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In this paper, two real-world medical classification problems using electrocardiogram (ECG) and auscul-
tatory blood pressure (Korotkoff) signals are examined. A total of nine machine learning models are
applied to perform classification of the medical data sets. A number of useful performance metrics which
include accuracy, sensitivity, specificity, as well as the area under the receiver operating characteristic
curve are computed. In addition to the original data sets, noisy data sets are generated to evaluate the
robustness of the classifiers against noise. The 10-fold cross validation method is used to compute the
performance statistics, in order to ensure statistically reliable results pertaining to classification of the
ECG and Korotkoff signals are produced. The outcomes indicate that while logistic regression models per-
form the best with the original data set, ensemble machine learning models achieve good accuracy rates

@ 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Data classification constitutes one of the fundamental require-
ments in undertaking many decision-making tasks (Orkcii & Bal,
2011). A classification task involves building a model that depicts
a mapping from the input feature space to the target output space
(Oza & Tumer, 2008). In general, there are a number of classifica-
tion methods, which include statistical methods, mathematical
programming methods, and a variety of machine learning methods
(Orkcii & Bal, 2011). Researchers in the medical domain have used
many methods to perform data classification. Methods with higher
classification accuracy are desirable to correctly identify potential
diseases; therefore improving diagnosis accuracy (Fan, Chang,
Lin, & Hsieh, 2011).

The main contribution of this study is a comprehensive perfor-
mance evaluation and analysis pertaining to a number of machine
learning models for undertaking real medical data classification
problems. Specifically, we use two sets of real data collected from
patients, i.e., the electrocardiogram (ECG) and auscultatory blood
pressure (Korotkoff) signals. ECGs are signals related to electrical
activity of the heart, which can be recorded by placing surface
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electrodes on a patient’s body (Mitra, Mitra, & Chaudhuri, 2006).
It is an effective non-invasive clinical tool for the diagnosis of cer-
tain cardiovascular diseases, and it provides useful information
pertaining to pathological physiology of heart activity (Chen &
Yu, 2012). ECG signals carry valuable information about the heart
function, and provide a cardiologist with useful insight about the
rhythm and functioning of the heart (Chen & Yu, 2012).

As stated in Mele (2008), an estimated 300 million ECGs are
performed each year. As such, there is a clear need for reliable
and accurate interpretation tools of ECG readings. Although trained
cardiologists can discover different cardiac abnormalities in ECG
recordings, it is time-consuming and laborious for them to exam-
ine a large number of ECG recordings (Kiranyaz, Ince, Pulkkinen,
& Cabbouj, 2011). Moreover, visual inspection can take consider-
able time, and some vital information can be neglected due to fati-
gue in carrying out the tedious manual procedure (Sun, Lu, Yang, &
Li, 2012). As such, automated tools to help accurately analyze a
large number of ECG data samples are required. Similarly, blood
pressure (BP) is an established link in determining coronary heart
disease and cardiovascular incidents (Mendiola, Luna, Guerra, &
Ramirez, 2013). The most commonly used methods for measuring
BP in clinical activities is the use of a manual sphygmomanometer
and a stethoscope to detect the Korotkoff sounds (Kurl et al., 2001).
Korotkoff waveforms are one of the most reliable means for mon-
itoring blood pressure (Mendiola et al, 2013). To exploit the
advantages of using computerized tools to help medical prognosis



and diagnosis tasks, an empirical study to evaluate a variety of
machine learning models for classification of both ECG and Korotk-
off signals is undertaken in this study.

In respect to machine learning models, the artificial neural net-
works (ANNs) are popular methods for tackling medical diagnosis
problems (Al-Shayea, 2011). There are a number of advantages of
using ANNs for medical data classification, e.g. a detailed mathe-
matical model that relates the input features and the target out-
puts is not necessary. In addition, ANNs have the ability to learn
complex relationship in data samples. Recent advancements in
ANNs have shown their usefulness in analyzing signals, which
has opened up the possibility of solving problems typically not
possible with some existing signal processing techniques (Ubeyli
& Giiler, 2005). On the other hand, model-based signal processing
is a new method to describe physiological systems (Porta, Baselli, &
Cerutti, 2006). The method is useful for short-term cardiovascular
control and analysis of cardiovascular regulation mechanisms
(Porta et al., 2006). Besides that, other medical signal processing
methods have been used in many different application, e.g. in syn-
thesized and real biomedical signals using frequency-domain
methods (Mitov, 1998), medical ultrasound signals using a fast
wavelet-based edge method (Nes, 2012), and a multi-sensor fetal
movement detection system based on a time-frequency signal
processing method (Boashash, Khlif, Ben-Jabeur, East, & Colditz,
2014). A review of different machine learning and related methods
for medical applications is presented in Section 2.

