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Anchoring a halogenated amine on the surface of a microporous activated carbon
for carbon dioxide capture
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A B S T R A C T

Activated carbon (AC) surface may be modified by grafting amine-containing compounds to improve the

CO2 adsorption capacity. Two solid sorbents were prepared by anchoring a halogenated amine, i.e., 2-

chloroethylamine hydrochloric acid (CEA) on the surface of a microporous AC using a two-stage

modification. At the first stage, the samples of AC were oxidized by nitric acid to increase the amount of

oxygen surface groups and at the second stage, the oxidized samples were modified by anchoring CEA on

the surface to produce a superior CO2 adsorbent. The oxidized samples were compared with the aid of

proximate and ultimate analysis, nitrogen adsorption–desorption at �196 8C (77 K) and temperature

programmed desorption (TPD) to decide on the best oxidation conditions. The amine-modified samples

were analyzed in terms of texture, surface chemistry and CO2 adsorption. The latter was studied using

isothermal CO2 capture, temperature-programmed (TP) CO2 adsorption and cyclic operation. The

modified samples had a lower surface area than the parent sample. The best modified sample presented

an increase of 45% in CO2 capture capacity at 100 8C. Based on unit surface area, the modified samples

showed great CO2 capture capacities, compared to the virgin sample. Moreover, the modified samples

presented a less dependency of CO2 capacity on temperature. This indicates that the adsorption

mechanism shifts from physisorption to chemisorption by increasing temperature.

� 2013 Taiwan Institute of Chemical Engineers. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Climate change and global warming as a concern of this century
is led by emission of greenhouse gases such as carbon dioxide,
methane, chlorofluorocarbons (CFCs), ozone and nitrous oxide into
the atmosphere [1,2].

Greenhouse effects of chlorofluorocarbons and methane are
much higher than carbon dioxide when they are compared in mass
unit [2]. However, CO2 is by far the most important contributor to
the global warming due to its high emitted amount by using fossil
fuels, which supply around 98% of energy requirement worldwide
[3]. According to IPCC, global average of anthropogenic CO2

emission in the last decade of twentieth century was around
27 � 109 metric tons per year [4].

Growth in demand for energy in 21st century with the
consideration of the point that fossil fuel is still the major source
of energy caused a great attraction toward developing solutions to
mitigate anthropogenic CO2 emission.
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Three general strategies can be thought to cut down the
released amount of CO2 [2]. The first one is increasing energy
efficiency, which decreases ‘‘energy intensity’’. The second is using
energy sources other than fossil fuels to decrease ‘‘carbon
intensity’’ and the last one is capture and sequestration of CO2

(CCS).
CCS can be considered as a short- or mid-term, but not long-

term, solution to the global warming problem, while new sources
of energy such as nuclear, solar and biomass, are matured and
developed enough to replace fossil fuels safely and economically
[5,6]. Different approaches are currently being developed for both
stages of CCS. For sequestration of CO2, a variety of geoengineering
technologies including storage in terrestrial ecosystems, geological
formation (e.g. emptied fields of oil and gas and deep saline
formations) and deep ocean are possible [7,8]. CO2 capture is the
first and most consuming stage of CCS [2]. It takes approximately
70–80% of CCS total cost [8].

Several methods including absorption (amine scrubbing),
adsorption, cryogenic distillation and membrane separation are
under use and progressive development for CO2 capture [6,9,10].
Of these ways, absorption by different amine solutions has been
higher developed compared with other methods and so is the most
conventional one. However, it has several drawbacks such as being
energy sensitive (due to high energy requirement for regeneration
step), corrosion, solvent degradation (causing restricted lifetime),
hed by Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.jtice.2013.01.014
mailto:amir.hshmnd@gmail.com
mailto:ms.shafeeyan@gmail.com
mailto:arash.araminiya@gmail.com
mailto:ashri@um.edu.my
http://www.sciencedirect.com/science/journal/18761070
http://dx.doi.org/10.1016/j.jtice.2013.01.014


A. Houshmand et al. / Journal of the Taiwan Institute of Chemical Engineers 44 (2013) 774–779 775
solvent loss (due to amine volatility), side-reaction of solvent with
NOx and SOx (that produces stable by-products) and limited amine
concentration in the aqueous phase due to viscosity and foaming
effect [8,11–18].

