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Training neural networks in distinguishing different emotions from physiological signals frequently
involves fuzzy definitions of each affective state. In addition, manual design of classification tasks often
uses sub-optimum classifier parameter settings, leading to average classification performance. In this
study, an attempt to create a framework for multi-layered optimization of an ensemble of classifiers
to maximize the system’s ability to learn and classify affect, and to minimize human involvement in
setting optimum parameters for the classification system is proposed. Using fuzzy adaptive resonance
theory mapping (ARTMAP) as the classifier template, genetic algorithms (GAs) were employed to perform
exhaustive search for the best combination of parameter settings for individual classifier performance.
Speciation was implemented using subset selection of classification data attributes, as well as using an
island model genetic algorithms method. Subsequently, the generated population of optimum classifier
configurations was used as candidates to form an ensemble of classifiers. Another set of GAs were used
to search for the combination of classifiers that would result in the best classification ensemble accuracy.
The proposed methodology was tested using two affective data sets and was able to produce relatively

small ensembles of fuzzy ARTMAPs with excellent affect recognition accuracy.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Affective states indicate the general psychological state of a
person in response to external or internal stimulus, or social and
environmental factors. While psychological states can be difficult
to measure, there have been several attempts to create consistent
models to cover the entire emotion spectrum. Russell's Arousal-
Valence scale [1] used two measures to describe most emotional
states. The Arousal axis denotes the intensity of the experienced
emotion, ranging from high excitability to lethargy. The Valence
axis represents a more abstract concept of the polarity or pleasure
derived from the emotion. Positive valence encompasses feel-
good emotions such as joy and content, whereas negative valence
includes psychologically disruptive emotions such as anger, fear,
and sadness, with each emotion can be represented as a range of
values.

The Positive and Negative Affect Schedule (PANAS) [2] util-
izes a similar concept with two-dimensional measures of Positive
Affect (PA) and Negative Affect (NA) for describing several distinct
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emotion states, The two measures are independent domains, with
PA having correlations to social activity and diurnal variations, and
NArelated to self-perceived stress and no circadian patterns. Robert
Plutchik [3] proposed an alternate emotion model utilizing a small
number of basic emotions: joy, trust, fear, surprise, sadness, disgust,
anger, and anticipation. Plutchik’s model conveyed the complex-
ity of the human emotion spectrum as combinations of any two
basic emotions. In practice however, humans are capable of a vari-
ety of complex, nuanced emotions that are difficult to represent
using two-dimensional representation. Most experiments involv-
ing human affect thus incorporate some form of self-assessment
for users to describe their own emotions. For the sake of simplic-
ity, the self-assessment tests rely on a smallest number of affect
dimensions, such as the Arousal-Valence space, to describe the
most number of emotions.

Affective machines are devices designed to recognize, inter-
pret, and in some cases, simulate human emotions. Ambulatory
monitoring systems may be designed to monitor physiological
and behavioural cues from human subjects and respond accord-
ingly. For example, in a hospice environment, a system may be
implemented for 24-h monitoring and trigger alerts for medi-
cal intervention if any behavioural or physiological assessment
showed signs of distress. Another application involves two-way



interaction, using human affect to determine the responses from
the machine. Negative emotions for example, teaches the machine
to suppress undesirable behaviour while positive emotions rein-
forces the machine's current behavioural parameters for future
interactions.

For a machine to recognize human emotions, it has to be able
to “read” a person's emotional cues and match the pattern to a
knowledge base of emotional characteristics. Many studies utilize a
multimodal approach, combining information from multiple phys-
iological sources in parallel to form a comprehensive perception of
affect [4,5]. The measures typically include electroencephalogram
(EEG) [6] for observing neural responses of emotion stimuli, as well
as heart rate variability (HRV)[7] and galvanic skin response (GSR)
[8] to observe physical signs of excitation. The features derived
from recorded physiological signals were then correlated to self-
assessment ratings of affect [5], subsequently using a classifier
system to predict the affective state of a given set of physiological
features.