The organization of this paper is as follows. After a literature
review in Section 2, a description on signal pre-processing, exper-
imental setup, and the background of different classifiers used for
experimentation is presented in Section 3. In Section 4, two real
medical case studies consisting of ECG and Korotkoff signals are
detailed. Finally, conclusions and suggestions for further work
are presented in Section 5.

2. Literature review

Biomedical signal processing is becoming an essential feature in
many advanced medical equipment, and is widely used in clinical
and biomedical research (Simpson, De Stefano, Allen, & Lutman,
2005). In this review, a number of statistical methods, machine
learning models, and other related techniques for medical signal
processing are reviewed. The details are as follows.

2.1. Statistical models

A Bayesian-based classifier was used in classifying patients
according to statistical features extracted from their ECG signals
(Wiggins, Saad, Litt, & Vachtsevanos, 2008). Based on 12 extracted
features, the Bayesian network produced an accuracy rate of
86.25% (Wiggins et al., 2008). Another Bayesian-based method
was utilized in analyzing interval ECG signals (Lee, McManus,
Bourrell, Sornmo, & Chon, 2013). A high resolution time-frequency
spectral method was developed to process atrial activities. The
method produced an accuracy rate of 88% (Lee et al, 2013). In
Atoui, Fayn, and Rubel (2010), multiple regression-based methods
were used to process ECGs from cardiac patients, while in
lacoviello et al. (2007), a linear regression analysis was conducted
for ECG monitoring. No accuracy rates were reported for the stud-
ies by Atoui et al. (2010) and lacoviello et al. (2007).

22. Artificial neural networks

Benchmark ECG data sets from the Massachusetts Institute of
Technology-Beth Israel Hospital (MIT-BIH) repository is popularly
used in the literature, as explained in the section. A multilayer

perceptron (MLP) model with backpropagation was used in classi-
fication of ECG arrhythmias in Ozbay, Ceylan, and Karlik (2011).
Based on the MIT-BIH data sets, wavelet transform was performed
for feature extraction (Ozbay et al., 2011). The MLP model was able
to produce a high accuracy (99%) rate (Ozbay et al,, 2011). A new
ANN model with adaptive activation functions to classify ECG
arrhythmias was proposed in Ozbay and Tezel (2010). The activa-
tion functions were used in hidden neurons, in an attempt to
improve the performance of the classical MLP model (Ozbay &
Tezel, 2010). Using the MIT-BIH data sets, an accuracy rate of
98.19% was obtained (Ozbay & Tezel, 2010).

An evolvable block-based ANN was used for personalized ECG
heartbeat classification in Jiang and Kong (2007). The input com-
prised the Hermite transform coefficients and the time interval
between two neighboring R-peaks of ECG signals (Jiang & Kong,
2007). Based on the MIT-BIH data sets, accuracy rates of 96.6-
98.1% were achieved (Jiang & Kong, 2007). Feedforward and fully
connected ANN models were deployed in a classification system
designed for robust and accurate detection of ECG heartbeat pat-
terns (Ince, Kiranyaz, & Gabbouj, 2009). The MIT-BIH data sets
were evaluated with a morphological wavelet transform method
for feature extraction (Ince et al, 2009). Average accuracy rates
of 97.4-98.3% were produced from the experiments (Ince et al.,
2009).

