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Fuzzy Swinging-up with Sliding Mode Control
for Third Order Cart-Inverted Pendulum System
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Abstract: Cart Inverted Pendulum (CIP) system is a benchmark problem in nonlinear automatic con-
trol. In this paper, two third-order differential equations were derived to create a combining model for
the cart-pendulum with its DC motor dynamics. Motor voltage was considered the system input in the
presented model. The friction between the cart and rail was included in the system equations through a
nonlinear friction model. Fuzzy Swinging-up controller was designed to swing the pendulum to the
upright position, once reaching the upward position; Sliding Mode Controller (SMC) is activated, to
balance the system. In order to verify the performance of the proposed SMC, a Linear Quadratic Regu-
lator Controller (LQRC) was suggested and compared with the proposed SMC. Simulation and expe-
rimental results have shown a significant improvement of the proposed SMC over LQRC where, the
pendulum angle oscillations were decreased by 80% in the real implementation.
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system.

1. INTRODUCTION

Sliding mode control is considered as a robust nonli-
near control technique which has been applied widely for
many applications [1.2]. The main advantages of this
method are stability guarantee, external disturbance re-
jection and insensitivity to system parameters variation
[3].

Cart-Inverted Pendulum (CIP) system is considered as
one of the most significant benchmark problems in dy-
namics. As a nonlinear unstable system, it affords many
challenging tasks to control engineers. Many practical
restrictions exist with regard to controlling the system,
including friction, cart rail limitation and control signal
saturation. These limitations motivate researchers to
study the system extensively.

Swinging-up and stabilization of the inverted pendu-
lum is a common control problem. The main study on
swing-up pendulum systems was conducted by Astrom
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and Furuta [4]. Energy control method was adopted to
control pendulum energy and swing the pendulum up-
ward. However, cart rail limit was not considered in the
described model. Chatterjee ef al. [5] introduced a
swinging-up controller based on the energy well prin-
ciple to swing the pendulum within a restricted cart
length. However, in the stabilization phase, only local
stability was guaranteed due to the model approximation.
Muskiniji and Tovorkin [6] proposed a fuzzy swinging
up controller with a linear stabilization controller. The
fuzzy swinging-up scheme exhibited better performance
comparing with energy control strategy. However, the
stability of the stabilization controller was not discussed.
Tao et al. [7] proposed a fuzzy swing-up controller with
parallel distributed pole assignment stabilization control-
ler. Despite the validity of this controller, the DC motor
dynamics was not included and the experimental investi-
gation is still needed.

Several controllers were also proposed based on Slid-
ing Mode Control to stabilize CIP. In [8], Chang and Hui
proposed a decoupled fuzzy-sliding mode controller for
CIP. In this approach, the whole system is decoupled into
two subsystems (the cart and the pendulum); each sub-
system has its own control target. Decoupling function is
designed to ensure that the control signal will control
both of subsystems. However, the proposed controller
did not consider experimental limitations such as DC
motor dynamics, friction, and cart length restriction. Lin
and Mon [9] proposed a hierarchical fuzzy sliding mode
controller for CIP system. Simulation results showed the
effectiveness of their controller. Neural network decoupl-
ing controller for nonlinear systems was also introduced
by Hung and Chung [10]. However, the decoupling tech-
niques utilized in [9] and [10] were more complex com-
pared with that utilized by Chang [8]. In addition the



experimental verification is still needed. Tao ef al. [11]
proposed a fuzzy swinging-up controller with a sliding
mode controller. Simulation results verified the effec-
tiveness of this controller. More advanced controller
based on time varying sliding surface controller was pro-
posed by Yorgancioglu and Komurcugil [12]. Results
showed improvement of the pendulum angle response in
terms of speed convergence. However, the applied tech-
niques in [8,11,12] described CIP with two second-order
equations. This procedure means that system input was
the force applied on the cart. Such representation cannot
be directly applied in an experimental environment be-
cause the actual system is driven by a DC motor.

