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Abstract

In this paper, we propose a bit-depth scalable lossless coding method for high dynamic range (HDR) images based on
a reversible logarithmic mapping. HDR images are generally expressed as floating-point data, such as in the OpenEXR
or RGBE formats. Our bit-depth scalable coding approach outputs base layer data and enhancement layer data. It can
reconstruct the low dynamic range (LDR) image from the base layer data and reconstructs the HDR image by adding
the enhancement layer data. Most previous two-layer methods have focused on the lossy coding of HDR images.
Unfortunately, the extension of previous lossy methods to lossless coding does not significantly compress the
enhancement layer data. This is because the bit depth becomes very large, especially for HDR images in floating-point
data format. To tackle this problem, we apply a reversible logarithmic mapping to the input HDR data. Moreover, we
introduce a format conversion to avoid any degradation in the quality of the reconstructed LDR image. The proposed

reconstructed LDR images.

method is effective for both OpenEXR and RGBE formats. Through a series of experiments, we confirm that the
proposed method decreases the volume of compressed data while maintaining the visual quality of the

Keywords: High dynamic range imaging; Lossless coding; Bit-depth scalable coding

1 Introduction

Image data compression technologies, such as the JPEG
2000 international standard [1,2], allow high quality
images to be transmitted via worldwide digital commu-
nication networks. Digital cinema and 4K images are
remarkable examples of such technology [3,4]. These
images require a huge number of pixels to express fine
textures at high spatial resolutions.

Recently, high dynamic range (HDR) images have
attracted considerable attention [5]. These images have a
high resolution of pixel values, i.e., numerous pixel tones.
Compared with the current standard for low dynamic
range (LDR) images, which are expressed in 8 bits,
HDR images have an extremely long bit depth and high
dynamic range of pixel values. To fully utilize this dynamic
range under limited memory space, the pixel values are
expressed as floating-point data, such as in OpenEXR or
RGBE format [6,7]. This paper focuses on the compres-
sion of HDR images in these data formats. Moreover, the
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proposed method, referred to as bit-depth scalable coding,
is backward compatible with a standard coding method
for LDR images.

Bit-depth scalable coding outputs compressed data in
two layers, a base layer and an enhancement layer. From
the bit stream in the base layer, the LDR image is decoded
with a standard lossy decoder. By adding the bit stream
in the enhancement layer, the original HDR image can
be decoded without any loss. This scalable coding system
has the advantage that it can directly accommodate both
HDR and LDR users. Therefore, the system has attracted
many researchers, and a number of variations have been
reported [8-15].

Ward et al. [8] proposed a backward compatible bit-
depth scalable coding method in which the original HDR
color image is tone mapped in the base layer to produce
an LDR image that is compressed by the JPEG inter-
national standard encoder. The enhancement layer then
embeds the luminance ratio of the LDR and HDR images.
The original HDR color image is decoded by multiply-
ing the luminance ratio in the enhancement layer and the
LDR color image in the base layer. This method has been
extended to video signals and has attracted attention as
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a bit-depth scalable video coding method in international
standardization activities [9-11,16]. For still images, Khan
introduced a piecewise linear model of a tone mapping
[12]. Jinno et al. improved the coding efficiency in the
enhancement layer by replacing the ratio with a low-pass-
filtered HDR image [15]. However, these reports focused
on ‘lossy’ coding for HDR images.

Unlike these previous reports, we discuss the ‘lossless’
coding of HDR images under a scalable coding scheme
that is compatible with lossy LDR image coding. The loss-
less coding of HDR images is especially important for
storing and archiving original visual data such as med-
ical, artistic, and astrograph images. Such data can be
used for diagnosis based on medical images, analysis
of astrograph images, art preservation, and bio-medical
detections [17,18].

First, we discuss a baseline method [19] that was sim-
ply extended to lossless scalable coding from a non-
scalable HDR image coding method [20]. Although the
baseline method is straightforward and easy to imple-
ment, the coding efficiency in the enhancement layer is
not satisfactory. To cope with this problem, we intro-
duced a reversible logarithmic mapping and reduced
the dynamic range of the HDR images [19,21]. This
approach was shown to be effective for compressing
data in the enhancement layer. However, the method
was limited to the OpenEXR format [6]. Another rep-
resentative format, referred to as RGBE [7], has been
ignored.

In this paper, we improve on our previous conference
papers [19,21] and add some theoretical analysis. First,
we show that a simple extension of the reversible loga-
rithmic mapping (Rev) to the RGBE format degrades the
visual quality of the decoded LDR images. To avoid this
problem, we introduce a format conversion (Cnv) to the
system. We demonstrate that simply extending Rev mag-
nifies the quantization error added by the lossy coding in
the base layer. Second, we analyze the theoretical basis for
why our method improves the coding efficiency of the sys-
tem. We estimate how the bit depth of the residual image
to be encoded in the enhancement layer is reduced by Rev.
We also explain why the simply extended Rev degrades the
LDR images, and why Cnv improves their quality in the
RGBE format.