A radial basis function network, evolved using particle swarm
optimization, was employed for ECG beats classification (Koriirek
& Dogan, 2010). Using the MIT-BIH data sets, the proposed method
was able to classify ECG beats with a smaller network size (Kortirek
& Dogan, 2010). A novel ECG arrhythmia classification model with
a modular mixture of experts and negatively correlated learning
neural network was proposed in Javadi, Arani, Sajedin, and
Ebrahimpour (2013). Using ECG records from the MIT-BIH reposi-
tory, an accuracy rate of 96.02% was achieved from the modular
network (Javadi et al, 2013). A probabilistic ANN classifier was
used to discriminate eight types of arrhythmia from ECG beats
(Wang, Chiang, Hsu, & Yang, 2013). The classifier achieved accu-
racy rates of 99.71% (Wang et al., 2013) with the use of the MIT-
BIH data sets.

An ANN with backpropagation training was applied to predic-
tion of transfusion requirements of trauma patients (Walczak,
2005). Based on a series of experiments, the highest recorded accu-
racy rate was 91.42% (Walczak, 2005). For the diagnosis of arterial
diseases and internal carotid arterial disorders, an MLP network
with the Levenberg-Marquardt (LM) algorithm was utilized in
Ubeyli and Giiler (2005). Wavelet transform was performed on
the Doppler signals, and accuracy rates ranging from 95.52% to
97% were achieved (Ubeyli & Giiler, 2005). A moving average
self-organizing map (MA-SOM) was utilized for segmenting medi-
cal images (Torbati, Ayatollahi, & Kermani, 2014). A two-dimen-
sional discrete wavelet transform was used to build the input
features from computerized tomography (CT) and magnetic reso-
nance (MR) head images (Torbati et al., 2014). The experimental
results indicated that MA-SOM was able to determine the input
patterns properly while preserving its robustness against noise
(Torbati et al., 2014).

The probabilistic ANN was used for diagnosing patients with
urinary tract infections (Mantzaris, Anastassopoulos, &
Adamopoulos, 2011). A genetic algorithm was employed to search
for potential redundancy in the diagnostic factors (Mantzaris et al.,
2011). A prognosis rate of up to 100% was achieved (Mantzaris
et al,, 2011). In Irigoyen and Mifiano (2013), data samples from
machine resistance and patients’ heart rates were first collected
from participants performing exercise on a cyclo-ergometer. A
non-linear autoregressive exogenous (NARX) neural network was
then used to obtain the optimal training configuration (Irigoyen
& Minano, 2013). To undertake prediction of advanced bladder



cancer in patients, a neural network optimized by a genetic algo-
rithm (GA) was proposed in Vukicevic, Jovicic, Stojadinovic,
Prelevic, and Filipovic (2014). The genetic algorithm was deployed
to optimize the best prognostic performances of clinicians
(Vukicevic et al., 2014). The best accuracy rate reported was
95.9% (Vukicevic et al., 2014).

2.3. Decision trees and ensemble models

Based on ECGs from patients with heart failures, Chi-square-
based decision trees were produced to differentiate patients with
varying levels of risk (Zhang, Goode, Rigby, Balk, & Cleland,
2013). The resulting models were concise, and could be easily
understood by clinicians (Zhang et al., 2013). A classification tree
based on condition combination competition was proposed for
ischemia detection of spatiotemporal ECGs, and an accuracy rate
of 98% was achieved (Fayn, 2011).

An ensemble classifier based on extremely randomized decision
trees was used for classification of ECG signals (Scalzo, Hamilton,
Asgari, Kim, & Hu, 2012). A total of twenty-four features were
extracted from records of patients suffering from various intracra-
nial pressure related conditions (Scalzo et al., 2012). On the other
hand, ANN ensembles for patients visiting an emergency depart-
ment with chest pain were presented in Green et al. (2006). The
k-fold cross validation procedure was used to estimate the perfor-
mance of the classifier using ECG data inputs (Green et al., 2006).
However, no accuracy rates were reported in both Scalzo et al.
(2012) and Green et al. (2006).

2.4. Support vector machine

Data sets from MIT-BIH and BIDMC Congestive Heart Failure
Database (CHFD) were widely used with different support vector
machine (SVM) models, as reviewed in this section. The SVM
model was used for ECG arrhythmia analysis in Luz, Nunes, De
Albuquerque, Papa, and Menotti (2013). Feature extraction was
accomplished using six different methods for comparison purposes
(Luz et al., 2013). Using the MIT-BIH data sets, the highest accuracy
rate achieved was 92.2% (Luz et al., 2013). To enhance the accuracy
rate of ECG signals classification, a statistical method for segment-
ing heartbeats from ECG signals was used (Wu & Zhang, 2011).
Based on the MIT-BIH data sets, independent component analysis
and temporal features were extracted (Wu & Zhang, 2011). The
highest accuracy rate acquired by the SVM classifier was 99.45%
(Wu & Zhang, 2011).