In the present paper, a fuzzy swinging-up with sliding
mode stabilization controller has been proposed to swing
up and stabilize CIP. The fuzzy swing-up controller has
been designed to swing up the system to the upward po-
sition within the cart limits. Then, when the pendulum
reaches the upper position, Sliding Mode stabilization
controller is applied. The sliding surface has been de-
signed based on a third order representation for CIP.

After considering the DC motor dynamics, the overall
system model has been derived. Two third order diffe-
rential equations have been obtained to represent the
system. The system input simply becomes the applied
voltage on the DC motor, which means that the cart
model has been combined with the DC motor in one ma-
thematical representation. For switching between con-
trollers, one move switch is designed to switch between
the swinging-up and stabilization states. The proposed
SMC controller has been compared with LQR technique,
which was applied in [5] and [6], in order to show the
effectiveness for SMC especially in balancing the system
under nonlinear friction effects. Simulation and experi-
mental results have been discussed to show the effec-
tiveness of this controller especially in rejecting the fric-
tion effects and system parameters uncertainties.

The rest of paper is organized as follows. The system
model is derived in Section 2. The fuzzy swing-up con-
troller and sliding mode balancing controller are de-
scribed in Section 3. The simulation results are presented
in Section 4. Real-time implementation and experimental
results are discussed in Section 5. The comparison of

LQRC and SMC is performed and discussed in Section 6.

Finally, the conclusion is provided in Section 7.

2. MATHEMATICAL MODEL

2.1. Pendulum model

CIP system has two degrees of freedom, X is the Cart
displacement, and @ is the pendulum angle position, as
shown in Fig. 1. If the cart mass and the pendulum mass
were donated by M and m, respectively. L is the length
between the pivot and the pendulum center of gravity
C.G, g is the acceleration of gravity, fis the pendulum
mass moment of inertia with respect to its C.G., Fj is the
friction force between the cart and the rail and g is the
friction coefficient in the pendulum pivot. Based on
D’Alembert’s principle, the equations of motion are de-
duced to be:

Fig. 1. Cart-pendulum system.

F=M+mX+F, -m(Licos0- L& sin@), (1)
(I +mL*) & = mgLsin @ + mLX cos - g0. )

For the friction Force Fj, most of the former work,
dealing with the CIP, either has applied a viscous friction
model (linear) or has neglected its effects. However, the
friction phenomena encloses many terms such as Stri-
beck effects, static, Coulomb and viscous frictions [13].
Thus, exponential friction model is chosen, to address all
listed friction parts, as follows:
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where Fjs is static friction force, F- is Coulumb friction
force, f(d is the dead zone velocities, Vg is Stribeck ve-
locity, n is form factor, and b is the viscous friction coef-
ficient.

2.2. De motor model

For the motor Circuit, if ¥, is the armature applied
voltage (control voltage), V., is the back EMF voltage,
and R, L, and i are the armature resistance, inductance
and current, respectively. e is the angular velocity of the
DC Motor, T is the motor electromagnetic torque, 7 is
motor inertia torque, T3 is damping torque and 77 is mo-
tor load torque. The motor equations are

di
V-V, .=iR +L —, 4
Voo =iR,+L, 5 @)
Vo K, 0, 5)
T
i=—%, 6
X (6)

K. is the motor torque constant. The relation between the

cart linear velocity and the motor angular velocity is giv-
enby (7)
X
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where r is the motor pulley diameter. The electromagnet-
ic torque equation is

T=T;+Ty+Tp, (®8)
where
T, =Jo=J", ©
r
TB:B(D:B£, (10)
T, = Fr. ’ (11)

J is the motor rotor mass moment of inertia, B Motor
rotor damping coefficient.

2.3. Overall system model

Here, two third order differential equations will be de-
rived to describe the overall system , where the motor
applied voltage F, is the system input. By substituting
from (9), (10) and (11) in (8). And from (8) in (6) we get
the current equation

J£+35+[(M+m)ﬁf
_ ¥ r

K, (12)
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K, )

Taking the time derivative of the last equation, equation
(13) is obtained
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By substituting from (35), (12) and (13) in (4), we obtain
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Equation (14) is considered as the main overall equa-
tion, describing the system states with the applied vol-
tage on DC motor as an input.