This paper is organized as follows. In Section 2, we
describe two floating-point data formats and a non-
scalable HDR image coding method. A baseline scalable
coding method that simply extends the non-scalable cod-
ing approach is then summarized in Section 3, and the
concept and implementation of the proposed method
are introduced in Section 4. The theoretical analysis is
described in Section 5, and our experimental results are
summarized in Section 6. Finally, we present our conclu-
sions in Section 7.

Page 2 of 15

2 Dataformat and non-scalable coding

We first describe two floating-point data formats for HDR
images. A non-scalable lossy coding method, which is
extended to scalable lossless coding of HDR images in the
next section, is also summarized.

2.1 Type A format of HDR images

To date, there are two well-known representative data for-

mats for HDR images. One is the OpenEXR floating-point

data format [6] and the other is the RGBE data format [7].
In the OpenEXR data format, a pixel value xp,. of

an HDR image is described by an exponent value xf,

mantissa value x,1,, and sign value xs as

X = (_l)xg,c (1 + 2710xM,c) 2715+x5,c (1)
if xpe#0

and
xH,C - (_l)xs'c (0 + 2_10xM,C) 2_14 (2)
if xpc=0

for a color component ¢ € {R, G, B}. The exponent, man-
tissa, and sign values are given as integers in the ranges

aue € [0,21° = 1], wge € [0,2° — 1], x50 € [0,1]. (3)

The mantissa, exponent, and sign have depths of 10 bits,
5 bits, and 1 bit, respectively. Therefore, a pixel value of
an HDR image is expressed in 10 + 5 + 1 = 16 bits for
each color component. Note that in certain special cases,
xgc = 31 [6].

In the remainder of this paper, we denote the exponent,
mantissa, and sign of each color component as a vector

T
X = [*ER, ¥EG, XEB]
T
XM = [%mr» Xm,G5 %MB] (4)
T
Xs = [xsR %56 %s38]
and define the HDR image data xp as
Xp = [XE, Xpm, Xs]. (5)
Using these vectors, we denote Equations 1 and 2 as
xp = Flta (xp), (6)

where the pixel value of the HDR image xy is

XH = [%H,R, %H,G» xH,B]T~ (7)

Hereafter, we refer to OpenEXR as the ‘type A’ format.

2.2 Type B format of HDR images
In the RGBE data format, a pixel value of an HDR image
XH, is given as

(8)

AM,c+0.5 gxpg—128
Xie = 256 2%, }fxE,O 7& 0
’ ifxpo =0
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for a color component ¢ € {R, G, B}. Both the mantissa and
exponent have depths of 8 bits, i.e.,

xpe € [0,2% — 1], xgo € [0,28 — 1]. ©9)

The exponent xgg is commonly used among three color
components. In this format, a pixel value is expressed
with a total of 32 bits [7]. Using the vectors, we denote
Equation 8 as

xy = Fltg (xp) . (10)

Hereafter, we refer to RGBE as the ‘type B’ format. Note
that, for a type B image, xz in Equation 10 is non-negative.
In contrast, xy in Equation 6 for a type A image can be
negative, zero, or positive.

2.3 Non-scalable lossy coding
Figure 1 illustrates the ‘HDR image coding in JPEG 2000’
reported in [20]. At the encoder, the HDR image data
xp is converted into the pixel value xz; by Flt, where Flt
denotes Flt4 in Equation 6 for type A images and Fltp
in Equation 10 for type B images. The logarithmic func-
tion log, is applied to each color component of xf. Note
that pixel values that are less than or equal to zero are
first clipped to the minimum positive pixel value in the
image. In terms of the signal-to-noise ratio (SNR) of the
variances, the effect on the LDR images is almost zero. At
worst, of the nine test images considered in this paper, the
SNR is less than 1072 [%] for a type A ‘still life’ image. The
effect on HDR images is also limited, with an SNR of less
than 10710 [%)] for the same input image.

The pixel values are normalized to the range [0, 255] by

255

Nrm(x) = (*x — minX) - ———
maxX — minX

(11)
for X = {x|x € image}, where minX and maxX are the
minimum and maximum pixel values in the set X, respec-
tively. Because the input values to the encoder must be
integers, the results are rounded to be integers. Namely,
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is fed into the encoder, where Rnd and Clp are the round-
ing and clipping operations, respectively. In the decoder,
the HDR pixel values y;; are recovered from the decoded
image yz with the inverse of each Nrm and log,.

In this paper, we extend this method to the scalable loss-
less coding of HDR images. The tone mapping operator
Tmo described in Section 2.4 is added to this procedure
as ‘part A’ to display color LDR images with better quality.

