Recursive construction of output-context fuzzy systems for the
condition monitoring of electrical hotspots based on
infrared thermography
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Infrared thermography technology is currently being used in various applications, including fault
diagnosis in electrical equipment. Thermal abnormalities are diagnosed by identifying and classifying
the hotspot conditions of electrical components. In this article, a new recursively constructed output-
context fuzzy system is proposed to characterize the condition of electrical hotspots. An infrared camera
is initially used to capture the thermal images of components with hotspots, and intensity features are
extracted from each hotspot. The Recursively Constructed Fuzzy System (RCFS) is then applied to
automatically realize and formulate the conditions of the thermal abnormalities. On the basis of the
priority level, the hotspot conditions are categorized as normal, warning, and critical. From these three
categories, the conditions can be further simplified into two categories, namely, defect (warning and
critical) and normal. The proposed RCFS realizes the prominent distinctions in the output domain by
using a self-organizing method. The termination of the recursive algorithm finds an effective rule base to
achieve an accurate representation of the datasets. The proposed system obtains less fuzzy rules with
reasonable accuracy. Our survey of 253 detected regions shows that the proposed RCFS produces 92.3%
and 80% testing accuracies for classifying conditions into two and three classes, respectively. The
thermographic diagnostic evaluation shows that the proposed intelligent system automatically identifies
the rationally acceptable limits of hotspot conditions. Therefore, the proposed system is suitable for

establishing an intelligent defect analysis system.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Heat energy is an important factor in electrical equipment for
increasing operational reliability. Electrical current passes through
a resistive component and generates heat. The thermal energy
generated from an electrical component is directly proportional to
the square of the current passing through it and its resistance (IR
loss). Therefore, an increase in resistance results in an increase in
heat. Over time, the condition of the electrical components will
begin to deteriorate because of various reasons, such as poor or
dirty connections, overloading, insulation problems, load imbal-
ances, corrosion, and wiring mistakes (Korendo and Florkowski,
2001). Components show increased resistance and heat generation
with increasing deterioration. The increase in heat energy can
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cause electrical equipment to fail and fires to break out. The faults
caused by the abnormal heating effect can be prevented if heat is
detected at an early stage by effective screening and if necessary
steps are immediately taken.

Infrared thermography (IRT) senses the heat produced in elec-
trical components. The thermal profiles of different electrical com-
ponents and connectors are captured by using an infrared camera.
The thermal profile (i.e., thermogram) consists of a heat picture and
a scale of the temperature values of the equipment. The different
colors of the temperature scale represent the different temperature
zones in the equipment. By using this profile, thermographers
analyze the thermal images and classify the condition of hotspots
on the basis of the priority level of repairs. The thermographers then
provide suggestions for further action. Finally, the components with
hotspots are tested and repaired according to the priority level
(Huda and Taib, 2013).

Both manual and Automatic Feature Extraction (AFE) methods are
currently employed for the intelligent classification of the thermal



conditions of electrical equipment on the basis of thermography.
Almeida et al. (2009) proposed an intelligent fault diagnosis system
based on thermography for lighting arrestors by using 2 types of
variables as inputs of a neuro-fuzzy network. Thermographic and
identification variables were used to classify the faults, and the results
show approximately 90% accuracy. In one study, RGB color scale data
and temperature data were used as the input features of Artificial
Neural Network (ANN) to detect internal faults (Shafi'i and Hamzah,
2010). The experiment obtained a 99.38% testing accuracy. Smedberg
(2006) and Wretman (2006) proposed an intelligent classification
system based on ANN to diagnose 3-phase fuses and different forms
of connection problems. The 4 input parameters of ANN were used,
namely, absolute max temperature, relative max temperature, mean
temperature difference compared with the other regions of the
image, and histogram distance to the other regions of the image.
The test error rate was 9.5% when all 4 feature parameters are used as
ANN inputs, and the error rate was 312%when only histogram
distance is used as input. The dataset comprised 74 infrared images.
One of the disadvantages of working with a small dataset is that the
reliability of the results can sometimes be questionable.

On the contrary, several studies have been conducted on the
basis of the AFE method and intelligent classification system.
Nazmul Huda et al. (2012) proposed a semi-automatic system for
electrical thermography. This system uses 15 statistical features and
Multi-Layer Perceptron (MLP) network to classify thermal conditions
as normal, warning, and critical. This system achieved 78.5%
accuracy. Another research proposed an intelligent system to detect
faults of electrical equipment in ground substations based on
Support Vector Machine (SVM) as a classifier and 22 image features
of Zernike moments. The diagnosis obtained 68.42% accuracy
(Rahmani et al, 2010). In one study, 10 statistical features and MLP
network were employed to differentiate between normal and
defective conditions. The system achieved 82.40%accuracy (Nazmul
Huda and Taib, 2013). In another study, 6 statistical features and MLP
network were used to identify the overheated component; the
system reached 79.4% accuracy (Huda et al, 2014).

