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HIGHLIGHTS

GRAPHICAL ABSTRACT

« Test results for a designed bi-disperse
porous medium are investigated and
analysed.

« N—K model is applied to analyse the
results for a range of fluid velocity
and geometry.

e Drag coefficient is obtained as a
function of pertinent parameters.
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The aim of this paper is to obtain the momentum transfer coefficient between the two phases, denoted
by f and p, occupying a bi-disperse porous medium by mapping the available experimental data to the
theoretical model proposed by Nield and Kuznetsov [1]. Data pertinent to plate-fin heat exchangers, as
bi-disperse porous media, were used. The measured pressure drops for such heat exchangers are then
used to give the overall permeability which is linked to the porosity and permeability of each phase as
well as the interfacial momentum transfer coefficient between the two phases. Accordingly, numerical
values are obtained for the momentum transfer coefficient for three different fin spacing values
considered in the heat exchanger experiments.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Chen et al. [2] tested a bidisperse porous medium (BDPM),
clusters of large particles which, in turn, are agglomerations of
small particles, with very high area to volume ratios to note inter-
esting thermal conductivity behaviour. As such, engineering ap-
plications for BDPMs such as bidisperse adsorbent or wicks and
evaporators in heat pipes are mentioned on top of biological
structures, such as bone regeneration scaffolds; also characterized
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by bimodal pore distributions [3-5]. Coal stockpiles can be
mentioned as other examples [6—8]. Such stockpiles are formed by
piling (usually) small coal particles which are porous themselves.
The stockpile porosity is usually higher than that of particles. Self-
heating of such stockpiles is a significant challenge addressing
which calls for a deep understanding of flow behaviour at both
particle and inter-particle levels. Nield and Kuznetsov [1] suggested
a theoretical model to relate the overall permeability to that of
individual phases. According to those authors, two phases are
defined being the f-phase (the macropores) and the p-phase (the
remainder of the structure). The pressure drop is then modelled as
the superposition of Darcy resistance for each phase and an inter-
facial momentum exchange which is linearly proportional to the



velocity difference between the two phases as well as an interfacial
momentum transfer coefficient. This momentum transfer coeffi-
cient, however, remains as an unknown in the literature despite the
popularity of the model [9,10] and even the extensions to include
shear [11] and form drag [12] effects on top of the extension to
tridisperse porous materials [ 13]. Furthermore, the application of
the model serves the basis for analysing heat transfer in BDPMs as
addressed in Refs. [14—16].

Two common assumptions are made in all of the above-
mentioned works. Firstly, the momentum transfer coefficient is
assumed to be a homogenous constant velocity-independent value.
Secondly, the numerical value of the momentum transfer coeffi-
cient is neither known nor related to porous media properties like
porosity and permeability (of each phase). These both are ques-
tionable in the absence of rigorous mathematical, numerical, or
experimental data. As such, the aim of this paperis to fill this gap in
the literature by mapping the theoretical model developed by
Ref. [1] to an experiment databank to obtain a value for the mo-
mentum transfer coefficient which could be used for future
development and fine-tuning. In what follows, a brief description of
the pertinent experiment is presented and the modelling as-
sumptions are discussed along with the obtained results.

2. Analysis

In an interesting study, Kang et al. [17] reported experimental
data for pressure drop and heat transfer of plate-fin heat exchanger
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Fig. 1. Schematic description of the heat exchanger modelled as BDPM a) the heat
exchanger and b) the top view of the plate.

with no intention to model the system as a porous medium. In their
work, as schematically described in Fig. 1, thin plates (black parallel
plates in Fig. 1) are punched to house pipes (10.55 mm diameter)
through which hot water flows. Air is pushed to flow between the
thin plates and cross the pipes. Air flow is normal to shaded (grey)
plate in Fig. 1. In the original experiment the spacing between these
plates were varied from 2, 2.6, and 3 mm to allow for different flow
resistances and heat transfer. The transverse and longitudinal pitch
values were not altered and the values are set as shown by Fig. 1.
Here, the pipes constitute the p-phase, as separated by the dashed
lines, while the spaces between parallel plates, here thick black
plates, form the f-phase. The thick black plates are solid and only
two of them are shown. Hot water flows in the pipe and air flows
normal to the pipe in the direction shown by the arrow, e.g. a cross-
flow (Forgo) heat exchanger. When the pipes are inserted, the pores
of this, f-phase, porous medium are filled with another porous
medium. Here, the spaces between the pipes allow for fluid flow; as
such they are assumed as pores for p-phase. The permeability
values for the p- and f-phase, K, and K, are given in the literature
[18-20] as function of porosities, pipe diameter and plate thickness
as well as plate spacing. Specifically, with ¢ and &, denoting the
porosities of - and p-phases, d as the pipe diameter and t being the
plate thickness that separates the two plates which are apart by H,
one has.
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Development of Eq. (1) above and the extension to finned tube
bundles is explained in Ref. [18] while Ref. [20] drives Eq. (2) based
on flow between parallel plates. Table 1 is presented to give more
details about the f- and p-phases and geometrical data taken from
Ref. [17].