2.4 Tone mapping operation

We now summarize the tone mapping operator for color
images based on the Hill function [5]. A pixel value of the
HDR image yx, is tone mapped to y; . of the LDR image
as

yLe = Rnd (255yp,c - Y1,y /VH,Y) (13)
for ¢ € {R, G, B}, where
{ YHY = 0~.27_)/H,R +0.67yh,G + 0.06y1,5 (14)
yry =Hill (yuy/Yuy),
and the Hill function is defined as
a
Hills) = —~——. (15)
In (14), Yy y is defined as
Y,y = exp (Ens (log,(yr,v))) » (16)

where Ens(-) denotes the ensemble average over all pos-
itive values of yyy in the image. a and b are user-set
parameters. In our experiments, we use (a, b) = (1,1). We
denote the tone mapping in Equation 13 as

¥, = Rd (CIp’ (Tmo (v)))

where

(17)

Y = [yH,R» JYH,G» yH,B]T
T (18)
YL = [yL,R, JLG» yL,B]

for color components. Because the output values of Tmp
exceed 8-bit integers for color images, we clip the output

xg = Rnd(Nrm(log, (Clp(xx)))) (12)  values to the range [0, 255] with Clp’.
floating point
HDR data HDR image
Xp Xy X3 [Lossy
J Flt | Clog,» Nrm PR Fnc. =
L~ nc. 3
N Yu . Y5 [Lossy| | =
<RI Tmo expf{Nrmf = D Tl =
ecC.
LDR ___________ a““”‘l R] : rounding to integer
[C): clipping to positive value
Figure 1 HDR image coding in JPEG 2000. The logarithmic function is applied and normalized to 8-bit depth before lossy encoding.
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3 Baseline method

The baseline scalable lossless coding method is simply
an extension of the non-scalable lossy coding method.
We now summarize this baseline method, as well as the
problem considered in this paper.

3.1 Scalable lossless coding

Figure 2 illustrates the baseline method, which we use as
a reference in this paper. This is a simple extension of the
non-scalable lossy coding in Figure 1 to the scalable loss-
less coding of HDR images. ‘Part B’ denotes the processes
that have been added.

To achieve the lossless coding of HDR images, X is con-
verted into the integer value x; by the reversible integer
mapping Int detailed in Section 3.2. Note that the inverse
mapping Int~! reconstructs the original value without
any loss. The procedure for generating the LDR images is
almost the same as the method in Figure 1. The bit stream
needed to reconstruct the LDR image is embedded in the
base layer. In the enhancement layer, the integer value y,
is reconstructed from the decoded LDR image yz with the
inverse normalization Nrm™!, the exponential function
exp, and the rounding operation

y; = Rnd (exp (Nrmfl(yg))) . (19)
Finally, the residual
e =Yy; — X/ (20)

is encoded with a lossless coding method to generate the
bit stream in the enhancement layer.

Page 4 of 15

3.2 Reversible integer mapping

The reversible integer mapping Int from the real value xy
to the integer value x; was introduced in [19]. It is defined
as

N s Vi (w22 minXE — 210) if minXg # 0
e = (_l)xs‘cxH,czz4 if minXg =0
(21)

where ¢ € {R, G, B} and Xg = {xg|xg, € image} for type
A images. This is a simple scaling applied to the rational
number xp . in Equation 1 so that it becomes an integer.
In other words, we shift the decimal point to the right.
Note that the minimum minXz of all the pixel values xr in
the image is stored and embedded into the bit stream. We
denote the mapping in Equation 21 as
x; = Inta(xg) (22)
for
T
x; = [x1r, %1,6, %1,8] (23)

Similarly, a mapping for type B images can be defined as

Xl = (2563%2128—“‘1“)%+ - 0.5) 241 (24)
where ¢ € {R,G,B} and X} = {xE,C|xE,C > 0}. Note that
the minimum minX];r of all the positive pixel values xg > 0
in the image is stored and embedded into the bit stream.

We denote this mapping as
x; = Intg(xy) (25)

for type B images.

HDR
XD a4 X o .= X8 [Lossy
> Flt | Int +—Chilog, > Nrm PR— 7
Kl = Enc
.« [Lossless A = Lossy| !
LS o (= <RilexpENrm! = 7€t
PR Enc € Y Yz | Dec. | | .
. 2| |Lossless ~
oy R]: rounding to integer 2
i DA C): clipping to positive value =
| Xp [ Xy X; ¥
: Flit-! Im-l% (+)
' \ part B
YL Yo : Ys |Lossy
<—RKTmo —nt -1 Rijexp€{Nrm-! e [
: eC
LDR AR
Figure 2 The baseline method. The HDR image is reconstructed without any loss.
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Note that the inverse of this mapping recovers the origi-
nal value without any loss. Therefore, the baseline method
becomes lossless for the original HDR image.

3.3 Problem setting

In this paper, we tackle the following limitation of the
baseline method. As a result of the reversible integer map-
ping, the residual e; in Equation 20 requires a very large
bit depth. It is somewhat difficult to compress this data
volume in the high bit rate coding of the LDR image.
This is because e; is a magnified version of the coding
noise eg = yz —xg. In lossy coding, the noise ep is added
in the base layer and is magnified by Nrm~! and exp
as indicated in Equation 19. Because this noise tends to
have a weak correlation, the difference e; also has a weak
correlation. Therefore, the data volume of the enhance-
ment layer becomes huge. Note that the correlation of e;
increases in the low bit rate coding of the LDR image. This
is investigated in Section 6.