CO2 capture is not limited to postcombustion (flue gas)
application, which is resulted from global warming concerns.
Other applications are in natural gas processing, syngas purifica-
tion for hydrogen production (where PSA has already been
established), fuel cell industries and CO2 removal from closed
spaces of submarines and space shuttles [11,17,18].

Due to versatile advantages of adsorption, usage of solid
sorbents has been appeared as one of the promising options for CO2

capture. Adsorption requires lower energy, compared to absorp-
tion by amine solutions [6]. Development of adsorbents for CO2

capture is greatly paid attention in these years by modifying them
using a variety of methods. In order to decrease the cost of CO2

capture by adsorption (for instance in a pressure swing adsorption
process) and make the process of adsorption successful and
competitive, it is necessary to develop adsorbents with high
capture capacity (particularly in moderate temperature for flue gas
application), high desorption rate and high selectivity [3,18].

Adsorption capacity of an adsorbate like CO2 is determined by
surface area, pore size, adsorbent surface chemistry, temperature
and partial pressure/concentration of the adsorbate [6,7]. Adsor-
bent surface area presents nonspecific interaction between
adsorbent and adsorbate, and surface chemistry determines
specific interaction. In the absence of specific interaction (i.e. in
physical adsorption), pore size and volume are important, so
microporous adsorbents are suitable for capture of low-molecular
weight gases [19]. In the case of physical adsorption, pore size of
the adsorbent determines the adsorption potential energy and so
affects some of adsorption characteristics such as regeneration
energy requirements and regeneration temperature. As a compar-
ison of the roles of texture and surface chemistry of the activated
carbon in the adsorption capacity, we can say that the former
governs the capacity, but the latter influences it strongly [5].
Thermodynamic of adsorption, i.e. equilibrium isotherm is the first
item that has to be considered for adsorbent selection and kinetic
of adsorption is the second important factor [20].

There are a variety of porous materials such as zeolite,
polymers, silica and activated carbon (AC) that can be regarded
as CO2 adsorbents. Compared with the other adsorbents, AC is
cheap, stable against heat, radiation and alkaline and acidic
solution [21,22]. It does not show too much shrinkage or swelling
by pH change.

AC is a suitable adsorbent for CO2 capture from a wet gas
streams, whereas other adsorbents such as zeolite need a
dehumidification (pre-drying) process of gas stream as a
preliminary step, due to water adsorption on zeolite that inhibit
CO2 adsorption [6,17,20]. Dehumidification process consumes
about 30% of total energy [9,23] in a common PSA or TSA
(temperature swing adsorption) process. Zeolites usually are
low-efficient and high-cost in regeneration because of their small
pore systems [24,25] with a regeneration temperature 300 8C and
above [17,20], whereas AC regeneration is carried out at lower
temperatures. AC has a lower adsorption heat compared to
zeolite [6].

One important problem associated with common solid
adsorbents it that CO2 adsorption capacity of these adsorbents
drops dramatically with increasing temperature [7]. Temperature
increase molecular diffusivity and surface adsorption energy [7].
Flue gas, as a main application of CO2 capture, has a temperature
between 50 and 120 8C. For CO2 adsorption from flue gas, either the
flue gas needs to cool before CO2 capture or an adsorbent needs to
operate efficiently at the temperature of flue gas with high
selectivity and high adsorption capacity [18,19,26].
Inherent nature of precursors and activation procedures
determine the characteristics of AC. This fact that chemistry of
the surface can be easily tailored by incorporation of the desired
functional groups is an interesting advantage for AC. According to
prior studies on AC, enhanced CO2 adsorption capacity (at ambient
and/or elevated temperature) may be achieved by introducing
nitrogen functionalities onto AC surface (and so increasing AC
surface basicity): Introduction of nitrogen surface groups has been
experienced by ammonia treatment [7,10,27–30], impregnation
with amine containing compounds [6,7,26] or grafting amine
groups [8]. It is well known that amine functional groups have a
good affinity toward CO2 through forming complex [9,31–34]. The
authors have reviewed the potential methods for grafting amino
groups on the surface of AC [35]. These methods include nitration
followed by reduction, silylation with aminosilane, amination,
grafting diamines and polyamines, grafting halogenated amines
and so on. It can be seen from the indicated review paper that
grafting halogenated amines is one of the possible methods for
anchoring amino groups on AC surface, so it was considered as a
part of authors’ research.