To develop a robust and reliable system, a new Recursively
Constructed Fuzzy System (RCFS) is introduced in this study to
classify the conditions of hotspots in components. The proposed
system employs AFE and a novel intelligent classification system.
The gray scale images of infrared thermal images of components
are segmented by using a manual thresholding technique. Then,
AFE system automatically extracts six intensity features (i.e.,
maximum, minimum, mean, median, standard deviation, and
variance). The RCFS is a self-automated system that automatically
detects the conditions of components and classifies the abnorm-
alities of electrical equipment into classes, namely, normal, warn-
ing, and critical. In this study, the RCFS is an output-context fuzzy
system that recursively constructs the fuzzy rule base by deter-
mining the prominent distinction on the output domain. The
termination criterion for recursive algorithm is not threshold as
presented in Wang et al. (2010), which realizes from previous and
present stages of evolving. The algorithm terminates by recogniz-
ing the overfitted partition of the system; therefore, an effective
rule base is obtained by the proposed RCFS. After termination, a
further evolving process will decrease the model performance.
Hence, the computational model of the fuzzy system is automa-
tically designed by the RCFS rather than by human experts.

Neural fuzzy systems are hybrid systems that capitalize on the
functionalities of fuzzy systems and neural networks (Nauck et al.,
1997). The black-box nature of a neural network can be resolved
by integrating the interpretability of a fuzzy system into a
connectionist structure (Nauck et al., 1997; Tung et al, 2011).
Furthermore, introducing the learning capabilities of a neural
network into a fuzzy system will enable the system to automati-
cally refine its parameters (Bosque et al., 2014; Tung et al., 2011).

The output-constrained cluster approach (Wang et al, 2011) and
Semantic Cointention (SC) approach (Mencar et al., 2011) consider
the fuzzy c-means (FCM) to partition data. In the output-
constrained cluster approach (Wang et al., 2011), the output space
is first roughly partitioned by using FCM. Thereafter, the data
within each output constraint are further refined on the basis of
“separability,” which refers to the connectivity of the inputs. Prior
knowledge of rough clustering in the output space makes a fuzzy
system unintelligent. The results in Wang et al. (2011) and Mencar
et al. (2011) are highly subjective and uncertain because prior
knowledge (user-defined number of clusters) was used to design
these fuzzy systems. The results are subjective in the sense that
the user-defined numbers of clusters are applied to the environ-
ment. Nonlinear training or testing errors can be observed in the
evaluation, and an absence of overfitting/underfitting assessment
is present. Therefore, uncertain results (nonlinear training or
testing error) are obtained for some clusters. For example, based
on Mencar et al. (2011) for the ionosphere dataset, a nonlinear
nature of the testing errors is observed while number of cluster
increases. For the automobile dataset, Wang et al. (2011) shows
that the training error increases and the testing error decreases
with increasing number of rules. Nevertheless, inconsistent results
between automobile and census datasets were found. The output
domain is evenly partitioned similar to the method of Pedrycz and
Kwak (2006); therefore, the output domain ignores the local
distribution of the input data. An evenly partitioned output
domain may also cause underfitting or overfitting, therefore
leading to inaccurate performance. The aforementioned limita-
tions of the existing models are considered in the RCFS. The RCFS
is a self-organizing process and evolves by considering both the
input and output spaces. The evolving process continues until the
termination criteria are fulfilled and the RCFS successfully obtains
an effective rule base.

The remainder of this paper is organized as follows. Section 2
describes the necessity of IRT for fault diagnosis. Section 3 discusses
the methodology of thermographic diagnosis. Section 4 covers the
AFE technique. Section 5 elaborates on the RCFS and its algorithms.
Section 6 evaluates the expert system for thermographic diagnosis
of elecftrical components. Section 7 concludes.

2. Importance of infrared thermography-based condition
monitoring

The infrared camera is a device that displays the surface tem-
perature of an object by detecting the infrared energy radiated from
the surface of this object. The IRT technique is an early internal and
external fault diagnosis system for electrical components and pro-
vides various advantages over conventional thermal conditdon and
fault diagnosis tools (Kregg, 2004). Some of the advantages of the IRT
diagnostic system are described as follows.