To cope with this problem, we previously introduced
the reversible logarithmic mapping (Rev) to reduce the bit
depth of the residual image [19]. However, in this previous
report, we only presented experimental results without
any theoretical endorsement. In this paper, we theoreti-
cally compare Int and Rev in respect of the bit depth of the
residual image in the enhancement layer.
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In addition, Rev has been limited to the type A format,
ignoring type B. In this paper, we show that a simple exten-
sion of Rev to the type B format degrades the LDR images.
To avoid this problem, we introduce a format conversion
(Cnv) from type B to type A in the base layer. We present
a theoretical justification for why the simply extended Rev
degrades the LDR images and Cnv improves its quality for
type B images.

4 Proposed method

The reversible logarithmic mapping (Rev) is introduced to
reduce the data volume of the enhancement layer. In par-
ticular, for type B format images, the format conversion
(Cnv) is introduced to maintain the visual quality of the
LDR images.

4.1 Type | method for type A format images

Figure 3 illustrates the proposed type I method. Instead of
Flt and Int in the baseline method (Figure 2), the reversible
logarithmic mapping Rev defined in Section 4.2 is applied
to the HDR data xp to produce xz. This is converted to an

8-bit depth integer xp as
xg = Rnd(Nrm(Clp(xgr))) (26)

and fed into the lossy encoder, which outputs the bit
stream in the base layer. The reconstructed pixel y; given

HDR
5] XR — _X5|Lossy
2 Rev g CH Nrm PR =
i Enc.
=~ |Lossless €r . YR Yz |Lossy
S < (- RINrm-! = Tl
g Enc. Dec. -
£ | [Lossless =
= R): rounding to integer =
= Dec. Q) clippingt o 3
L v | C): clipping to positive value =l
X ] X
D R
«— Rev-l k W+ )
v . v Vs [Loss
JL . JR JB 0SSy
<R} Cmp F RINrm e Dec. |
_ eC
LDR
' A ™\
Yo Yu Yp Yr
<R} Tmo }- ‘ Flt —( Rev-l &——
Figure 3 The proposed type | method. The bit depth of the residual e is reduced by the reversible logarithmic mapping Rev.
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by the decoder is inversely normalized and rounded to an
integer as

yr = Rnd (Nrm_l (yB)) . (27)
Then, the difference
€Rr = XR —VYr (28)

is encoded with the lossless encoder to generate the bit
stream in the enhancement layer. In the decoder, y; is
added to eg to recover xg. Applying the inverse of Rev,
the original HDR data xp are retrieved without any loss.
Namely, they are recovered as

xp = Rev!(eg + yg). (29)

The LDR image y; is reconstructed from the decoded
image yz in a similar way to the baseline method with a
compensation factor (Cmp). This recovers the HDR pixel
value y, and then applies the tone mapping operation
Tmo as

¥, = Rnd (Tmo (Elt (Rev" (yz))))
= Rnd (Cmp (yg)) -

It is also possible to display yz as an LDR image with-
out using Cmp. In this case, yg in the proposed method
is almost the same as that of the baseline method as illus-
trated in Figure 4. There are two approaches that use the
Hill function in Equation 15 to generate the LDR image
y; exampled in Figure 5. The first introduces Cmp in the
encoding process, and the second introduces Cmp in the
decoding process. The former case is convenient for data
receivers, because it is not necessary to add Cmp to a stan-
dard decoder. However, this increases the data volume of
the enhancement layer. In this paper, we employ the latter
approach.

(30)

4.2 Reversible logarithmic mapping
In the proposed type I method illustrated in Figure 3, the
reversible logarithmic mapping is applied to generate the
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integer value xg. This technique was originally introduced
in [22]. The mapping for type A images is defined as

xRe = (=1 ((xg,e — minXg) 2'° + xa1,c) (31)
for ¢ € {R, G, B}. We denote this mapping as

Xg = Reva(xp) (32)
for

Xg = [*RR, RG> xR,B]T (33)

This mapping approximates the logarithm of an HDR
image xp. Substituting xg . from Equation 1, i.e.,

xEc = logy xpc — logy (1 +27%xy) + 15, (34)
for positive values in Equation 31, we have
xre = (logy xp,c + 15 — min Xg — €4) 2'° (35)
where
ea =log, (270xp1c + 1) — 2710,
= log, 5;\5_4/;1 (36)

ford4 = 2_10xM,C. As indicated in Equation 35, Rev4 gen-
erates a good approximation of the logarithm of the HDR
image [23,24]. The approximation error is relatively small,
as €4 fluctuates around 0.06 depending on the mantissa.
Therefore, Nrm (xg) becomes close to xp in Equation 12.
This is encoded with a standard lossy encoder to generate
the bit stream in the base layer.

The reversible logarithmic mapping is suitable for loss-
less scalable coding because it one-to-one maps an integer
to an integer. Therefore, its inverse mapping reconstructs
the original integer values without any loss, i.e., Rev is
‘reversible’. This property also reduces the dynamic range
of the mapped integer values. We have experimentally
confirmed [21] that the residual in the enhancement layer
er has a lower bit depth than that of e; in the base-
line method. We provide the theoretical basis for this
observation in Section 5.1.

: 5’4 N
yp : baseline method

A

Figure 4 Images decoded in the base layer.