From (2) we obtain
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Taking the first derivative of (2), we get
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Substituting from (15) and (17) in (14), we get the
pendulum angle third order differential equation
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The constants values f,_c are listed in Appendix A.
Equation (19) is then rewritten
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we substitute from (16) and (18) in (14) to obtain the cart
position third-order differential equation.
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The constants values ,71 .15 are listed in Appendix A.
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3. CONTROLLER DESIGN

The fuzzy swing-up controller is discussed in the first
subsection of this current section. The design of stabili-
zation SMC is discussed in the succeeding subsection.

3.1. Fuzzy swing-up controller

The main idea of swinging—up depends on the energy
control [4].The pendulum energy equals the sum of the
kinetic and potential pendulum energies. In this system
the pendulum energy is

E=1,6"+mgLcosd, (27

where /p is the pendulum mass moment of inertia around
the pivot point. According to (27), the pendulum energy
depends on the pendulum angle and the pendulum angu-
lar velocity. By increasing the pendulum energy the pen-
dulum could be swung up to the upright position. Fuzzy
logic controller is used to swing the pendulum up. In this
fuzzy controller the pendulum is aimed to swing up to
the upright position by increasing its energy. The cart rail

and the control action limitations should be considered.
Three input variables are chosen. The pendulum angle 0,
pendulum angular velocity & and the displacement X,
are the fuzzy confroller inputs. The DC motor control
voltage Vi(ingup) 18 the output variable.

The membership functions of the input and output va-
riables are shown in Figs. 2 to 5. Fig. 2 presents the five
membership functions selected for the angle. The rectan-
gular membership function (1) represents the pendulum
angle ¢, where (n/2 < €/ < 3m/2); accurate measurement is
not necessary at this state. The pendulum angular veloci-
ty @, inFig. 3 is represented by two membership func-
tions, namely, N (clockwise) and P (counterclockwise).
The cart displacement X is represented by two triangular
and one trapezoidal membership function as shown in
Fig. 4. For output swing-up control voltage Viing-ipy»
seven singleton membership functions are selected, as
shown in Fig. 5, to represent the applied control voltage
on the DC motor. The positions of the singleton mem-
bership functions are selected to minimize swing-up time.

# (Membership degree)

[

g

T
Pendulum angle 6 (rad )

Fig. 2. Pendulum angle membership functions.

H (Membership degree)

N P

=20 0 20

Pendulum angular velocity  (m \sec)

Fig. 3. Pendulum angular velocity membership func-
tions.
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0.4 o X
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Fig. 4. Cart position membership functions.
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0
Control voltage V..wps )

Fig. 5. Output control voltage membership functions.



The swing-up controller is designed based on 30 fuzzy
rules. The rules consequents are chosen to increase the
pendulum energy to reach the upward position energy.
During the swinging-up, the cart rail limitation should be
considered. Each three rules are designed at the same
Pendulum angle ¢ and angular velocity @, with consid-
eration of the cart position.

For instance, if the pendulum angle is | and the pendu-
lum angular velocity is N, the three rules are developed
as follows: First, without consideration of the cart limits,
the logical swing-up control action should be PB. Then,
the cart position membership functions (N,P and Zero)
will be considered to form the three rules, for each rule &
and @ are constant (1 and N, respectively).

Rule 1: Iffis 1 and @ is N and Xis P, then Vi ing-i)
is Zero.

This rule means that the pendulum is located in the
downward half cycle (n/2 < ¢ < 3xn/2) and rotates clock-
wise. As mentioned above, the logical swing-up control
decision should be PB. However, as the cart is located at
the positive side of the rail (X is P), the rule consequent

should be Fasyingun = 0 to keep the cart within the limits.

Rule 2: If #is 1 and &€ is N and X is Zero, then
Va(swmg—wp! is PM.

The cart is located in the middle of the rail (X is zero).
Thus, the control action should be to move the cart in the
positive direction with a medium force. The rule conse-
quent should be Va(ing-up is PM.