In the present work, a halogenated amine, 2-chloroethylamine
hydrochloric acid (CEA) was grafted on the surface of an oxidized
AC and the characteristics of the new adsorbents were studied by
different methods. The stage of oxidation was also examined in
terms of AC textural and chemical characteristics.

2. Materials and methods

2.1. Materials

Two types of a microporous palm shell AC produced by Bravo
Green Sdn Bhd, Malaysia were the initial materials chosen for
modification. As-received ACs were sieved to the size range of 500–
850 micron (mm) and washed with distilled water to remove fines.
They then were dried in an oven at 110 8C overnight and kept in
closed bottles for experiment (referred to as A1 and A2). A1 was the
main starting material for modification. Moreover, a few experi-
ments were conducted using A2. Fisher Scientific, Malaysia
supplied the chemicals including reagent-grade nitric acid,
analytical-grade toluene, and CEA.

2.2. Modification of AC

AC samples were subjected to a two-stage modification. At the
first stage, they were oxidized by nitric acid to increases the
density of different types of oxygen surface groups and then, at the
second stage, two amine-enriched samples were obtained by
grafting CEA on the surface of the oxidized samples. Oxidation
increases the density of different types of oxygen surface groups.
Some types of these groups act as coupling or linking agent for
grafting other functionalities. In the case of halogenated amines,
OH bond of Carboxylic group and also phenolic and alcoholic OH
groups created or increased on AC surface may react with that to
anchor amine groups on surface [35].

Due to importance of the density of specific oxygen groups for
amine grafting, oxidation conditions were investigated to achieve
the best oxidized sample for amine anchoring.

The utilized oxidation setup comprised of a round bottom flask
put in a heating mantle and connected to a condenser. All oxidation
experiments with this setup were performed at boiling tempera-
ture of the acid solution.

Table 1 shows conditions of the oxidation experiments. It
should be noted that AC sample weight and volume of acid solution
were constant through all oxidations.

At the second stage of modification, two amine modified
samples CEA1 and CEA2 were prepared by grafting CEA on the



Table 1
Conditions of the oxidation experiments.

Sample Parent Nitric acid concentration Time (h)

OX4 A1 8N 2.17

OX5 A2 8N 2.17

OX6 A1 8N 6

OX7 A1 Concentrated 2

OX8 A1 Concentrated 6

OX9 A1 Concentrated 8

Fig. 1. TPD spectra of virgin and oxidized AC samples.
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selected oxidized sample (OX4): A known amount of OX4 was put
in an Erlenmeyer flask and 200 ml of 1 M NaOH solution was added
and mixed for 24 h. Then it was washed and dried in an oven
overnight. The prepared Na-form sample was divided into two
equal parts. Both parts were treated with a 1 M solution of CEA, one
part using the shaker for 24 h (CEA1) and the other part in the
abovementioned oxidation setup (CEA2).

2.3. Characterization methods

N2 adsorption–desorption isotherms were measured by Ther-
moFinngan Sorptomatic 1990 Series analyzer to determine
textural characteristics of the samples. Prior to the measurements,
the samples were outgassed at 120 8C and under vacuum.
Adsorption data of the relative pressure (P/P0) less than 0.3 was
used to calculate BET surface area (SBET). Total pore volume (Vt) was
calculated based on the nitrogen adsorbed volume at the relative
pressure of 0.995.

Temperature-Programmed Desorption (TPD) spectra of the
oxidized samples were obtained using a Chemisorb 2720
(Micromeritics) by a method as follows: The samples were
exposed to a pure stream of helium with the flow rate of 25 ml/
min in the U-shaped tubular reactor of the instrument. After the
samples were purged adequately, temperature was increased
from ambient up to 1000 8C under the same helium stream with a
heating rate of 10 8C/min. The difference between thermocon-
ductivities of the carrier gas and the desorbed gases was
displayed and recorded by the Thermo Conductivity Detector
(TCD) as TCD signal. Proximate analysis was carried out with the
aid of TGA to determine the amount of ash, fixed carbon and
volatile matter. Ultimate analysis was performed using a 2400
Series II CHNS/O elemental analyzer, Perkin Elmer to evaluate the
nitrogen content.