54 i
y; : proposed method

]
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_ N
x; 'Cannon'

Figure 5 LDR images tone mapped with the Hill function.

4.3 Type | method for type B format images

For type A images, Revy4 in Equation 32 is applied in
Figure 3. For type B images, a direct extension of Rev4 can
be defined as

XRe = { gz’ozg et ii ;ﬁg i 8 37)
for ¢ € {R, G, B} and

&} = xgo — minX;} + 1. (38)
We denote this mapping as

xg = Revp (xp), (39)

and apply this to type B images in the type I method.
Note that the depth of xg from Revp is a maximum of 16
bits for each color component. Therefore, it costs 48 bits
for all the color components, which exceeds the original
32-bit data. However, using the reversible color transform

(RCT) in JPEG 2000 lossless coding reduces the cost by 16
bits. The RCT is defined as

x1 = | (xr + 2xG + xB) /4]
Xy = XB — %G
X3 = XR — XG

(40)

Because the second and third row of this RCT take the dif-
ference between the color components, the exponent term
¥t in Equation 37 disappears. As a result, the bit depth
becomes 48— 16 = 32 bits in total. Furthermore, the expo-
nent term is less than 5 bits in the type B images tested
in our experiment. Therefore, in practice, the system can
compress the data volume.

In this paper, we show that the quality of LDR images is
degraded in this directly extended Revg for type B images.
Figure 6 shows some LDR images produced by the pro-
posed type I and type II methods. The former has lower
quality than the latter, with a peak SNR (PSNR) of 20.79
dB compared with 29.08 dB at the same bit rate of 5.23
bppc in the base layer. The reason for this is analyzed

typel

tpe II

Figure 6 LDR images given by the proposed type | and type Il methods. The LDR image from the type | method is degraded in type B format.
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in Section 5.2. To solve this problem, we introduce the
following format conversion.

4.4 Type ll method for type B format images

Figure 7 illustrates the modified method for type B images.
We refer to this as the type II method. The type II
approach includes the format conversion (Cnv). First,
Revp converts the HDR data xp into type B xg. In the
figure, this is denoted as xEQB) to clearly indicate the
type. The conversion introduced in this paper is defined
as

Cnv(x) = Revy (Flt;1 (Fltg (Revgl(x))»
emap (<)

as illustrated in Figure 8. In the proposed type II method,

xs = Rnd (Nrm (Cnv (CIP ("%B)»))

is encoded with the lossy encoder.

As a result of this conversion, the type B image is tem-
porarily converted into a type A image in the base layer.
Therefore, the problem caused by Revp can be avoided,
and the quality of the LDR image is improved compared to
that given by applying the type I method to type B images.
This assertion is theoretically endorsed in Section 5.2.
This conversion is reversible as far as a large enough bit

(41)

(42)
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depth is assigned to values inside the process. However,
reversion is not always necessary, as the system becomes
lossless for HDR images in as much as the y, are exactly
the same in the encoder and the decoder, even though Cnv
is not perfectly reversible.

5 Theoretical analysis

We now present a theoretical analysis of why the proposed
method reduces the bit depth of the enhancement layer.
The rationale for introducing the format conversion is also
explained.

5.1 Bit depth of the enhancement layer
We estimate the bit depth of the residual e; in the baseline
method and er in the proposed method and theoretically
demonstrate that the bit depth of the proposed method is
smaller than that of the baseline method.

The bit depth of pixel values in an image x is defined as

Bgy (x) = log, (maxX — minX + 1), (43)

where maxX and minX denote the maximum and min-
imum pixel values in the image. We must calculate the
maximum of e; in the baseline method to estimate its bit
depth. In Figure 2, the relations

{ xg = Rnd (Nrm (log, Clp (x)))

44
y; = Rnd (exp(Nrmfl(YB))) e

HDR
) _(B) (4) . —
Xp o | XRr - Xz —XB |Lossy
— Revg €k Cnv 3 Nrm PR i
Enc. |
=~ |Lossless| €z *“ . [. Yz|Lossy
S <= < RKCnv - 1=—Nrm1k o2
g Enc. ; Dec. .
£ | [Lossless B ~
o R]: rounding to integer &
o Dec. = cli N S
| = | (C): clipping to positive value )
«<— Revg! F——+)
i
(B) (A) e
 f - Yr - Yr Yz [Lossy|
<Rl Cmp —RKCnv"! Nrm-![s Dee: |
: ec.
LDR - S—
"
A
r \
. i : A(B)
YL Y Yo Yr
<R}« Tmo <—{ Fltg H Revgl e—
Figure 7 The proposed type Il method. Cnv converts type B to type A in the base layer.
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_(B) (A) (B)

_(A)

Xp X} Xp
- Cnv— =

—-“-‘El—?’RevB'l}—i’ Fltg >Flt, 1 Rev, }—‘

XR

(B) (A) (B)
YR _ Y& Y
<ReCnvie— =

JR __ JR
< Revg [{Flty 1| Flt, [Rev, 1<

Figure 8 The format conversion Cnv in the proposed type Il method.

