A Configurable Architecture for Fast Moments Computation

Kah-Hyong Chang - Raveendran Paramesran

Abstract In this paper, we present a single-chip architecture
for generating a full set of geometric moments using digital
filters. Other types of moments such as Zernike and
Tchebichef moments can also be implemented. The architec-
ture can be configured for any order of geometric moments
and image spatial resolution at run time. The use of a single-
scaler method and reusable hardware resources enables higher
order moments to be computed. The incorporation of two-
level pipelining and masking techniques further increases the
throughput. Realized in a field-programmable gate array, the
design is capable of processing sixty 512x512 8-bit-pixel
images per second at 20 MHz, generating (59+59) orders of
geometric moments (3,600 moments). The maximum round-
off error is approximately 1 %.

Keywords Image processing - Moments - Digital filters -
Real-time - Configurable - High-order - Field-Programmable
Gate Array (FPGA)

1 Introduction

Moment invariants first introduced by Hu [1] have been
extensively used in object classification, image, shape analy-
ses efe. [2-4]. Teague [3] later introduced a set of continuous
orthogonal moments, such as Zernike and Legendre moments.
Due to their orthogonality, they found a wider range of appli-
cations, which include character recognition, trademark seg-
mentation, and retrieval [5, 6]. Further work has led to the
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introduction of a new set of discrete orthogonal moments:
Hahn, Tchebichef and Krawtchouk moments [7-9]. Fast com-
putational methods have also been developed [10-12]. As a
result, applications involving moments of as high as 60 orders
are becoming increasingly feasible [13-15]. Notwithstanding
the availability of fast algorithms, the computation time still
represents a challenge for real-time systems, for their realiza-
tions have largely been confined to the software domain.

Since Zernike [3], Tchebichef [8] and Krawtchouk [9]
moments are shown to be realizable by computing the Geo-
metric Moments (GM), our motivation has been to realize a
run-time configurable, high-order GM computation architec-
ture using the extended digital filter structures. In the next
section, we will review the digital filters structures. An over-
view of the design is provided in Section 3. In Section 4, the
single-scaler and cascaded filter structures will be discussed,
with the implementation results and performance analysis
presented in Section 5. We will conclude the presentation
in Section 6.

2 Review of the Digital Filters

GM, m,,, of order (p+gq), of a digital image f(x,y) with a
spatial resolution of N x M is defined as:

N-1M-1

mpy =Y > flx,y) ). (1)

=0 y=0

To calculate (1), Hatamian [16] proposed a 2-D filters
method to implement the first 16 moments. Wong and Siu
[17] moved the delay element in the basic filter structure [16]
to the feedback path, for up to the third order. Kotoulas and
Andreadis [18, 19] extended the basic filter structure [17], by
incorporating a single-pole, feedback type of filter structure
as shown in Fig. la. The maximum (max) values of the required
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Figure 1 Kotoulas and Andriadis’ basic filter structures. a Feedback
type; b Feedforward type.
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moment order and/or image spatial resolution (hereinafter
referred to as run-time configurable parameters), are limited
by the propagation delay along the serially connected adders
in the filters. Due to the absence of a registered output for each
of the adders, timing critical paths exist for relatively low
maximum values of the run-time configurable parameters.
‘When the same design is adapted for column filtering opera-
tions, even if all the outputs of the cascaded filter structures
are available at the same time, an intermediate memory
buffer may still be required for storing their outputs prior
to the matrix multiplication operations. As memories have
limited data ports, delays are inevitable anyway.

Later, Kotoulas and Andreadis [20] improved on the filter
structure in [16]. A single-pole, feedforward type of the filter
structure shown in Fig. 1b is used. The propagation delay can
now be ignored, as the outputs of the adders are registered.
However, the size of the accumulator grid structure still
increases significantly with the increasing maximum order of
moments [18-20], and presents challenge to the routing.
Other drawbacks include the insufficient time for the
filters to output the results before the next row of input

Figure 2 Top-level architecture.

data arrives. Next, we introduce a design to address the
aforementioned shortcomings.

3 Overview of the Design

The top-level diagram in Fig. 2 comprises the two main
modules of the design: the digital filter and the matrix multi-
plication modules. The modules are connected by an interme-
diate Random-Access Memory (RAM), which stores the
intermediate data and scale-factors. In this design, the row
adders and other associated circuitry are collectively known
as the cascaded filter structures. As is in [16], images need
to be first reversed.