A fast least square SVM model for classification of ECG beats
was proposed (Acir, 2005). Five different feature extraction meth-
ods were compared, with a total of fifteen features extracted (Acir,
2005). Using the MIT-BIH data sets, the best accuracy rate achieved
was 95.2% (Acir, 2005). The SVM classifier was utilized for discrim-
inating ECG beats in Daamouche, Hamami, Alajlan, and Melgani
(2012). A wavelet filter was used for feature extraction. Based on
the MIT-BIH data sets, the highest recorded accuracy rate was
96.19% (Daamouche et al., 2012). ECG beats were classified using
the SVM model in Zidelmal, Amirou, Ould-Abdeslam, and
Merckle (2013). The QRS complexes were segmented after pre-pro-
cessing the ECG signals obtained from the MIT-BIH repository
(Zidelmal et al., 2013). Accuracy rates from 97.2% to 98.8% were
reported (Zidelmal et al,, 2013).

The SVM model was used for automatic classification of ECG
beats (Melgani & Bazi, 2008). Two input sets were provided to
the SVM model, i.e., with and without feature selection based on
the MIT-BIH data sets (Melgani & Bazi, 2008). Compared with other
classifiers, the SVM model yielded the highest accuracy rate of
85.98% (Melgani & Bazi, 2008). Based on the MIT-BIH data sets, a
combination of thirteen metrics was tested, and the best

combination was selected for further evaluation (Li, Rajagopalan,
& Clifford, 2014). The SVM model was used for classifying the data
samples, which led to an accuracy rate of 99.34% (Li et al., 2014).

The CHFD data set was used in Abawajy, Kelarev, and
Chowdhury (2013) for automatic classification of ECG data. A
multi-stage algorithm which aimed to reduce data dimension
was first used. Then, a sequential minimal optimization method
with SVM was used for classification. However, no accuracy rates
were reported (Abawajy et al, 2013). A least-square SVM (LS-
SVM) model was used to categorize epileptic seizure and seizure-
free electroencephalography (EEG) signals (Sharma & Pachori,
2015). Using EEG time series data sets from University Hospital
of Bonn, an accuracy rate of 98.67% was achieved (Sharma &
Pachori, 2015).

2.5. Other models

A fuzzy expert system was used for arrhythmic beat classifica-
tion pertaining to ECG recordings (Exarchos et al., 2007). Beat
detection with the MIT-BIH data sets was performed, and the accu-
racy rate achieved by the fuzzy expert system was 96% (Exarchos
et al., 2007). In mitigating label noise in ECG signal classification,
a genetic optimization method was proposed in Pasolli and
Melgani (2014). Specifically, the non-dominated sorting genetic
algorithm was deployed to process the ECG signals from the
MIT-BIH data sets, and the results showed the effectiveness of
the proposed solution (Pasolli & Melgani, 2014).

Classification of normal and abnormal cardiac patterns was con-
ducted using a cross wavelet transform (XWT) model in Banerjee
and Mitra (2013). The data samples were first de-noised before fea-
ture extraction was carried out. The XWT model as then used in the
analysis and classification of ECG signals. An accuracy rate of 97.6%
was achieved (Banerjee & Mitra, 2013). A data set comprising scalp
EEG signals from 16 children (7 control and 9 pediatric epilepsy
patients) was used in a study by Sargolzaei, Cabrerizo,
Goryawala, Eddin, and Adjouadi (2015). The study aimed to classify
pediatric subjects with epilepsy. Using the k-means clustering
algorithm, the accuracy rate achieved was 96.87% (Sargolzaei
et al., 2015).