(A)
Vv

are modeled as
{ Xg = Nrm(logi)lq) +e1 (45)
y; = exp(Nrm™ " (yp)) + e2

for positive values of x;, where ej,eo €[—0.5,0.5] are
rounding errors due to Rnd in Equation 44. Therefore, the
maximum of

€I =Y — X/

= exp (Nrm_1 (yB)) — X7+ e

= exp (Nrm_1 (xg + eB)) —x7+ e (46)
= exp (Nrm ™! (Nrm (log, x;)
+ eg+e1)) —xi+e
is estimated as
maxE; = maxEp - maxX; - C/255 (47)
for
C = log,(maxXj) — log, (minXIJr) , (48)
as detailed in Appendix A. Substituting
minE; = —maxFE; (49)

and Equation 47 into Equation 43, the bit depth of e; is
estimated as

By, (ey) =log,(2- maxE; + 1)

~ log,(maxEp - maxX; - C/255) + 1, (50)

giving the bit depth of the residual of the baseline method.
Similarly, using the model

xp = Nrm’(xg) + €]
_ —1 / (51)
Yz = Nrm'™"(yp) + €,
in the proposed method, the maximum of
€R =Yr — XR
=Nrm'~! (xp + ep) — xg + &)
= Nrm' ™! (Nrm’(xg) + eg + ¢€})

—Xg + €

(52)

is given as
maxEr = maxEp - maxXg/255,
as shown in Appendix B. Substituting

minEp = —maxEp.

and Equation 53 into Equation 43, the bit depth of eg can
be estimated as

By, (er) =log,(2 - maxEg + 1)

~ log, (maxEp - maxXg) /255) + 1, (55)

giving the bit depth of the residual of the proposed
method.

We can now compare e; and e in terms of bit depth.
The error in the base layer ep is composed of errors due to
the rounding before applying the lossy encoder, as well as
quantization errors added by the lossy coding. Therefore,
the maximum and minimum of

ep =Yg — X3 (56)

are
maxEp = —minEp = Q, (57)

where Q is determined by the quantization step size of
the lossy coding in the base layer. Taking the difference
between Equation 50 and Equation 55, we have

ABgy = Bgy (e1) — By (er)

= log, (maxEp - maxX7/255 - C) (58)
— log, (maxEp - maxXg/255),
and therefore
maxX; - C
ABy, =log, —— 59
dp 08, maxXz (59)

is the difference in bit depth. From Equations 1, 21, and
31, the maxima of x; and xp are expressed as

_ (sC* _ 10 o, 9C* . 910
maxX; = (2 1) 210 2C* o )
maxXg = C* - 210
for
C* = maxXg — minXg + y, (61)

where y €[0,1) is determined according to the mantissa

€ [O, 210). Substituting Equation 60 into Equation 59, we
have the difference as
c* .

ABg, = log, = > 0, (62)

which is always a positive value. This indicates that the bit

depth of the proposed method is smaller than that of the
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baseline method. Thus, we have theoretically shown that
the proposed method achieves bit-depth reduction in the
enhancement layer.

5.2 Difference between type | and type Il for type B format
Next, we show that the format conversion introduced in
Section 4.4 alleviates the degradation of LDR images in the
base layer. The output LDR image y; is tone mapped from
the decoded HDR image yp;, which is generated from y, in
the proposed method. Therefore, we analyze the relation
between y;; and y for the type I and type II methods.

As illustrated in Figure 3, the proposed type I method
produces y; as

yu = Fltg (REVE ! (YR)) :

for type B images. For example, the exponent of the type
B image data becomes

X0 = (*re — %M — 1) /256

from the inverse of Equation 37. Substituting this equation
into Equation 8, we have

(63)

(64)

. +_
Xm0 = fla (R e) - fio (Xare) - 2MKE 127, (65)
where
Sia(xre) = exp(are - 278log, 2),
Fioiae) = 220 €[0.002,0.499],

253+278

8p = He£ €[0,1).

This is the relation between xy and xz and includes a
function f7, that is proportional to the exponent of xz.
However, note that this is chopped by the function fj,.
This is confirmed by Figure 9, which indicates the rela-
tion between xp and xy for the type B ‘tree’ image. Note
that xp is a scaled version of xg. The points ‘0" indicate

15
pe i 2
70
N | ) | "o
10
i
4
[
i
150 200 250
Ap
Figure 9 Mapping in the systems for the type B image ‘tree’.
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where the mapping given by the type I method becomes
discontinuous.

In contrast, the proposed type II method in Figure 7
produces y;; as

=t (s (s o 4)))
’ ~ Flta (Revil (,/ém)) ‘ (66)

neglecting the effect of Rnd. This means that the image is
converted to type A in the base layer. Therefore, taking the
inverse of Equation 35, we have

Xt = fila(re) - fitp (ar,e) - 27NETS, (67)
where
fita(xre) = exp(arc-271%log,2),
S (eme) = %5H €[1,1.06),

84 = o5q €10, 1).

Similar to the type I method, the function fj, is propor-
tional to the exponent of xz. Note that the function fj, is
close to one. Therefore, unlike the type I method, the type
II method gives an HDR image xpy that is approximately
proportional to the exponent of xz. This is confirmed by
the points marked X’ in Figure 9.