An external host ensures that valid run-time configurable
parameters have been written before asserting the start row
filtering signal. The moment generator issues the input ready
signal to the host to signal its readiness for the next image. The
host indicates the arrival of the next image by asserting the
start row filtering signal. By using this handshaking, and
storing the intermediate data, we have discarded the column
adders and time-shared the row adders. At the end of the
column filtering operation, the cascaded filter structures out-
put the final filter output data to the intermediate RAM, that is
accessed by the matrix multiplication module, which incorpo-
rates a multiplier, an accumulator, and a coeflicient generator
that generates the coefficients [21] used in the two phases of

matrix multiplication. After a given latency that depends on
the run-time configurable parameters, the moment values can
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be read at the moment and scale-factor output ports. The
moment values are accompanied by the output valid signals.
The design features that are used to accomplish the aforemen-
tioned operations are described next.

3.1 Data Buffering and Time-Sharing of Resources

In order to achieve flexibility in configurability and enable
main hardware resources to be time-shared, the intermediate
and output data from the filters are stored in the RAM buffers.
Figure 3a, b and ¢ show the buffer occupancy for the RAM for
the digital filters (row filtering output buffer), the intermediate
RAM (column filtering output buffer), and the RAM for the
matrix multiplication module (matrix multiplication phase 1
output buffer) respectively. By storing the filter intermediate
outputs in the RAM for the digital filters, the cascaded filter
structures are time-shared between the row and column fil-
tering. External memory resources may also be used, by
providing suitable interfaces and controllers. The removal of
the column filters results in configurability, and data-scaling
can be carried out by using only one scaler.

3.2 Data Scaling

By scaling the intermediate data, the size of the datapath
circuit elements such as adders is no longer rigidly defined.
Figure 4 shows a single-scaler with the cascaded filter struc-
tures. The scaling begins at the input before the first filter
structure in the cascaded filter structures. The use of a single-
scaler is feasible for designs based on the feedforward type of
basic filter structure [16], but not for the feedback type [17].
The following illustrations will explain the reasons why this is
the case.

In Fig. 5, m represents the maximum order of moment,
whereas n represents time instance. The input to the filteris x,
which, in this illustration is equal to 1 for four consecutive
clock cycles, starting from n =1, and the outputs of each of the
(m+1) cascaded filter structures are Y, Vi, Vin—1s Vs

Figure 4 Cascaded filter
structures and the single-scaler
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respectively. Figure 5a is an illustration for the feedback type
of cascaded filter structures. The outputs (bold-font values) of
the filter structures are shown in Fig. 5a, at n=4, for m=3,
given by:

¥o(n) =x(n) + Y yi(n=1), 2)
k=0

where y, is valid at n=m +1, r={0,1,..m—1m}.

During a particular time instance n, any of the addition
operations in (2) may result in an overflow. Maximum (m+1)
overflows and (m +1) scale-factors are required to keep track
of the output values of the filtering stages, y,(n). In addition,
(m+1) scale-factors compare operations are required to com-
pare and determine which of the corresponding output values
of the filtering stages needs to be scaled. Maximum (m+1)
right-shift operations must take place within one cycle. It is
therefore insufficient to use only a single-scaler.

The feedforward type of cascaded filter structures and the
state table is depicted in Fig. 5b, in which the outputs of the
filters are in as bold fonts, atn={5,6,7.8}, form =3, given by:

2p(n) = x(n=(r + 1)) + Y v (r~(k + 1)), 3
k=0

where y,(n) is valid at n=m+r+2, r={0,1,..,m —1m}.
If we rearrange (3), we obtain:

y(n) = B + y,(n-1),
B x (n=1) r=0 (4)
V(1) r={1,2,..,m-1,m},

where y,(n) is valid at n=m+r+2.

In (2), the inputs of any two-input add operations in the
summation operation depend on the outputs of other add
operations within the same operation at the same time in-
stance. However, (4) shows that the inputs of a two-input
add operation do not depend on the outputs of other add
operations at the same time instance. If any of the add oper-
ations overflows, the right-shift-by-one-bit-and-round of the
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output of that particular add operation will not affect the other
add operations taking place at the same time instance; one
scale-factor is already sufficient to represent the radix-2 expo-
nent of all the outputs of the filtering stages at that particular
time instance. With y,.(n) right-shifted by only one bit, neither
a comparator nor right-shifter (for right-shifting an operand
for more than one bit) is necessary.