An offline data acquisition system was developed in Mitra et al.
(2006). Digitized ECG signals were de-noised, and useful time-
domain features were extracted. Accuracy rates ranging from
95.8% to 100% were achieved using a rule-based rough-set decision
system (Mitra et al., 2006). A multiple instance learning algorithm
was used for ECG classification (Sun et al., 2012). The proposed
algorithm was able to automatically detect ECG with myocardial
ischemia without labeling any heartbeats. An accuracy rate of
90% was reported from the experiments (Sun et al, 2012). In
arrhythmia detection from ECG signals, a fuzzy classifier with the
genetic algorithm was employed (Vafaie, Ataei, & Koofigar, 2014).
Based on the data set obtained from the PhysioBank database, an
accuracy rate of 98.67% was achieved (Vafaie et al., 2014),

2.6. Summary

A comprehensive literature survey on biomedical signal pro-
cessing with a total of 37 papers covering statistical models, ANNSs,
decision trees, ensemble models, SVMs, and other methods has
been conducted. A summary of the reviews is given in Table 1. It
can be noticed that the MIT-BIH repository appears to be a popular
source of ECG data sets, i.e., in almost half of the ECG related pub-
lications. The ANN and SVM models are effective for tackling the
MIT-BIH data sets, whereby all models (except one) have been
reported to achieve more than 90% accuracy.

Out of the 37 papers reviewed, a total of 16 publications are
recently published papers, i.e., between 2013 and 2015. Again,



Table 1
Summary of the literature review.

Type Reference Data set Classifier Accuracy (%)
Statistical models Wiggins et al. (2008) Clinic patients Bayesian 86.25
Lee et al. (2013) Interval ECG signals Bayesian 88

Atoui et al. (2010)
lacoviello et al. (2007)

Cardiac patients ECGs
ECG monitoring

Multiple regression-based methods -
Linear regression -
MLP 99

Artificial neural networks Ozbay et al. (2011) MIT-BIH
Ozbay and Tezel (2010) MIT-BIH MLP with adaptive activation 98.19
Jiang and Kong (2007) MIT-BIH Evolvable block-based ANN 96.6-98.1
Ince et al. (2009) MIT-BIH Feedforward ANN 97.4-98.3
Koriirek and Dogan (2010) MIT-BIH Radial basis function -
Javadi et al. (2013) MIT-BIH ME with NCL 96.02
Wang et al. (2013) MIT-BIH Probabilistic ANN 99.71
Walczak (2005) Trauma patients transfusion ANN backpropagation 91.42
Ubeyli and Giiler (2005) Internal carotid arterial disorders MLP with LM 95.52-97
Torbati et al. (2014) CT and MR images MA-S0M -
Mantzaris et al. (2011) Urinary tract infections Probabilistic ANN 100
Irigoyen and Mifiano (2013) Heart rate NARX -
Vukicevic et al. (2014) Bladder cancer ANN with GA 95.9
Decision trees and ensemble models Zhang et al. (2013) Heart failure patient ECGs Chi-square-based decision trees -
Fayn (2011) Spatiotemporal ECGs Classification tree 98
Scalzo et al. (2012) ECG signals Randomized decision trees -
Green et al. (2006) Chest pains ANN ensembles -
Support vector machine Luz et al. (2013) MIT-BIH SVM 92.2
Wu and Zhang (2011) MIT-BIH SVM 99.45
Aar(2005) MIT-BIH Fast least square SVM 95.2
Daamouche et al. (2012) MIT-BIH SVM 96.19
Zidelmal et al. (2013) MIT-BIH SVM 97.2-98.8
Melgani and Bazi (2008) MIT-BIH SVM 85.98
Liet al. (2014) MIT-BIH SVM 99.34
Abawajy et al. (2013) CHFD SVM -
Sharma and Pachori (2015) Seizure EEG signals LS-SWM 98.67
Other methods Exarchos et al. (2007) MIT-BIH Fuzzy expert system 96
Pasolli and Melgani (2014) MIT-BIH NSGA-II -
Banerjee and Mitra (2013) Cardiac patterns Cross wavelet transform 97.6
Sargolzaei et al. (2015) Scalp EEG signals k-Means clustering 96.87
Mitra et al. (2006) Digitized ECG signals Rough-set decision system 95.8-100
Sun et al. (2012) Myocardial ischemia ECGs Multiple instance learning algorithm 90
Vafaie et al. (2014) PhysioBank Fuzzy with GA 98.67

the MIT-BIH repository appears to be the most commonly used
source of data sets. While some researchers use their own data
sets, most of the studies utilize data sets available in the public
domain. The reported accuracy rates of all models are above 90%,
with exception of one model at 88%. ANN and SVM models appear
to be the most commonly used methods.

