [15], image analysis on the N-glycoprotein
profile of the MCF-7 medium indicated that one of the HP
isoforms was absent, when compared to the total growth
medium profile.

3.4. Detection of O-Glycoprotein Using CGB Lectin. For O-
glycoprotein analyses, harvested growth media were sub-
jected to 2D-E, blotted, and then developed with HRP-
conjugated CGB lectin. Distinctly different profiles were
obtained when 2D-E separated growth media of MCF-7 and
HMEpC were exposed to HRP-conjugated CGB lectin. For
HMEpC, no O-glycoproteins were detected in the growth

pl4.0 pl7.0

200kDa

¢ (QHscro

o,

@ CPA4

40kDa

FIGURE 2: Typical representative of O-glycoprotein profile of MCF-7
growth medium. Harvested growth media were subjected to 2D-E,
blotted, and then developed with HRP-conjugated CGB lectin. Pro-
tein spots of HSC70 and CPA4 were detected. No O-glycoproteins
were detected in HMEpC growth medium (not shown).

medium. But, for MCF-7, O-glycosylated CPA4 and HSC70
were detected, as shown in Figure 2.
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FIGURE 3: Three-dimensional representative of (a) carboxypeptidase A4 (PDB code: 2BOA), (b) alpha-l-antitrypsin (PDB code: IKCT), (c)
haptoglobin (PDB code: 4F40), (d) HSC-70 (PDB code: 3FZF), and (e) osteonectin (PDB code: 1ISRA). N and C terminals are shown with

magenta and cyan colors, respectively.

3.5. Functional Aspects of the Identified Biomarkers. With the
above studies, secreted proteins from MCF-7 and HMEpC
cells were comparatively analyzed with proteomic approaches
involving 2D-E and glycan-binding lectin. CPA4, AAT, HP,
and HSC-70 were detected in the MCF-7 medium, where
AAT, HP, and HSC70 were uniquely expressed. ON was only
found in HMEpC cells. Aberrantly expressed proteins in in
vitro study of human breast cancer cell lines have different
structures and functions in relation to breast cancer. The
three-dimensional structures of these identified biomarkers
are well studied and readily available in the protein database
(Figure 3).

3.6. Carboxypeptidase A4 (CPA4). CPA4 is a secreted exo-
peptidase that catalyzes the release of carboxyterminal amino
acids. Although little is known about this enzyme, it is
thought to participate in the histone hyperacetylation path-
way during differentiation of prostate epithelial cancer cells
[26]. Additionally, it was demonstrated that the gene for
CPA4 is imprinted and may contribute to prostate cancer
aggressiveness [27]. So far, no study has associated CPA4
expression with breast cancer. Our results demonstrated that

CPA4 is secreted at a higher level by MCEF-7 cells in com-
parison to HMEpC, suggesting its role in breast cancer pro-
gression. Upon analysis of N-glycoprotein profiles, CPA4 was
detected in media from both MCF-7 and HMEpC cells. This
finding is in accordance with a study by Pallares et al. [28],
which demonstrated that CPA4 is N-glycosylated at Asn-148
N§2. However, CPA4 was also detected as an O-glycosylated
protein in MCF-7 media but not in HMEpC media. Therefore,
our data indicate that CPA4 is aberrantly O-glycosylated in
MCEF-7 cells, and this alteration may affect its function and/or
structure in a manner that facilitates tumorigenesis.

3.7 Alpha-1-Antitrypsin (AAT). AAT is also known as alpha-
1 protease inhibitor, a 52-kDa protease inhibitor belonging to
the serpin family [29] that functions as an inhibitor of caspase
activation and apoptosis. Notably, studies have already iden-
tified increased levels of AAT in the serum of breast cancer
patients, suggesting its association with tumor advancement
[30]. In addition, Yavelow et al. [31] have also reported the
expression of AAT in MCEF-7 cells. Therefore, our findings
confirm this correlation of AAT with breast cancer. AAT was
known to be a secreted N-glycosylated protein [32], and this



is compatible with our observation of N-glycosylated AAT in
the medium of MCF?7 cells. Changes in N-linked glycosyla-
tion during the development of cancer have been correlated
with tumor progression in human breast cancer [33].