2.4. CO2 capture measurements

The amine modified samples were subjected to CO2 capture
measurements including isothermal CO2 uptake profile and
temperature programmed (TP) CO2 adsorption and cyclic opera-
tion with the aid of TGA/SDTA851 Ultramicro Balance, Mettler-
Toledo. For isothermal uptake experiments, the samples were first
outgassed from preabsorbed CO2 and water at 120 8C for 1 h in
50 ml/min nitrogen atmosphere and were allowed to become cool
to 30 8C, which was the desired temperature for isothermal test. At
that moment, the gas was switched to pure CO2 of 50 ml/min for
1 h to achieve a complete saturation.

In order to perform cyclic operation tests, a procedure similar to
isothermal uptake experiment was repeated three times and
considered as three consecutive regenerations, and the samples
capacities were compared with the first saturation (isothermal
uptake).

For TP CO2 adsorption tests, after the first saturation, the
temperature was increased with a ramp rate of 1 8C/min from 30 8C
to 120 8C to obtain CO2 temperature dependence of CO2 adsorption
capacity.
3. Results and discussion

3.1. Oxidation

It is well known that oxidation parameters affect texture and
chemistry of the oxidized AC. Therefore, at the first step of this
work and to evaluate the influence of oxidation parameters on the
AC structure and chemistry in a practical manner, a series of
oxidation experiments were conducted.

TPD was employed as a simple technique with reproducible
results to compare the amount of surface functional groups created
on the surface of AC samples. These surface groups are essentially
oxygen-containing ones, because the parent samples have
negligible amounts of heteroatoms except for oxygen and it is
fully accepted that oxidation principally creates oxygen groups (as
will be indicated later in this section using the results of ultimate
analysis). Fig. 1 shows TPD spectra of the untreated and treated
samples, which have been normalized for the weight of the
samples. The area below the curves of spectra can be interpreted as
an index presenting the amount of oxygen surface groups. This
index has been shown in Table 2 for the oxidized and parent
samples.

It is observed from Fig. 1 that in all the oxidized samples, the
amount of surface oxygen groups has been increased in compari-
son with the parent samples A1 and A2. In spite of the difference in
the oxidation time of the samples OX4 and OX6, Fig. 1 shows no
significant difference in the density of their oxygen groups. This
confirms that there is a limitation to the total amount of oxygen
groups that can be created on the surface of AC. In other words,
active sites on the surface of AC have a limited number. In fact,
2.17 h that is selected time for OX4 is the time at which the
evolution of brownish NO2 gas (which had been started from the
beginning of the oxidation) is almost stopped. Evolution of the
brownish gas indicates the oxidation reaction [36], so its stopping
can be considered as the end of oxidation.

Samples OX7–OX9 have been prepared by concentrated acid. It
was found that after 6 h, NO2 gas was stopped from evolution
(OX8). As Fig. 1 indicates there is no significant difference between
TPD spectra of OX8 and OX9, although the oxidation time for the
latter is 2 h more than the former. This observation is consistent
with the previous statement. The spectrum of OX7 is very similar
to that of OX4. Except to the peak located in the temperature range
of 250–280 8C, the spectra of OX8 and OX9 is very close to OX4. The
mentioned peak that is higher developed in OX8 and OX9 is
probably related to carboxylic groups [22,37–39]. However, the
samples resulted from concentrated acid had one drawback: the
amount of produced fine particles was much more compared to
8 N acid, especially when the oxidation time increased.



Table 2
Textural characteristics and results of proximate and ultimate analysis for oxidized samples.