The accuracy of an affect classification system is dependent on
several factors: the reliability of the affect training data, and the
classifier’s ability to identify and learn patterns of human affect.
The focus of this study is to design a methodology that would max-
imize a classifier’s ability to learn and recognize emotions from
physiological signals. The practice for classification studies was to
assign default settings or parameter constraints in order to obtain
results that can be compared to prior art. In the case of classification
systems with highly variable results, experiments were often per-
formed multiple times and averaged to obtain a single aggregated
result.

The proposed system was developed for optimizing classifier
parameters and classifier fusion combination. A two-step GA was
proposed, first for generating a population of optimized classifiers,
and the second step for choosing the best combination of classi-
fiers for decision-level fusion. The flow of this paper is as follows.
In the next section, a literature review is first presented. This is then
followed by a detailed description of the FAM neural network, GA
for FAM optimization and ensemble selection, negative correlation,
and probabilistic voting in Section 3. The outline of an experimental
study is given in Section 4, while the results are presented in Sec-
tion 5 accompanied by a discussion. Concluding remarks are finally
given in Section 6.

2. Literature review

In this section, literature review on various hybrid neural
networks to multiple applications is presented. A hybrid neural
network based on Self Organizing Maps (SOM) and Multilayer
Perceptron (MLP) network for wind speed prediction in renew-
able energy systems is proposed in [9]. Experimental results show
the hybrid network performs better in terms of minimization of
errors [9]. A novel hybrid algorithm, SOM-based initialization for
hybrid training, based on two-stage learning approach is presented
in [10]. A structure learning scheme which includes adding hid-
den neurons is first done, followed by a fuzzy neighborhood-based
hybrid learning scheme to adjust the network parameters [10]. In
demonstrating the approach efficiency, four simulation examples
are conducted and compared with other learning methods [10].

Hybrid algorithms based on Particle Swarm Optimization
(PSO) are popular. A novel hybrid optimization algorithm, with
simultaneous structure of Elman-type recurrent neural networks
combining advantages of discrete PSO algorithm and improved PSO
algorithm is proposed in [11]. The method is evaluated on a ther-
mal system power plant, Mackey-Glass time series and CATS time
series, with results indicate the hybrid approach has better predic-
tion accuracy and generalization performance. An automatic search

methodology for parameter and performance optimization of neu-
ral networks using a hybrid evolution strategies, PSO, and concepts
from genetic algorithm (GA) is proposed in | 12]. Experiments were
performed with results proving the proposed method is better than
other methods compared in literature [12].

In detection and characterizing of acoustic signals due to sur-
face discharge activity and hence differentiate abnormal operating
conditions from the normal ones, a hybrid algorithm combining
regrouping PSO with wavelet Radial Basis Function (RBF) neural
network is presented in [13]. The learning method is proven to be
effective by applying the wavelet RBF based on the hybrid algo-
rithm in classification of surface discharge fault data set, with test
results indicating it is an efficient method [13]. In solving classifi-
cation problems, a hybrid algorithm consisting of the PSO model
for RBF networks is proposed in [14]. Various benchmark classifi-
cation problems are tested with experimental results showing the
proposed method outperforms standard methods compared in the
literature [14].

In complex problem solving in fluid dynamics, a hybrid adaptive
neural network with modified adaptive smoothing errors based
on GA is proposed [15]. Simulation results indicate the proposed
system works fast enough and stable, and it is able to predict
an incompressible viscous fluid flow [15]. Granular-oriented self-
organizing hybrid fuzzy polynomial neural networks, based on
MLP with context-based polynomial neurons or polynomial neu-
rons is presented in [ 16]. Good results were achieved using several
data sets obtained from the UCI Machine Learning Repository. An
approach combining the advantages of fuzzy sets, ant-based clus-
tering and MLP neural networks for application in breast cancer
imaging is introduced in [17]. The ability to classify breast cancer
images to benign or malignant is obtained from the experimental
results, where it is shown that the adaptive ant-based segmenta-
tion is superior to the classical ant-based clustering technique and
the performance of the hybrid system is high [17]. In improving
conceptual cost estimate precision, an evolutionary fuzzy hybrid
neural network is proposed in [18]. The approach integrates neural
networks and higher order neural networks into a hybrid neural
network [ 18]. Results indicate the proposed hybrid neural network
can be deployed to accurately estimate cost during early stages of
construction projects [ 18].