3.8. Haptoglobin (HP). In parallel with our previous study
[15], only the 3-subunit of HP was studied in this investiga-
tion. Previous reports have associated the expression of HP
with ovarian, breast, lung, and pancreatic cancers. Moreover,
changes in oligosaccharide structures of HP variants may
have contributed to tumorigenesis [34-38]. According to
Chen et al. [16], the level of a secreted protein should be
equivalent to its glycosylated forms. However, our findings
demonstrated that HP isoforms secreted by MCF-7 cells were
less N-glycosylated. Fucosylation of HP has been observed
in pancreatic, breast, and ovarian cancer [38, 39]. Thus, HP
may undergo differential glycosylation in associated cancer
progression.

3.9. HSC70. HSC70 is a chaperone that facilitates proper pol-
ypeptide folding [40]. It also functions as an ATPase in the
dissociation of clathrin-coated vesicles during transporta-
tion of membrane components through the cell [41]. There-
fore, HSC70 is reported to be either a cytoplasmic or cell
membrane-associated protein [42]. Here, we have detected
extracellular HSC70 of MCF-7 cells. Although this finding
could be a consequence of cell lysis or death, which is always
possible in cell cultures, recent studies by Evdokimovskaya
et al. [43] and Nirdé et al. [44] have supported the idea
that HSC70 is actively secreted by various cell lines. So far,
the mechanism and function of HSC70 secretion remain
unknown. Nevertheless, our findings indicated that HSC70 is
an N- and O-glycosylated protein, and this information could
help to elucidate the mechanism by which it is secreted. We
postulate that glycosylation could even serve as a signal for
HSC70 secretion.

3.10. Osteonectin (ON). ON is a secreted glycoprotein respon-
sible for cell adhesion, proliferation, migration, and tissue
remodeling [45]. Underexpression of ON has been associated
with tumorigenesis in human ovarian cancer [46] and poor
prognosis in breast cancer patients [47]. Our findings showed
that ON was secreted in the medium of HMEpC but not
in MCF-7. ON was neither detected in N-glycoprotein nor
O-glycoprotein profiles of HMEpC, even though a previous
study has reported that it is an N-glycoprotein [48]. These
findings suggested that ON might be expressed in nonglyco-
sylated form as N-glycosylation sequons of glycoproteins are
often not glycosylated under normal circumstances [49].

4. Conclusions

In this study, we have identified differentially expressed and
glycosylated proteins in the secretions of human breast cancer
cell line MCF-7. We employed a proteomics approach by
using 2D-E coupled with lectin-base analysis to identify aber-
rantly expressed N- and O-glycoproteins in the secretions
from MCF-7 and HMEpC cells. Our analysis revealed that
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CPA4, AAT, HP, and HSC70 were detected in the secretion of
the MCEF-7 cell line and AAT, HP, and HSC70 were uniquely
expressed. However, only CPA4 and ON were detected in
the HMEpC medium. Image analysis revealed that CPA4
was significantly expressed in the MCF-7 medium compared
to HMEpC. Further analysis by lectin showed that CPA4,
AAT, HP, and HSC70 were detected as N-glycoproteins in the
media of MCF-7, with HP showing differentially glycosylated
isoforms. CPA4 was also detected as N-glycoprotein in the
media of HMEpC. On the other hand, the MCF-7 variants of
CPA4 and HSC70 were detected as O-glycoproteins, but no
O-glycan was detected in HMEpC. HSC70 was detected as
N- and O-glycoprotein in the lectin analysis. These findings
suggest that glycol-biomarkers could be used for human
breast cancer screening and molecular targets for drug
development.
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