In this study, we focus on two real data sets. In addition to the
real ECG data samples, we examine another data set of real Korotk-
off signals. Based on these two data sets, an extensive study using a
total of nine different classifiers covering classical and state-of-the-
art models is presented. An extended analysis and discussion of the
results is included (as in Section 4).

3. Data pre-processing and classification

In this section, the acquisition and pre-processing steps of the
ECG and Korotkoff signals are detailed. This is then followed by
an explanation on the types of classifiers used in the study.

3.1. ECG signals

In the first experiment, a total of 300 single lead-I ECG record-
ings were collected using a remote monitoring system, i.e.,
TeleMedCare Health Monitor (TMC-HM) (as shown in Fig. 1), from
288 home-dwelling patients. The participants were patients suffer-
ing from chronic obstructive pulmonary disease and/or congestive
heart failure. They were trained and then asked to record their ECG
measurements daily using the TMC-HM system in an unsupervised
manner. From a total of 300 ECG recordings, 250 were selected

Fig. 1. TeleMedCare Health Monitor.

randomly from 100 subjects in Australia and 20 subjects from
the UK. The remaining 50 records were manually selected to obtain
a larger representation of poor-quality ECG recordings, which
would not be useful for determining heart rate, but which were
not so bad as to be completely obscured by excessive movement
artifacts. These 50 recordings were selected from approximately
1000 ECG signals obtained from 168 subjects based in the UK,
but excluding previously selection (20) recordings.

To have an accurate clinical diagnosis, it is important to remove
noise from ECG signals because a contaminated signal can result
in an incorrect diagnosis (Zidelmal et al, 2013). An efficient



technique for denoising ECG signals is wavelet transform, and the
discrete wavelet transform (DWT) is useful in this aspect
(Poungponsri & Yu, 2013). Different wavelets are generated from
a single basic wavelet y(t) known as the mother wavelet. Based
on the mother wavelet, the shifted and dilated versions can be
expressed as (Poungponsri & Yu, 2013)

1 t—t
(1) = ﬁ'ﬁ’ (T) (1)

where s is the scale factor and 7 is the translation factor. The wave-
let transform of a signal x(t) with the mother wavelet of \(t) is
given as (Poungponsri & Yu, 2013)

T(s,7) = fx X0 + (I%T)dt )

where the asterisk represents the complex conjugate of the wavelet
function. The DWT family is given as (Poungponsri & Yu, 2013)

'.i’mn(t) =2 m'ui.‘!’(z "t - n) (3)

where m and n are integers for indices. A series of high-pass and
low-pass filters is considered for DWT of a signal to pass through
(Kim, Shin, Shin, & Lee, 2009). In this study, the noisy signal was
decomposed into six levels by DWT using the Daubechies wavelet
(Zidelmal et al., 2013). The baseline drift was removed by zeroing
the scaling coefficients of DWT at level 6 (Zidelmal et al., 2013).
Fig. 2 shows a sample ECG signal in its raw form and the de-noised
form using DWT at level 6.

Using the Augsburg Biosignal Toolbox (AuBT) (Wagner, 2009), a
total of 79 features were extracted based on the de-noised ECG sig-
nals. The extracted features are shown in Table 2. The features
include the mean, median, standard deviation (std), minimum
(min), maximum (max), and a range of one cardiac cycles which
consists of a P-wave, a QRS-complex, a T-wave, with some addi-
tional features. The class labels were obtained based on averaged
values of the scores from three experts, whom classified the signals
into two categories, i.e., good or bad ECG signals.

3.2. Korotkoff signals

In the second experiment, Korotkoff signals pertaining to a
blood pressure measurement system were obtained. The ausculta-
tory waveform captured by a stethoscope was transduced by a
built-in microphone. During the course of blood pressure measure-
ment, an electronically controlled mechanical pump first raised the
air pressure in the cuff, followed by releasing the valve to reduce
the pressure, and finally the recording process stopped automati-
cally. A pressure transducer calibrated with a manometer was used
to continuously measure the air pressure in the cuff, while a

ECG smplitude (mY)
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(a) Raw ECG signal
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1} 2000 4000 £000 5000 10000 12000
(b) Denoised ECG signal using DWT

Fig. 2. Raw and denoised ECG signals.