Various time series applications have utilized hybrid models.
In detecting temporal patterns for stock market prediction tasks,
the effectiveness of hybrid neural networks for time series, such as
the adaptive time delay neural networks and the time delay neural
networks, with the GAs is studied in [19]. GA is applied to support
optimization of number of time delays, with results showing the
accuracy of the integrated approach is higher than that of standard
neural networks [19]. A hybrid time series neural network model
for time series forecasting is tested using the monthly stream flow
data at Colorado River at Lees Ferry, USA is proposed in [ 20]. Results
from the study indicates the strengths of the hybrid model in cap-
turing non-linear nature of complex time series, while producing
more accurate forecasts [20]. In a case study to accurately fore-
cast enrolment in University of Alabama, a hybrid fuzzy time series
approach is proposed [21]. Fuzzy c-means clustering method and
artificial neural networks are employed in the hybrid approach,
with results showing the most accurate forecasts obtained when
the proposed hybrid fuzzy time series approach is being utilized
[21].

A Bayesian neural network and learned by the hybrid Monte
Carlo algorithm for a short term load forecasting model is
presented in [22]. Forecast of the hourly load during spring,
summer, autumn, and winter were done using the hybrid algo-
rithm, with results indicating better performances using proposed
hybrid algorithm as well as solving overfitting problems [22]. A
hybrid fuzzy set-based polynomial neural networks, composed of
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Fig. 1. Flowchart of the methodology to create an ensemble of optimized FAM classifiers.

heterogeneous feed-forward neural networks such as polynomial
neural networks (PNNs) and fuzzy set-based PNNs is introduced in
[23]. Using extensive experiments, the performance of the hybrid
fuzzy neural network is quantified, and good results are achieved
[23]. High order connections are developed and embedded into a
back propagation network, which results in a hybrid high order
neural network, applicable to linear and high order connections
[24]. Two case studies were used in verifying the hybrid network
performance with results showing that the hybrid network delivery
better results compared to traditional back propagation network
[24].

3. System framework

The proposed framework was developed as a means to gener-
ate ensembles of classifiers with consistently good classification
accuracy, with minimal input from the user, For the base learner,
the FAM was selected due to its popularity as well as having a sig-
nificant number of literature research. The FAM was among the
earliest design of ARTMAP-based neural networks, and is capable
of learning patterns quickly while incorporating new knowledge
incrementally without having to retrain using previous informa-
tion. From the literature, a number of dependent variables that
affect the performance of the FAM were identified. A search
heuristic was utilized to determine the optimum combination of
parameter settings to maximize the performance of the classifier.
However, no classifier can hope to achieve perfect accuracy for any
given problem. Dzeroski et al. [25] postulated that multiple sub-
optimum classifiers can be combined into an ensemble that can
outperform any single classifier. The key to an effective ensemble
lies in selecting a particular combination of individuals that are
sufficiently diverse to contribute complementary and conflicting
information. A classifier combination system, operating on the
assumption that multiple experts are less likely to make a mis-
take than a single expert, chooses the classification outcome that
represents the consensus of the ensemble.

The design of the framework methodology thus hinges on sev-
eral factors. First, a two-step searching process was required, one
for optimizing the parameters of a single classifier, and the sec-
ond for selecting a group of said optimized individuals to create an
ensemble. GA was selected as the search heuristic for both tasks. As
diversity between individuals is considered an important factor, a
number of methods were applied to improve diversity. A Hierarchi-
cal Fair-Competition Parallel GA [26] was used to generate a more
diverse population of FAM configurations. Feature subset selection

[27] was another common method to improve diversity by train-
ing the classifier using only the partial set of training data. Finally,
for creating classifier ensembles, a negative correlation method
[28] was applied to identify and remove redundant classifiers. The
overall framework is shown in Fig. 1.