3.3 Two-Level Pipelines

Two levels of pipelines are used in order to increase the
throughput. The architecture does not suffer from the draw-
back as in [16], where the filter does not have enough time to
generate results before the next row of input data arrives. To
overcome this, we incorporate a micro-level pipeline in the
filter structure. First, we introduce an extra output data register
in each filter structure. When these registers are connected
together as the filter structures are cascaded, they form a chain
of one-in-serial-out shift registers. The difference compared
to the normal kind of parallel-in-serial-out shift registers is
that, instead of updating the shifi registers in parallel in
one clock cycle, only one of the shift registers is updated
with an output from the filtering structures in a clock cycle
during the filtering stage.

By using the one-in-serial-out shift registers and the data
buffering method, and by time-sharing the row adders for both
row and column filtering operations, the output data obtained
from a previous filtering operation can be shifted out and
stored into the RAM serially, while the current filtering oper-
ation is still active, without the need of using a large selector to
select the data. However, there is still a gap of inactivity in the
filter pipeline timing diagram, labeled as gap in Fig. 6. After
introducing another output data register in each of the filter
structures, forming a second chain of one-in-serial-out shift
registers, the gap is closed. The filtering operations are now
fully pipelined. In terms of chip area savings, with the one-
in-serial-out shift registers incorporated into the design, the
use of large-size multiplexers becomes unnecessary. The
one-in-serial-out shift registers also contribute to the ease
of configuring the required order and parameterizing the
maximum order.

On another note, the flow of data through the digital filter and
matrix multiplication modules as shown in Fig. 2 is buffered by
the intermediate memory buffers. Figure 3a and ¢ show that this
macro-level pipelining technique has enabled the filtering and
the multiplication operations to be executed concurrently. The
resulting increase in throughput indirectly translates into higher
mun-time configurable parameters. Nevertheless, if the ratio of
image spatial resolution to the maximum order of moments is
close to one, the matrix multiplication operation may take
longer time to complete than the digital filtering operation. To
coordinate the macro-level pipeline, inter-modul ar handshaking
signals are used as semaphores.
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Figure 5 Cascaded basic filter structures and the state tables illustrated
for m=3. a Feedback type; b Feedforward type.

3.4 Coefficient Generator

The use of the coefficient generator as shown in Fig. 2
facilitates the parameterization of the maximum order of
the GM, as the coefficient generator auto-generates the
coefficients [21] used in the matrix multiplications on-
the-fly. Updating the Read-Only Memory (ROM) table
when a higher maximum order of moment is implemented
is no longer necessary. Two dual-port RAMs are used in
the coefficient generator. Their size increases linearly with
the maximum order. While one RAM is used in providing
the coefficients for matrix multiplications as well as for
generating the new set of coefficients, the other is used for
storing the derived set of new coefficients. No multipliers
are used; iterative additions are performed instead. It is
noted that the coefficient generator can be replaced by the
ROM table, without affecting the configurability. However,
the increase in size of the ROM table is proportional to
the square of the amount of increase in the maximum
order of moments. Therefore, as far as parameterization
and chip size considerations for higher order of moments
are concemed, the coefficient generator is an attractive
option. The operations and structures of the design features
will be discussed next.
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Figure 6 Timing diagram showing the gap between consecutive filtering
operations.
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4 Operations of the Single-Scaler and Filter Structures

A maximum scale-factor is obtained from the scale-factor
compare module in Fig. 2. The single-scaler receives this
value. One scaler is sufficient, even though there can be a
maximum of two filtering operations in the cascaded filter
structures pipeline.

At the start of the filtering operation, either one of the two
scale-factor registers in Fig. 7 is used to store the maximum
value. When a new filtering operation begins, the toggle flag
is inverted. This toggle flag is implemented because two
filtering operations may co-exist at the transitions between
two consecutive row or column operations. Depending on the
toggle value, one of the two scale-factors selected by a mul-
tiplexer is incremented by 1 if an overflow situation occurs,
while the other is incremented by 1 if an overflow situation

Figure 8 Cascaded filter
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occurs in a previous filtering operation that may still be
present in the pipeline. The updated former scale-factor is
subtracted by the scale-factor associated with an incoming
data. The results will determine the number of bits the data
are to be right-adjusted, after which they are output to the
cascaded filter structures.