Table 2

Variables extracted from ECG signal.
No  Variable No  Variable No  Variable
1 ecgR-mean 28  ecgT-min 54  ecgPampl-range
2 ecgR-median 29  ecgT-max 55 ecgRampl-mean
3 ecgR-std 30  ecgT-range 56  ecgRampl-median
4 ecgR-min 31 ecgPQ-mean 57  ecgRampl-std
5 ecgR-max 32 ecgPQ-median 58 ecgRampl-min
6 ecgR-range 33 ecgPQ-std 59  ecgRampl-max
7 ecgP-mean 34 ecgPQ-min 60  ecgRampl-range
8 ecgP-median 35  ecgPQ-max 61  ecgSampl-mean
9 ecgP-std 36 ecgPQ-range 62  ecgSampl-median
10 ecgP-min 37  ecgQ5-mean 63  ecgSampl-std
11 ecgP-max 38 ecgQS-median 64  ecgSampl-min
12 ecgP-range 39 ecgQS-std 65  ecgSampl-max
13 ecgQ-mean 40 ecgQS-min 66  ecgSampl-range
14  ecgQ-median 41 ecg(QS-max 67  ecgHrv-mean
15  ecgQ-std 42 ecgQS-range 68  ecgHrv-median
16  ecgQ-min 43 ecgST-mean 69  ecgHrv-std
17  ecgQ-max 44 ecgST-median 70  ecgHrv-min
18  ecgQ-range 45  ecgST-std 71 ecgHrv-max
19  ecgS-mean 46 ecgST-min 72 ecgHrv-range
20  ecgS-median 47  ecgST-max 73 ecgHrvDistr-mean
21 ecgS-std 48  ecgST-range 74 ecgHrvDistr-median
22 ecgS-min 49  ecgPampl-mean 75  ecgHrvDistr-std
23 ecgS-max 50 ecgPampl-median 76  ecgHrvDistr-min
24 ecgS-range 51 ecgPampl-std 77  ecgHrvDistr-max
25  ecgT-mean 52  ecgPampl-min 78  ecgHrvDistr-range
26  ecgT-median 53  ecgPampl-max 79  ecgHrvDistr-triind

27 ecgT-std

computer electronically controlled the mechanical pump and
stored all the recorded signals. A total of 100 recordings were
obtained from 25 healthy subjects, 16 men and 9 women aged
between 23 and 33 years old. All subjects were advised not to take
any caffeine 12 h prior to signal acquisition. The subjects were
seated with their hands comfortably laid on a pillow, at the heart
level, during the measurement period. A cuff was placed around
the upper arm with a stethoscope positioned over the brachial
artery. In order to generate various signal qualities, a variety of
activities with intensities of noise caused by common artifact
including movements were designed.

In this study, the Welch method (Welch, 1967) was used for fea-
ture extraction of Korotkoff signals. It estimates the power spec-
trum of a signal at different frequencies, i.e., a technique for
spectral density estimation. This method is based on periodogram
spectrum estimates, which converts time-domain signals into
those in the frequency-domain. The Welch method is able to
reduce noise in the estimated power spectrum in exchange of
reducing the frequency resolution. The spectral estimate i,'v, is
defined as (Power Spectra Estimation, 1995)

. 1L
) =1l )

=1
and its expected value is given by

12

E[D] = || Swalnwif —n)dn = Su () + win) 5)
where

1 |m= P

_ ~—jonT|

W) = g gw(n)c (®)

The correlations between individual periodograms increase in
proportion to the increase in the data segments. A sample of the
raw and processed Korotkoff signals using the Welch method is
shown in Fig. 3.
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Fig. 3. Raw and processed Korotkoff signals.
Table 3
Variables extracted from Korotkoff signal.
Variable Definition
fmax Maximum of frequency spectrogram
fmin Minimum of frequency spectrogram
p75 Percentile 75 of frequency spectrogram
med Median of frequency spectrogram
p25 Percentile 25 of frequency spectrogram

A total of five variables, as shown in Table 3, from the extracted
frequency spectrogram were used (Mendiola et al., 2013). The class
labels were obtained based on the error information provided by
domain experts, where the signal was classified as either error-free
OT erroneous.