Rule 3: Iffis 1 and & is N and X is N, then Vot swwing-
) 15 PB.

The rule consequent should be Vay,pg.,y is PB be-
cause the cart is located at the negative side of the rail (X
is V).

The other 27 rules are selected through the same pro-
cedure. The controller allows the pendulum to reach the
upward position while the cart remains within the re-
stricted limits.

3.2. Sliding mode stabilization controller

Sliding Mode Controller is designed based on the third
order derived mode. From the system model in (20) and
(24), and if D, and D, are bounded external disturbances,
the entire system model will have the following form

G=a,+RV,+D, (28)
X=a,+ BV, +D,, (29)

where a;, @, f> and f; are nonlinear functions of the
system states. The control law is designed based on the
sliding surface. The general equation of the sliding sur-
face S'is [14]

[([ Jn—l
Sen=|—+C| x (30)

where x is the system sate, # is the system order and C is
a constant value. The sliding surface will be constructed
based on the third order derived model where n=23. In
this case (CIP), two sliding surfaces, §;for the pendulum
subsystem and S; for the Cart subsystem, are considered.

where
8, =Cr0+2C,0+40, (31)
8, =ClX+2C, X+ X, (32)

C; and C; are positive constants. Sliding surfaces §; and
§, are constructed based on the constants C; and C». Ap-
propriate selection of these constants values will achieve
the desired response.

The control law is designed based on the sliding sur-
faces. Since only one control action is available, the Pen-
dulum angle will be considered as primary control target
and the cart position is the secondary target. Initially, the
controller is designed to achieve the primary target
where S; = (). An intermediate function is utilized to link
between the secondary and primary targets. This function
will achieve the cart subsystem stability if the pendulum
stability is reached.

The control is designed based on Lyapunov like func-
tion

1 2
V= ESI“. (33)
As it is known from sliding mode theorem, in order to
achieve the system stability the control law must match

the following reaching condition

V= 5151 <-n

5,

(34)

where # > 0, this condition ensures that the system will
be driven into the sliding mode. The control law will be
derived as follow, from (34)

S, -sgn(S,) < . (35)
From (31)
$=Cr0+20,0+0. (36)

Substituting with (36) in (35)
(CRO+2C,8+a, + BV, + D)) sgn(S,) < -1, (37)

(CRO+2C,8+a, + D)) sgn(S,) + BV, -sgn(S,) < —n,

(38)
G ¢r;'+2cgr+o:1 +D, J
sgn(S5, )
[ (39)
V,-sgn(S A)<— |ﬁ |
1
From (39), the control law could be written in form
-1 -2C6-a
Va( stablize) — % -K Sgn(Slﬁ; )1 (40)
1
where
K> D +n
6l

The first term of the control law is estimated from the



system model, and it will be donated as ¥V, p10)s
where:

. -Cr-200-¢
P;n{x!rrbﬂa':a} = A .
1

This form of the control signal guarantee the stability for
the pendulum subsystem since the reaching condition is
achieved and the sliding motion will occur. The control
action Fgumpiizep as it is shown in (40), has a high-
frequencies switching because of the Sgn function. To
overcome this problem, a boundary layer will be formed
by replacing Sgr function with Sat function as follows:

_ S8
V:ﬂ{.\'mbﬂ{:e} = Va(ﬂubh':e] - K sat [%J ] (41 )
where
. SAh i 1Shs,
sat {Slﬁl J = ¢ ¢ (42)
o) 0sa [sAlL
¢ ¢

where @ is upper limit of the boundary layer function.

This kind of control scheme will be capable of reject-
ing all the high-frequencies and solve the chattering
problem.