Next, we investigate how the mappings in Equations 65
and 67 magnify the quantization error eg. Denoting the
mapping as Xy = f(xp), the error is magnified as

Yu — X = f(xg +ep) — f(xp) (68)
0
~ f (xB) es. (69)
JXp
Figure 10 illustrates the absolute value of
af (xp) Y XH _ Axy (70)
0Xg Yz — XB AXp

for the type I method (marked ‘0’) and the type II method
(marked X’). In the figure, a larger value signifies greater

*typell

e type |

jump
point

S A |

|JIH/'{£1IB|

150 200 250
Ap

Figure 10 Magnification of coding errors in the systems for the

type B image ‘tree’.
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amplification of the error. We can see that the type I
method has larger values, especially at the jump points of
Figure 10 which come from the discontinuous points of
Figure 9. This implies that the degradation in LDR image
quality produced by the type I method is alleviated by
the type II method, which uses the format conversion in
Section 4.4.

6 Experiments

We now describe a series of experiments that tested nine
HDR images, including five type A images and four type B
images. For the lossy coding in the base layer and the loss-
less coding in the enhancement layer, we used the JPEG
2000 international standard [1] in lossy mode and lossless
mode, respectively.

6.1 Base layer

We compared the coding performance in the base layer
of the baseline method and the proposed method. In this
section, the proposed method denotes the type I pro-
cedure in Figure 3 for type A images and the type II
procedure in Figure 7 for type B images. Figure 11 com-
pares the baseline and proposed methods for the type A
‘cannon’ image. The horizontal axis records the data vol-
ume of the base layer in bits per pixel per color component
(bppc). The vertical axis indicates the LDR image quality
in terms of PSNR, which is defined by

2552

——  [dB
Ens ((y, — x1)?) 145)

PSNR = 10log,, (71)

for

x, = Rnd (Clp’ (Tmo(xx))) , (72)

where Ens(-) denotes the ensemble average over all pix-
els in the image. The results indicate that the proposed
method is slightly worse (by 0.46 dB at 3.1 bpp) than

un

LN

(¥,

PSNR of LDR [dE]

0 1 2
bit rate (base layer) [bppc]

Figure 11 Coding performance in the base layer for type A
image ‘cannon’.
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Figure 12 Coding performance in the base layer for type B
image ‘Belgium’.

the baseline approach. Figure 12 indicates the rate distor-
tion curves for the type B ‘Belgium’ image. The results
are very similar to those for ‘cannon’. The ‘tree’ image
was investigated in different formats. Figures 13 and 14
indicate the curves for this image in type A and type B for-
mats, respectively. Figure 15 summarizes the PSNR at 1.5
bppc in the base layer. This indicates that the proposed
method is slightly better than the baseline technique. It
can be concluded that the proposed method is compara-
ble to or slightly better than the baseline method. This
is considered to be because of the similarity of xg in the
baseline method and the proposed method. Both quan-
tities represent the logarithm of the original HDR image
XH.

6.2 Enhancement layer

Figure 16 compares the output from the proposed and
baseline methods for the type A ‘cannon’ image. The
horizontal axis indicates the PSNR of the reconstructed

. I |

— 3K

e -

— 30
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o
i =

o %

,% —— DI Oposee

va 70
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ll_ s s L

1 2 3 1
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Figure 13 Coding performance in the base layer for type A
image ‘tree’.
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Figure 14 Coding performance in the base layer for type B
image ‘tree’.
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Figure 16 Bit rate of the enhancement layer for type A image
‘cannon’.

LDR images, and the vertical axis indicates the bit rate
of the bit stream in the enhancement layer. Note that,
because the decoded HDR images are lossless, the PSNR
is infinite. This figure indicates that the proposed method
reduces the bit rate by more than 3.4 bppc for this image.
As indicated in the figure, the bit rate in the enhance-
ment layer decreases as the PSNR increases. However,
the bit rate in the base layer increases with PSNR, which
means that there is a trade-off in the bit rate in these
layers.

Figure 17 shows the results for the type B ‘Belgium’
image. We can observe that the bit rate decreases by 8.03
bppc at 35 dB LDR image quality. Unlike the case in
Figure 16, the bit rate increases with the PSNR. This is
because the correlation among neighboring pixels in e;
increases in low PSNR (low bit rate) coding of the LDR
image as indicated in Figure 18. For this input image,
the correlation is observed to be 0.14 at a PSNR of 36.9
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Figure 15 Image quality of LDR images for various images at 1.5
bppc enhancement layer bit stream.

dB. The correlation monotonically increases as PSNR
decreases, reaching 0.80 at 18.8 dB. Because ey is encoded
with a transform that uses this correlation, a higher cor-
relation serves to lower the bit rate. This is why the curve
of the baseline method in the figure increases monoton-
ically. The bit depth of the enhancement layer decreases
monotonically from 26.7 bits at a PSNR of 18.8 dB to 24.1
bits at 36.9 dB as indicated in Figure 19. Furthermore,
the logarithm of the variance of e; is also monotonically
decreasing as indicated in Figure 20.