3.1. Fuzzy ARTMAP

The Fuzzy ARTMAP [29] is a neural network capable of learn-
ing complex associations between multidimensional input objects
and a set of discrete class labels through supervised learning. As
shown in Fig. 2, a mapping field connects two ART modules, one for
receiving input vectors and one for output vectors. The supervised
learning method modifies the weighted connections between the
input, output,and mapping fields to create a resonance between the
current object in the input module and the corresponding output
label. Givena set of labeled exemplars, supervised learning presents
each exemplar to the FAM one at a time while the internal config-
uration of the weighted nodes shift incrementally in response.

The operations of the FAM neural network is given in further
details, as follows:

1 Given an object to be classified, in the form of a normalized vector
a with M attributes in the range of 0-1.

2 Vector a along with its complement, a®= 1 — a, was encoded as a
single input object A:

A={(a,a%) (1)

3 Among the nodes in F§ that have not been selected, a node | was
selected with the maximum choice function:

Ty = 1A AWyl + (1 = )M — w) 2)

Uncommitted nodes were initialized with all values of w; set to
1.

4 The selected node was matched against the bottom-up input A.
The field F{ represented the fuzzy intersection between the input
vector A and the weights of the node, wj. The vector representing
the match between input vector A and the selected node weights
wy is represented as:

Xx=ArwW (3)

where » denotes the component-wise minimum, or fuzzy inter-
section, of the bottom-up input vector A and the top-down
expectation wj. At this point, one of several cases may occur:
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Fig. 2. Structure of the FAM neural network.

* Node | failed to meet the match criterion: |x|/|A| < ps. Another
node was chosen and Step 3 was repeated.
* Node | meets the match criterion: |x|/|]A| = pg. The node was

used to make a classification prediction for object A.

- The object A was transmitted along the weighted connec-
tions between Fj and the mapping field Feb_ A successful map
between the inputA and output Bwas determined by the map
field match criterion:

X[ pgply| (4)

The match tracking equation was designed to trigger a mis-
match reset if the selected node | makes a wrong prediction:

s (p-pyeTR (5)
In the case of an incorrect prediction, the predictive error
parameter R is set to 1 and the current vigilance parame-
ter pg was incremented according to Eq. (5) until p, was
larger than the match value |x|/|A|, thus failing the match cri-
terion. The algorithm then loops back to select a new node |
and repeat Step 3. In the meantime, p, decays by the match
tracking parameter, € before the next node | was selected.
This mechanism was designed to minimize predictive errors
by stimulating search between nodes, while maximizing the
network’s generalization ability through manipulating the
current vigilance parameter.

- Inthe case where object a was successfully mapped to class b,
orif the selected node ] was uncommitted, the system learns
by incorporating the input object A into node J:

wiew = (1= Bywild + Bweld A A) (6)
e The algorithm loops back to Step 1 for the next object to be
classified.

The ART-based neural network was dependent on its internal
configuration of node weights, which in turn were affected by a
number of factors such as the ARTMAP parameter settings, and
the training data used for learning. A number of approaches for
ARTMAP optimization used evolutionary algorithms to search for
the optimum training sequence [30] and ARTMAP parameter sett-
ings [31,32]. In this study, we will focus on using GA for optimizing
the training order and the ARTMAP parameters, given as:

¢ Baseline vigilance, 5. Setting it to 0 allows a greater degree of
generalization, while setting baseline vigilance close to 1 only
permits learning from highly specific exemplars.

¢ Choice parameter, c. Influences the degree of uniqueness of each
committed node.

e Learning rate, 8. Determines how quickly the nodes adapt and
learn from the current presented pattern.

® Match tracking parameter, €. Determines the rate in which cur-
rent vigilance parameter returns to baseline value after each
predictive error by the selected node.

3.2. Classifier optimization using genetic algorithms

GAs are search heuristics commonly used for multi-parameter
optimization. Each parameter is encoded as a single gene. A collec-
tion of genes makes up a chromosome, which represents a single
configuration of solutions for a given problem. In the context of
this study, a chromosome represents the ARTMAP parameter val-
ues used to initialize the neural network, and the ordered subset
of features of the data set to be used for training. Chromosomes
were evaluated in terms of fitness, in this case, how well the neu-
ral network was able to classify patterns accurately. The GA starts
off with a multitude of diverse chromosomes in a population. Over
multiple generations, competitive eliminations and genetic repro-
duction serve to direct the evolution of the population by retaining
high-fitness chromosomes to generate genetic variants as a method
for exploring the solution space. When completed, the final pop-
ulation would consist of a number of chromosomes that yielded
optimum configurations for generating the FAM.