The control law in (41) can only guarantee the pendu-
lum angle stability. The control objective is to move the
pendulum and the cart subsystems to the sliding surfaces
Sy and S, respectively, where the overall system stability
could be achieved. In order to do that, an intermediate
function Z has been introduced to link between the two
subsystems sliding surfaces §; and S; [7]. The function Z
design is introduced as follows:

First, the first sliding surface will be reformed to be

8 =G (0-2)+2C,0+40, (43)

where Z is a function of S; which means that the sliding
surface S;was incorporated into the sliding surface S,
through Z function. The new sliding surface has changed
the control target from 6= 0, O=0and =010 0= z,
0=0 and @=0. The objective (S, = 0) is now embed-
ded in the main conftrol target through the variable Z
which is defined

S,
Z=sat| —=|. Zy, 44
‘U{¢J U (44)

where Z;; is the upper limit of the function; ¢. is the
function boundary layer. Z is abounded oscillatory func-
tion decays to zero. When Z reach zero, S will be zero
according to (43).

3.3. Switching between swinging-up and stabilization
control

A one-move switch is developed to switch between the

swing-up and stabilization controllers. This switch en-

sures that the fuzzy swing-up controller is activated only

one once. When the pendulum reaches the upward point,
the stabilization controller is activated permanently.
Switch output (V,) is represented as follows:

V =

a

Votswing—upyr 1T (00 <27), and (N <1)
' (45)

Vtstapizeys i (0227 0r0<0), 0r (N 21)
Where N is an integer counter that counts the numbers of
the upward position at (6 = 0).

4. SIMULATION RESULTS

Simulation was performed with MATLAB. Simulink
was utilized to solve and simulate the CIP system
dynamics provided by (20) and (24). With the fuzzy
logic toolbox in Matlab Simulink, the fuzzy swing-up
controller was applied to swing the pendulum upward.
Two different stabilization control schemes, namely,
SMC and LQRC, were compared. Both controllers (SMC
and LQRC) were tested with the fuzzy controller in the
swing-up phase. For testing purposes, nonlinear friction
force between the cart and rail was considered according
to (3). This force acts as an external disturbance on the
controller. Cart rail limit was set to +0.4 m, and motor
saturation voltage was set to +6 V. All CIP systems and
friction force parameters are listed in Table. The CIP
system and LQRC parameters were selected to keep the
controller within the system limits. The selected
controller parameters for SMC were chosen C;= 5.5, C2
=31, K=15 &=8x 104, #.=19, and Z,= 0.98.

In addition, and for comparing purposes, LQR
controller are designed to stabilize CIP following the
same algorithm that was applied in [4,5]. The selected
parameters for LQRC were R = diag[400 1 2500 1],
O =4, and generated feedback gain vector K;,=[-10
-12.990.5174].

The pendulum angle response for the fuzzy swing-up
controller with SMC is shown in Fig. 6. Pendulum

Table 1. System parameters.

Parameter Value Unit
M 0.882 kg
m 0.32 kg
L 0.3302 m
1 7.88x10% kg.m’
g 9.8 m/s”
q 0.0001 N.s/rad
L, 0.18 x107 H
R, 2.6 Ohm
J 3.9x107 kg.m’
B 8x107 N.m.s/rad
K, 0.00676 N.m/A
K, 0.00676 V .s/rad
r 6.35x10 m
F, 0.1 N
F, 0.08 N
Ve 0.1 m/s
b 1.3 N.s/m
n 4 -
Xy 0.05 m/s
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Fig. 6. Pendulum angular position response for fuzzy
swing-up with SMC.
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Fig. 7. Cart position response for fuzzy swing-up with
SMC.
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Fig. 8. Control voltage response for fuzzy swing-up
with SMC.

swing-up time is within 6s. The figure shows the
effectiveness of the SMC in stabilizing the system in spite
of nonlinear friction forces. Cart displacement and control
signal response are shown in Figs. 7 and 8. respectively.
Stability is achieved when both curves decay into zero.

The results of the fuzzy swing-up controller with
LQRC are shown in Figs. 9 to 11. However, the results
reveal oscillations in cart position and control voltage
responses. LQRC cannot achieve system stability within
the simulation time because of friction uncertainties.

Pendulum sngle # (rad)

' 5 10 15
Tie (sec )

Fig. 9. Pendulum angular position response for fuzzy
swing-up with LQRC.
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Fig. 10. Cart position response for fuzzy swing-up with

LQRC.