Sample Proximate analysis (wt%)a Ultimate analysis (wt%) O/C SBET (m2/g) Vt (cm3/g) Area below TPD

VM FC Ash C H N Ob

A1 17.61 75.73 6.66 85.26 1.51 0.31 6.26 0.07 846.3 0.434 138.7

A2 15.17 79.51 5.32 87.12 1.25 0.28 6.03 0.07 888.6 0.479 79.0

OX4 35.65 61.01 3.34 69.23 2.41 0.75 24.27 0.35 420.9 0.221 574.4

OX5 31.47 65.21 3.32 71.06 2.4 0.61 22.61 0.32 403.9 0.198 546.1

OX6 39.23 57.63 3.14 67.68 2.68 0.73 25.77 0.38 350 0.142 601.8

OX7 41.04 56.39 2.57 60.23 3.91 1.23 32.06 0.53 10 0.009 654.3

OX8 43.39 54.23 2.38 57.98 3.98 2.53 33.13 0.57 <1 – 730.7

OX9 43.17 54.18 2.65 57.12 4.03 1.89 34.31 0.60 <1 – 749.3

a Dry basis.
b Calculated by difference.

A. Houshmand et al. / Journal of the Taiwan Institute of Chemical Engineers 44 (2013) 774–779 777
A2 was also an AC sample. Its TPD spectrum shows much less
amount of oxygen groups in comparison with A1. Nevertheless,
OX5 prepared from A2 at the same conditions of OX4, has a TPD
curve similar to OX4. This confirms again the limitation of number
of active sites accessible for oxidation. It also suggests similarity of
the structures of the utilized ACs prepared at different conditions.

As the last point about TPD results, the temperatures of the
peaks evolution are paid attention. For all the oxidized samples, the
peaks are evolved almost at the same temperatures. From this fact,
it can be concluded that the same types of oxygen groups are
created on the surface of the samples, despite the significant
differences in the conditions of oxidation.

Table 2 presents the textural characteristics of the samples
together with the results of proximate and ultimate analysis. The
results of proximate analysis present that oxidation leads to a great
raise in the volatile content. The volatile content includes the
amount of surface functional groups that are decomposed up to
950 8C [37] and is in total consistency with the area below the
curves of TPD spectra and oxygen content determined by ultimate
analysis. The ratio of oxygen/carbon, as incorporated into Table 2
indicates the degree of oxidation of the AC surface. According to the
table, all these parameters follow the same trends. This fact verifies
the validity of the results. Moreover, it can be seen from the same
table that the BET surface area (SBET) and total pore volume (Vt) of
all oxidized samples decrease with oxidation. This matter may be
attributed to pore blockage by oxygen groups and/or destructions
of pore walls [40–43]. The attention is drawn to samples OX7–OX9.
As previously mentioned, a considerable amount of AC granules is
converted to powder in samples OX7–OX9 and, as mentioned in
Table 2, their surface area is too low. It seems that the oxidation
partially or completely destroys these samples.

In the light of above, OX4 is selected for modification with CEA.

3.2. Grafting amino groups

Table 3 shows textural and chemical characteristics of the
amine-grafted samples. The degree of amine anchoring can be
quantified from the rise in the nitrogen content and also volatiles.
Ultimate analysis confirms that amine grafted samples have higher
contents of nitrogen. Grafting amine groups cause a drastic
Table 3
Textural characteristics and results of proximate and ultimate analysis for amine-mod

Sample name Proximate analysis (wt%)a Ultimate analysis

VM FC Ash C H 

A1 17.64 75.7 6.66 85.26 1.

CEA1 41.21 53.94 4.85 68.45 2.

CEA2 42.87 52.14 4.99 66.26 2.

a Dry basis.
b Calculated by difference.
decrease in surface area and pore volume, as shown in Table 3. The
BET surface area of these samples is also less than their oxidized
parent, OX4. From these observations, incorporation of nitrogen
groups into the structure of AC is inferred for the modified samples.

Fig. 2 shows the isothermal CO2 uptake profile of the amine-
grafted samples expressed as percentage of weight increase versus
time at 30 8C, when the samples have been put in pure CO2

atmosphere. It is apparent that CO2 capture capacity of A1, the
parent, is higher than the modified samples at 30 8C. By coupling
this fact with data in Table 3, it can be concluded that the higher
surface area of A1 is the reason of its higher capture capacity.
Although the presence of nitrogen groups is expected to improve
affinity toward CO2 and increase contribution of chemisorption,
total CO2 capacity is prevailed by physisorption at the low
temperatures. However, the role and importance of chemisorption
can be realized by other means, as will be explained later in this
section. Fig. 2 also shows that the parent A1 is completely
saturated with CO2 in a few minutes, whereas in the modified
samples, it takes a longer time to achieve equilibrium. In other
words, adsorption rate is retarded by amine modification.
Moreover, the slopes of the capture curve are alike.