Several studies have been performed in regards to opti-
mizing FAMs using evolutionary algorithms. Al-Daraiseh et al.
[33] proposed using GA to search for a Pareto-optimal solution
between small network size and classification accuracy in order to
reduce computation complexity without sacrificing performance.
Palaniappan and Eswaran [30] used GA to select the optimum
single-pass training sequence for a Simplified FAM. In comparison,
the GA used in this study searches for combinations of parameters
resulting in the highest classification rate, regardless of network
size or complexity.

When developing a population of candidates for an ensemble
of classifiers, two important criteria to observe are the individual
classifier performance as well as the diversity of the population.
Feature subset selection was implemented to improve diversity of
the population, by having each classifier specializing in a narrow
subset of features of the training data set. The practice of specia-
tion using feature subset selection of training data attributes was
introduced by Ho [34]| and was implemented in a number of ensem-
ble optimization studies as a measure to improve intra-population
diversity [35,36].
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In total, there are three factors to be accounted for by the FAM
optimization algorithm, illustrated in Fig. 3. The parameters were:

—

. Training sequence. Given a classification task with a data set con-
sisting of N examples, the GA searches for a specific sequence of
examples, which when presented to the FAM during supervised
learning, will result in a trained FAM with the best classification
accuracy. The training sequence was represented as a sequential
series of integers from 1 to N.

ARTMAP structural parameters: choice parameter, learning rate,
baseline vigilance, and match tracking parameter each repre-
sented as a single gene.

Feature subset selection. Given a data set with M attribute vec-
tors, this section of the chromosome determines which attribute
will be used for training the FAM. It was encoded as an M-length
string of binary values, each representing a single attribute in the
training data set, where a “0” or “1” determines which attribute
to include or exclude from the training process.

N

w

A feature of GA is the tendency for the solutions in the pop-
ulation to converge on a single optimum point due to selection
pressure [37]. A population of FAMs that are similar to each other is
undesirable and unsuitable to be assembled into an ensemble. The
Hierarchical Fair-Competition Parallel GA (HFCPGA) [26] mitigates
the issue of convergence by implementing multiple subpopulations
evolving in parallel. By restricting genetic operations to within each
subpopulation, genetic convergence is spread across multiple areas.

At each generation, optimization was performed using the fol-
lowing steps:

1. Evaluation. Each chromosome was used to create a trained FAM
classifier and tested using ten-fold crossvalidation. Fitness of the
chromosome was the average recognition rate of the trained
classifier.
Migration. For later generations, if a chromosome possessed a fit-
ness value that was significantly higher or lower than the average
fitness of the chromosomes in its current subpopulation, then
it was allowed to shift to the next higher or lower subpopula-
tion. Migration was limited to a small number per generation,
so only the most radical chromosomes (i.e. largest difference in
fitness between the chromosome and subpopulation average)
were allowed to migrate. Migration was intended to shift chro-
mosomes into a more competitive environment, thus allowing
less-fit chromosomes to compete fairly.

Selection. A fraction of the total number of chromosomes was

discarded from the global population, starting with the chromo-

somes with the worst fitness. Typically, this means thatthe lower
subpopulations will have a higher turnover rate than the higher
subpopulations.

4. Reproduction and Mutation. For each chromosome discarded in
the previous step, a new chromosome was created via genetic
reproduction. A roulette-wheel method was first employed to
select a subpopulation. The probability for each subpopulation
to be selected was inversely proportional to the average fitness of
its chromosomes, thus giving higher priority to less-fit subpop-
ulations. Two chromosomes were then selected at random from

N

w

the subpopulation to reproduce and create a genetic offspring
chromosome with traits from both parents.

For each offspring, a number of randomly selected genes under-
went mutation to introduce a degree of randomization in the
population. The number of mutated genes was defined as a frac-
tion of the total chromosome length. The new chromosome was
then added into the lowest subpopulation.

As each chromosome consisted of three different sections,
reproduction was performed separately for each section, illustrated
in Fig. 4.