In the cascaded filter structures shown in Fig. 8, there is a
total of (m+1) cascaded filter structures. Each of the filter
structures is identical. The first filter structure in the cascaded
filter structures receives the scaled data from the single-
scaler, and a filter input valid signal from the control
module. The cascaded filter structures output two signals:
overflow 0 and overflow 1 to the single-scaler shown in
Fig. 7, as well as back to each of the filter structures.
These signals indicate to the single-scaler the overflow situa-
tions of the two filtering operations. Two filtering operations
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Table 1 Top-level parameters.

Table 3 FPGA (EP4SES530F43C2ES) implementation results.

Image spatial resolution  512x512

Scale-factors 14b

Matrix multiplication 270b
(MatMul) input data
MatMul coefficients 33b

MatMul accumulator 302b

Combinational ALUTs
Dedicated logic registers
Total block memory bits

110,580/424,960
51,388/424,960
11,564,928/21,233,664

Digital filter operands 270b
input data
Max orders of moment

Input pixels 8b 59+59

may be present in the micro-pipeline of the cascaded filter
structures at the same time.

The design of the filter structure is as depicted in Fig. 9. It
has a divide-by-two-and-round circuit to cater to an overflow
situation, which is deemed to have occurred if any of the filter
structures pertaining to the same filtering operation in the
cascaded filter structures has an overflow condition. Since a
filter structure in a consecutively connected part of the cas-
caded filters may belong to either one of the two micro-
pipelined filtering operations, its overflow signal is masked
by the two signals pipelined down the filter structures. The
first masking signal indicates that the current operation in that
filter structure is pertinent to the first filtering operation in the
micro-pipeline, as the second masking signal is to the second
filtering operation.

Each filter structure in the consecutively connected part
of the cascaded filters is activated by a third masking signal
that has been pipelined down before the moment computa-
tions start, for a number of clock cycles depending on the
order of moment configured by the host. This masking
signal masks out the overflow signals if that filter structure
is not activated.

Referring to Fig. 9, the left-most section of the filter struc-
ture contains two data registers. When cascaded together, they
form two one-in-serial-out chains. These chained registers
store the outputs of the filter structures shown as bold-font
values in Fig. 5b, as discussed in Section 3.2.

5 Implementations and Performance

The circuits are modeled in Verilog HDL. In order to find an
optimal set of top-level circuit parameters, the design is
parameterized using increasingly demanding seftings. Table |
lists the final parameters selected.

Table 2 Maxinum

round-off errors in the Stream Max error (%)
GM.

Baboon 1.27

Barbara 1.08

Bride 149

Boat 0.56

Fmaxl , Fmax2 29.7 MHz, 20.38 MHz

The maximum round-off errors in the GM obtained by
comparing the functional simulation results with the reference
results generated by the GNU C++ (with GNU Multiple Pre-
cision Arithmetic Library), are shown in Table 2. When OxFF
is fed in as inputs, the maximum round-off error is 0.91 %,

The implementation results generated by Altera Quartus I
9.1 are summarized in Table 3. The logic utilization is 39 %. Two
clock domains are specified for the synthesis, for the digital filters
as well as matrix multiplication modules. Their maximum fre-
quencies are Fmax! and Fmax2 respectively, which show that
the critical path is located in the matrix multiplication module.

Using only one operating frequency of 20 MHz, the latencies
of the main operations involved are listed in Table 4, which
shows that the performance of the digital filters is the bottleneck.

Sixty images of 512% 512 grayscale pixels are processed by
the design in 0.972 s. In total, (59+59) orders of GM are
generated in 16.2 ms per image. Extending the feedforward
type of accumulator grid structures [18-20] to obtain a full set
of 3,600 moments, a fair comparison can then be made in
terms of the latencies of the digital filtering operation. Since
the matrix multiplication operation in [18-20] is performed
off-chip, Tables 5 and 6 show only the figures for the digital

I'able 4 Latencies of the operations in moments computation.

Operation Latency (cycles)
Filtering Row, Column 262,144+ 61,746 323,890
MatMul Phase 1, 2 110,045+ 110,035 220,080

I'able 5 Latencies of the digital filtering (filt.) operation and run-time
configurability of the architectures.

Row filt. Col filt. Total Configurability
(cycles)
[18-20], if bit-serial N (M +g+1) M(p+1) 32358 No
adders used in
column (col)
filters
[18-20], if ripple- (pt1) 292924 No
carry adders
used in col
filters
[22] NM+{g+1) NA. 262204 No
This work NM+(g+1) (g+1)(N+p+1) 296,524 Yes, in powers
of 2
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