The ‘tree’ image was again investigated in different for-
mats. Figures 21 and 22 show the bit rate for the type A
and type B image formats, respectively. We can see that
better PSNR in the LDR images brings about a lower bit
rate in the enhancement layer. This suggests that a higher
data volume in the base layer will lead to a lower vol-
ume in the enhancement layer. Figure 23 summarizes the
bit rate at 35 dB LDR image quality. This figure indicates
that the proposed method reduces the data volume of type

16
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; = & =Dbazecline
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bit rate (enh. layer) [bppe]

15 A1) 5 1 35 10

PSHNE of base layer [dB]

Figure 17 Bit rate of the enhancement layer for type B image
‘Belgium’.
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orrelation

L

14 16 18 20 22 24 26 28 30 32 34 36 38
FSNE of base layer [dE]
Figure 18 Correlation of the difference for type B image
‘Belgium’.

A images by a minimum of 3.82 bppc (for the ‘cannon’
image) and by a maximum of 8.82 bppc (for ‘still life’).
For type B images, the data volume is reduced by a min-
imum of 7.8 bppc for ‘desk’. It was confirmed that the
proposed method significantly reduces the data volume of
the enhancement layer for both type A and type B format
images.

7 Conclusions

In this paper, we have presented a bit-depth scalable loss-
less coding for HDR images in floating-point data formats.
Unlike most conventional scalable coding methods, the
proposed method reconstructs the original HDR image
without any loss. Introducing a reversible logarithmic
mapping and format conversion technique, it was con-
firmed that the proposed method reduces the bit depth
as well as the bit rate in the enhancement layer. It was
also confirmed that the proposed method maintains the
LDR image quality and coding performance of the base-
line method in the base layer for both the OpenEXR and
RGBE formats.

B s DTN
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- & =haseline

bit depth (enh. layer) [bif]
[
n

= 1 1 1 1 1 1 L 1 L 1 1

202224 2628303234 36 38
ANE of base layer [dB]

Figure 19 Bit depth of the difference for type B image ‘Belgium’.
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ANE of base layer [dB]
Figure 20 Log of variance of the difference for type B image
‘Belgium’.

As our investigation has been limited to a difference-
based approach, it is necessary to include ratio-based
approaches, such as [8].

Appendix A

Substituting
Nrm™1 (xg) =xp - C/255 4+ C;
C=0C-C

C1 = log, (minX]L) , Cy = log, (maxXj)
into
e; = exp (Nrm*1 (Nrm (log, x;)
+ egte1)) —x; +ey,
we have

e;=expx+e€)—x7+e

where
x =log, xj,
€ = (ep+ep) - C/255.
Ly | lll:l
2 16
g |- A
=12
B
.ﬁ. l-.l _._._H\
g4 0
2z b
= 4 —&@— proposec
= 2 - & =haseline
AL ._I| i i i i i
15 20 25 20 35 1a
PENR of base layer [dB]
Figure 21 Bit rate of the enhancement layer for type A image
‘tree’.
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Figure 22 Bit rate of the enhancement layer for type B image

‘tree’.

When x takes its maximum value, € < x holds. For exam-
ple, the value of €/x for all images tested in this paper is
less than 10~%. In this case,

e; = exp(x+¢€)—x;+e
~ Wé +exp(x) —x7 + e
holds. Therefore, we have
e; = exp(x)e + exp(x) — X7+ e2
= exp (loge x1) (eg+e1) - C/255
+ exp (log, x;) — x; + €2
=x7(eg+e1) - C/255+x7 —x7+ €3
=x7(eg+e1)-C/255+ e

namely,

maxE; = maxX; (maxEg + e1) - C/255 + es.
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Figure 23 Bit rate of the enhancement layer for various images
at 35 dB LDR image quality.
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According to our experiments, max£E is 7.23 x 103 in ‘can-
non’ at minimum. Therefore e, is negligible compared to
maxE; since the maximum of ey is 0.5. Similarly, maxEp
takes value between 3 and approximately 2 depending on
the bit rate of the base layer. Therefore, e; is negligible in
low bit rate compared to maxEp and we have

maxE; = maxX; - maxEp - C/255.

Note that precision of this estimation slightly decreases in
high bit rate coding in which maxEp takes small value such
as 3.

Appendix B
Substituting
Nrm' ™! (xp) = x5 - C'/255 + C}
Nrm'’(xg) = (xg — C}) - 255/C’
C=C,—-C;
1 = minXg, C; = maxXg
into

er = Nrm'~! (Nrm'(x) + ep + €}) — xg + €},

we have
er = Nrm' ™! ((xg — C1) - 255/C' + e +€})
— Xg + €,
=xgp— C] + (eg+¢}) - C'/255+ C}
— XR + 6/2,

= (ep+¢}) - C'/255 + ).

According to our experiments, maxEp is 94 in ‘cannon’
at minimum. Therefore e/, €[—0.5,0.5] is negligible com-
pared to maxEg. Similarly to Appendix A, e; is negligible
compared to maxEp. As a result, we have

maxEgr = maxEp - maxXp/255.
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