The overall permeability is, according to Ref. [1], given by.
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and is linked to the air viscosity u and pressure gradient G as
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where, with ¢ as the volume fraction of macropores, one has the
average velocity, U*, as

U™ = gUp + (1 - )U,. (5)

Note that { in the above formulation is the unknown mo-
mentum transfer coefficient. As our goal is to obtain {, we rearrange
Eg. (3) to get.

Table 1
Additional f- and p-phase details (d = 10 mm, t = 0.2 mm}; geometrical details from
[17].

H (mm) g=1-f K (%107 m?) e Kp (10° m?)
32 09375 3 0.78 1.14
26 0923 52 0.78 1.14
2 09 3 0.78 1.14
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Note that Eqs. (3)—(6) are taken from Ref. [1], u is the air vis-
cosity and our U* range is limited to 2.5 m/s. Eq. (4) is expected to be
valid for cases when the form drag effects can be neglected, i.e.
when the BDPM flow resistance is dominated by the viscous drag as
explained in Ref. [1]. Here, the permeability for each phase is
known as a function of geometrical constrains. Similarly, ¢ is pre-
scribed for a given geometry. One is then left to link K to {. We
suggest the experimental results, here those in Ref. [17], be rear-
ranged to take a form like Eq. (4) to allow for evaluation of K.
Consequently, for a given geometry, { can be determined. In doing
so, the friction factor-Reynolds correlation given by Ref. [17] is used
to obtain experimental G values. Then, G/U* is plotted against U*
and fitted with a linear distribution to give the permeability value
for each experiment as shown by Fig. 2. The fitted lines are
described by the following equations (for 2, 2.6, and 3.2 mm cases,
respectively).

G
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The R? values for the above curve-fits are 0.91, 0.98 and 0.93,
respectively. Experimental results for some data points, as could be
read form the plots in Ref. [17], are also shown on the same chart.
Note that the slope shows the form drag coefficient and the y-axis
intercept (G/U* axis) gives u/K. Using this approach, the perme-
ability for three samples are obtained as 8.2, 12.2, and 17
(x10~7 m?) for cases when the plates are 2, 2.6, and 3.2 mm apart,
respectively. This leads to { = 633 (Pas m 2 regardless of the
plate—plate distance despite the fact that the f-phase permeability
is tripled when the maximum plate spacing (3 mm) is reached.
Note that [17] reported experiments conducted on the same heat
exchanger with three different plate spacing being 2, 2.6, and
3.2 mm. The scattered data-points are taken from Figs. (5-7) of
[17]. The lines are fitted to these data points and are best described
by Eq. (7a—c) above. However, this observation can only be
generalized to other cases, where the BDPM is a designed porous
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Fig. 2. Pressure drop divided by velocity versus velocity.
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Fig. 3. a) Normalized pressure gradient versus pore-Reynolds number. (b) Zoomed
view of (a) for high Re range.

medium like the heat exchanger modelled in this study, following
further investigation and extension of the results to other geome-
tries. Finally, Fig. 3a is presented to show the dimensionless pres-
sure gradient versus the pore-Reynolds number, with K®> used as
the length scale, for all three cases considered here. In the limit of
form-drag dominated flow, the three curves are close to the average
form drag coefficient Cg value of 0.13. At Reg = 100, the plots lead to
Cr values of about 0.15, 0.134, and 0.136 for samples with 2, 3 and
2.6 mm spacing, respectively. The difference between these Cg
values is within the experimental uncertainty of the results re-
ported in Ref. [17]. Therefore, the average Cr is reported here. In the
limit, however, as the fluid velocity tends to be too high for the
viscous drag to be comparable with the form drag, one expects C¢
values of 0136, 0.122, and 0.127 for the samples according to Eq.
(7a—c).

3. Conclusion

Experimental results are used to evaluate the theoretical
model developed in Ref. [1] and also to validate the assumptions
made therein. In particular, it was noted that, over the range of
parameters considered here, both the form drag and the mo-
mentum exchange coefficient are homogenous, constant,
and velocity-independent. Numerical values are obtained for
these two by mapping the experimental data on the theoretical
model.
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