Control voltage Wa {vait)
+

0 5 10 15
Time fsec.)

Fig. 11. Control voltage response for fuzzy swing-up
with LQRC.

5. EXPERIMENTAL RESULTS

The experiment was conducted with inverted
pendulum model system IP02 supplied by Quanser
Limited. The electromechanical setup consisted of the
cart-pendulum mechanical setup., DC motor, and two
incremental encoders to measure the pendulum angle and
cart position. The two encoders had a resolution of
0.0015 rad/count and 2.275x10” m/count, respectively.
The controller setup included personal computers, an
AD/DA data acquisition card, and a Quanser power
module (model UPM 800) to amplify the control signal.
A least square fitting algorithm was utilized for velocity
and acceleration estimation. Fitting was performed with
a third-order fitting curve for eight counts (LSF 3/8) [17].

The control algorithms were established with Matlab
Simulink and QuaRC real-time toolbox developed by
Quanser with a clock frequency of 1kHz The fuzzy
swing-up controller was tested experimentally with two
stabilization controllers, SMC and LQRC. The selected
controller parameters for SMC real-time implementation
were C;=4. (=2, K=3, ¢=22x 10°, @.=4, and
Z,=0.9. The selected controller parameters for LQRC
were R =diag [400 1 2500 1]. O=1. and generated
feedback gain vector Ky =[-20 -21.6 124.96 23.2].

Figs. 12 to 14 present the results of the actual imple-
mentation of the fuzzy swing-up controller with SMC.
The pendulum was swung upward within 6 s before
SMC was applied. The pendulum was balanced in the
upward position: stability was noted. Cart displacement
and control signal were driven near the equilibrium point
with nunimal oscillation.

The fuzzy swing-up controller was tested with LQRC.
The results are shown in Fig. 17. The pendulum took 6 s
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Fig. 12. Experimental result for pendulum angular posi-
tion with Fuzzy swing up and SMC.
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Fig. 13. Experimental result for cart position for Fuzzy
swing up with SMC.
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Fig. 14. Experimental result for control voltage for
Fuzzy swing up with SMC.
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Fig. 15. Experimental result for pendulum angular posi-
tion with Fuzzy swing up with LQRC.

to reach the upward position before LQRC was applied.
Some oscillations were observed in the pendulum angle
response because of the friction effect and other uncer-
tainties. The cart response exhibits oscillations and
steady-state errors. Fig. 17 shows the control signal for
the LQRC where high overshoot values can be observed.

The steady state error could be in the cart position
plots (Figs. 13 and 16) is due to many sources such as the
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Fig. 16. Experimental result for cart position with
Fuzzy swing up with LQRC.
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Fig. 17. Experimental result for control voltage for
Fuzzy swing up with LQRC.

real nonlinear friction effect which is still has unknown
terms depending on the temperature and the cart pinion
and the rail materials. In addition the cart pinion has been
shunted with the motor shaft, thus some relative motion
is expected especially in the aggressive motion of the
motor. Moreover, some errors caused by motor backlash,
signal noise, digital quantization have not been
considered in the simulation.

6. COMPARISON RESULTS AND DISCUSSION

Simulation and experimental comparison were per-
formed with the SMC and LQR applied experimentally
in related literature. The aim of the comparison is to
show the validity and effectiveness of SMC compared
with LQR, especially in terms of steady-state response.
LQR is simpler in design compared with SMC and does
not experience the chattering problem. Selecting between
LQR (linear) and SMC (nonlinear) depends on the
designer and the applications itself. SMC is preferred in
robust and precise control applications, and LQR is
suitable for simple controller structures. Disturbance
rejection can also be utilized with LQR to improve
controller response.

An external disturbance with a value of 0.1rad and
duration of 1s was applied after 20s during the
simulation. The pendulum and cart responses are shown
in Figs. 18 and 19, respectively. SMC produced a faster
pendulum angular response and exhibited better ability to
reject disturbance compared with LQRC. The maximum
overshoot was reduced by 30% when SMC was applied.
The cart response revealed the robusmess of SMC
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