3.3. Classifiers

In this study, a total of nine different classifiers, consisting of
statistical, ANN, decision tree, and ensemble models, as shown in
Table 4, are evaluated. These classifiers are commonly used in
the literature. As an example, in Kim et al. (2009), a comparison
between different machine leaming models such as the backprop-
agation ANN, radial basis function network, and support vector
machine was conducted pertaining to arrhythmia classification of
ECG. The logistic regression model was used to provide predictions
of coronary artery disease based on a set of independent variables
(either continuous, categorical, or both) (Kurt, Ture, & Kurum,
2008).

Naive Bayes (NB) is a simple probabilistic classifier, which
assumes the presence/absence of a particular feature is unrelated

Table 4
Types of classifiers used.
Method Label Classifier
Statistical NB Naive Bayes
LR Logistic regression
Neural network MLP Multilayer perceptron
RBF Radial basis function
Decision tree CART Classification and regression trees
DT Decision stump
Ensemble BG Bagging
AB AdaBoost
RF Random forest

to that of any other features with the given target class. The logistic
regression (LR) model, a type of statistical method, predicts a bin-
ary response, based on one or more input features. The multilayer
perceptron (MLP) is a feedforward ANN model, which has an input
layer, an output layer, and one or more hidden layers in between.
The radial basis function (RBF) network uses the radial activation
function in its learning dynamics, and its output comprises a linear
combination of radial-based functions of the input features,
parameterized by the network variables.

Decision trees are commonly used in data mining. They are use-
ful for disclosing the underlying reasoning in classifying data sam-
ples. The classification and regression tree (CART) uses branches to
represent conjunction of features, which lead to leafs that repre-
sent the target classes. Decision stump (DT), on the other hand,
consists of a one-level decision tree. It makes a prediction based
on single input feature. In terms of ensemble models, Bagging
(BG) improves accuracy of machine learning algorithms and
reduces variances while avoiding over-fitting. In AdaBoost (Adap-
tive Boosting), the outputs of a number of learning algorithms
are combined with a weighted sum representing the final output.
On the other hand, random forest (RF) operates by constructing
multiple decision trees and providing the target class estimate
based on the mode of the classes produced by individual trees.

4. Results and discussion

The experimental study was conducted using Weka (Waikato
Environment for Knowledge Analysis) (Hall et al., 2009), a popular
suite of machine learning and other models. The k-fold cross vali-
dation technique, where k=10, was employed. As such, the data
samples were split into ten equal subsets. Each subset contained
approximately the same proportion of data samples from each tar-
get class. Nine subsets were used for training, while the remaining
was used for performance evaluation. This procedure was repeated
10 times, each time with a previously unused subset for perfor-
mance evaluation. The performance scores were averaged across
10 runs.

The common performance metrics in medical applications, i.e.,
accuracy, sensitivity, specificity, and area under the Receiver Oper-
ating Characteristic curve (AUC), were computed to quantify the
performance (Loo, 2005). Sensitivity measures the proportion of
positive and negative cases that are correctly identified, respec-
tively. The ROC curve depicts the discrimination ability of a classi-
fier subject to different threshold settings (Hanley, 1982). Using
normalized units, the AUC indicates the probability that a classifier
ranks a randomly chosen positive data sample higher than a ran-
domly chosen negative one.

To further evaluate the robustness of the classifiers against
noisy data, noise was injected into the input features by using
the AddNoise function in Weka. In this study, 10%, 30%, and 50%
of the training data samples were corrupted by noise, while the
test data samples were unaffected, to evaluate the classifiers’
learning capabilities in noisy environments.

4.1. ECG signals

Fig. 4 summarizes the noise-free and noise-induced (10, 30%,
and 50%) test results from nine different classifiers. With the
noise-free data set, LR and RF yielded the highest accuracy rate
of 94%, respectively, while CART produced the lowest accuracy rate
(89.3%). With 10% noise, RF and LR showed the highest (88.3%) and
lowest (76.6%) accuracy rates, respectively. When half of the data
samples were corrupted by noise, RF maintained its ranking with
the highest accuracy rate of 50.2%. In general, ensemble methods
achieved the best accuracy rates across both noise-free and
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