In order to realize the role of chemisorption, TP CO2 adsorption
test was carried out. This test can reveal the effect of temperature
on CO2 adsorption capacity of the modified samples, as shown in
Fig. 3a. It can be seen from the figure that the capture capacities of
untreated and treated samples decline by growing temperature
due to prevalence of the physical adsorption mechanism. However,
the slope of decrease in A1is notably more, compared to the
modified samples. This finding results in that at elevated
temperatures (more than 100 8C), CEA1 has a remarkable capacity
over A1 and CEA2 has a capacity of near A1, despite of their lower
surface area. At 100 8C, capacity of CEA1 is about 45% more than
that of A1. This matter suggests that the mechanism of adsorption
has been influenced by chemisorption in the amine-containing AC.
This fact can be justified by the higher amount of nitrogen
functionalities in the form of amino group, as detected by ultimate
analysis.

The CO2 capture capacity is resulted from two simultaneous
mechanisms of physisorption and chemisorptions; the former
depends on porous structure and the latter is affected by amine (or
ified samples.

 (wt%) N/C SBET Vt

N Ob (m2/g) (cm3/g)

51 0.31 6.26 0.004 846.3 0.434

28 5.48 18.94 0.080 268.9 0.153

24 5.19 21.32 0.078 279.8 0.162



Fig. 2. Isothermal CO2 uptake profile of amine-grafted samples.

Fig. 4. Cyclic adsorption–desorption tests.
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nitrogen) content. As the amine modification decrease surface area
and increase the amine contents, these two mechanisms are acting
inversely. In order to separate the role of chemisorption, TP CO2

capture curves have been normalized by the BET surface area, as
shown in Fig. 3b. The figure shows the effect of amine groups on the
capacity of activated carbon in a comprehensible way. It is
apparent that the modified samples have a higher capacity than A1
as a result of chemisorption, when they are compared at unit
surface area. These observations agree quite well with nitrogen
content in Table 3. Compared to A1, CEA1 presents a two- and six-
fold increase in capacity at 30 and 115 8C, respectively.

Cyclic operation tests were performed to give an insight into
stable performance of the modified samples in practical applica-
tions. Fig. 4 shows the capacities of CEA1 and CEA2 for four
consecutive adsorption–desorption tests. Cycle number of 0
indicates the first saturation (obtained from isothermal uptake
measurements) and other cycle numbers present the following
regenerations. According to the figure, the adsorption capacities of
the modified samples decrease slightly after first regeneration and
are more or less constant after subsequent regenerations. The
decrease in capacity after first regeneration can be attributed to the
unreleased CO2 resulted from the first saturation. So, higher
Fig. 3. (a) TP CO2 adsorption test. (b) TP CO2 adsorption test, normalized by surface

area.
capacities, which are nearer to those obtained from isothermal
uptake, may be achieved by higher regeneration temperatures. In
this study, initial outgassing temperature (120 8C) was considered
as temperature of regenerations. Moreover, no significant accu-
mulation of CO2 is observed during each step of adsorption after
first regeneration. This capability of satisfactory regeneration
observed from the figure may be considered as a promising sign for
stable performance in practical cyclic operations.

4. Conclusion

Two modified AC samples were obtained by treatment the
virgin samples with two CEA following oxidation. A series of
preliminary oxidation was carried out to select a suitable
oxidized sample as the starting material for amine modification.
The results of amine modification by the selected amine
compound are promising. When compared in mass unit, the
best modified samples show a 45% increase in CO2 adsorption
capacity at 100 8C. The effect of amine functionalities is
expressive when the capacities of the modified samples are
compared with untreated one in unit of surface area. A two- to
six-fold increase is resulted when comparing the best results
with the parent at 30–115 8C.
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