* The training sequences for both parents were first compared for
any common points, which were then carried over to the off-
spring. The remaining genes were distributed to the offspring
while preserving the sequence as much as possible. A single
mutation simply involved swapping the positions of any two
random numbers within the sequence.

For feature subset selection, logical AND was applied on each bit
pair consisting of the two parent genes. However, in the case
where one parent gene was ‘0" while the other was ‘1’, the resul-
tant offspring gene was randomly set to either ‘0’ or *1". Mutation
was performed by flipping a gene.

Each ARTMAP parameter was calculated as the average of the
two parent chromosomes’ parameters. Mutation was performed
by adding or subtracting a small random number, no more than
10% of the maximum value of the parameter.

Two stopping criteria were introduced for ending the optimiza-
tion process. The GA was terminated when a maximum number of
generations have elapsed, or until the average and maximum fit-
ness scores of the FAM population stopped improving for several
consecutive generations.

3.3. Ensemble optimization

Given a population of optimized FAMs generated in the previous
section, another GA step was used to search for the best combina-
tions of classifiers to form an ensemble. Ensemble selection was
determined by a binary string with length equal to the number
of FAMs generated in the classifier optimization step. Each binary
value in the string corresponded to one FAM, with ‘0’ meaning the
classifier was not selected, and ‘1’ means that the classifier was
selected for the ensemble. Fitness of a single chromosome was
determined by the negative correlation index in Eq. (9). As the
chromosomes were binary encoded, all genetic reproduction and
mutation performed were similar to the methods outlined in the
previous section for feature subset selection.

Classifier fusion was performed using two methods. The neg-
ative correlation method was employed to determine whether to
acceptor reject a classifier into the ensemble based on its contribu-
tion towards ensemble accuracy and/or diversity. Decision fusion
for the multitude of ensemble members was decided using a prob-
abilistic voting strategy.
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3.3.1. Negative correlation

The GA optimization method proposed a group of FAMs to form
an ensemble with no regard for correlation between individual
FAMs. This may result in large ensembles with redundant FAMs. A
negative correlation method [38] was used for building the ensem-
ble by selective recruitment of FAMs.

Assuming a set of data pairs was given:
D={(xn,cn)in=1,....N} (7)

where x, is an input vector and ¢, € {1, ..., C} is its corresponding
class label. Given an ensemble with | classifiers, the kth output for
a given input object x, is computed as:

J
PO = > fow) (8)
i=1

where f; = U;.l. ..,.fjc] andfj" — [0. 1]. Now, to define the general-
ization error for the jth neural network component

N C
£ =3 S 1+ Gn) - 4 = ) — 40’ 9)

n=1 k=1
and the generalization error for the ensemble

N C 7
B =33 I 00 -y - A3 o) - )]

n=1 k=1 r=1

(10)

where A is a controllable variable between the error and penalty
terms, and y, = [y,li ..., ¥5) is a one-of-C representation of c,:

v 1 if k=cn
Yn= ) (11)
0 otherwise
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Egs. (9) and (10) each states that the generalization error con-
sists of the misclassification rate of the neural network's output,
while the second part compares the similarity between the out-
puts of individual classifiers. The A parameter controls the severity
of the penalty when the compared classifiers are similar to each
other in terms of classifier output. Substituting (10} into (12) yields
the overall ensemble error which can be summarized as:

R 12 1
B=() DD 16—k

(12)
j=1 t=1
where the misclassification term is
N C
Gie =3 > 10 0an) = YK (xa) - ) (13)
n=1 k=1
and the similarity penalty is
N C ]
Kip =33 > 105K 0xn) = ¥(xn)  (Fxm) = F¥(xa))] (14)

n=1 k=1 r=1

An ensemble of FAMs was constructed using the following
method:

. Given a single chromosome representing a combination of
selected FAMs, the classifier with the highest recognition rate
was selected as the first member of the ensemble. The gener-
alization error of the ensemble at that point was computed as
Ey.

. When another FAM was added, the classification output of the
ensemble was modified according to new information provided.
The generalization error of the new ensemble was recalculated,
Ey.

[y
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