2.1. Preventive/predictive maintenance

To maintain electrical equipment, two types of approaches
(run-to-failure or preventive maintenance) are used. The run-to-
failure approach is simple and straight forward. This approach
does not involve an outflow of money for maintenance before the
eventual failure of the equipment. The approach waits for equip-
ment failure before any action is taken for maintenance. Therefore,
this method is more expensive than preventive maintenance. By
contrast, a thermography-based diagnosis system allows preven-
tive/predictive maintenance for the early prevention of equipment
failure without interrupting running operations, thus saving
money. According to historical data in the United States (TBPPM,
2011), the effective use of preventive/predictive maintenance will



decrease about 33-50% of the maintenance cost wasted by most
manufacturing and production plants.

(1) Preventive maintenance: Preventive maintenance refers to
electrical equipment maintenance according to the statistical
or historical information on operating capacity, failure history,
and Mean-Time-To-Failure (MTTF) instead of tracking equip-
ment performance. A preventive maintenance program sche-
dules the repairing and rebuilding activities for electrical
equipment. Suppose an electric component operates for 10
months before needing any repairs. By using the preventive
technique, the equipment will be removed from service and
rebuilt after 10 months of operation. However, if the equip-
ment does not need to be rebuilt after 10 months, labor and
material will be wasted. If the equipment fails before 10
months, the problems should be fixed after failure; this
approach is usually more expensive than scheduled mainte-
nance. Note that this case is just a random example and is not
supported by any type of empirical data.

(11) Predictive maintenance: Predictive maintenance refers to the
maintenance of electrical equipment on the basis of the direct
monitoring of actual operating conditions and the regular
collection of data on measurements, efficiency, heat distribu-
tion, and other indicators instead of depending on statistical or
historical data. A predictive maintenance program schedules
all maintenance activities according to factual data and repairs
the equipment if necessary before the occurrence of failure
(Epperly et al., 1997).

2.2. Fire prevention

According to the reports of the Fire and Rescue Department of
Malaysia on the causes of fires in buildings (STAT, 2012), approxi-
mately 2317 fire-related incidents have occurred between January
2012 and June 2012, thus making the average number of incidents
approximately 387 a month. The report says that a total of 1049
incidents were caused by electrical problems. This figure was
almost 46% of the total causes of fires in buildings and mainly
involved electrical wiring problems (809 cases) and electrical
equipment failure (240 cases). Failure of electrical distribution
equipment can produce an ignition and fire. One of the causes of
ignition is excessive ohmic heating in electrical distribution. The
causes of excessive ohmic heating can be classified into gross
overloads, excessive thermal insulation, stray currents, ground
faults, overvoltage, and poor connections (Coutin et al, 2012).
These conditions tend to occur in old buildings with outdated and
deteriorating electrical wirings or electrical wirings that are
inappropriately amended or insufficient for the electrical load.
However, newly constructed buildings are not immune to these
conditions (Plumecocq et al., 2011; Babrauskas, 2001).

Table 1
Fluke Ti25 camera specifications.

2.3. Reduction of energy loss

The frequent monitoring of the thermal condition of electrical
equipment is necessary to reduce the heat loss that occurs due to
elevated surface temperatures. The thermal insulation survey of a
460 MW thermal power station in India reveals that approximately
0.426768 million kJ/h of heat loss occurs because of bare surfaces,
inadequate/damaged insulation, or open cladding condition in all
four units. This figure is equivalent to a coal loss of about 1847 Mt per
annum. Further analysis shows that if the thermal condition these
faulty insulated areas are monitored, a financial saving of around
59,052 USD per annum will be achieved, thus amounting to a simple
payback period of about one month (CGarnaik, 2011).

2.4. Reduced maintenance cost

The most efficient and cost-effective ways to increase system
reliability include identifying faults quickly before a critical condition
arises, scheduling follow-up inspections, and repairing and diagnosing
faults within an appropriate period. Thermographic inspection allows
for the easy identification of potential problems, quantification of
potential energy savings, intervention scheduling, and priority setting
for preventive and predictive maintenance or for immediate service to
minimize the risk of failure and maintenance cost.

2.5. Avoiding unnecessary repairs

Thermographic inspection can display the actual defect area in
equipment, thus reducing the need to disassemble, rebuild, repair, or
replace good components. Hence, maintenance costs are reduced and
revenue is increased.

2.6. Increased production and safety

The diagnostic system can diagnose faults without interrupting
or shutting down the service, thus resulting in increased produc-
tion. Furthermore, the failure of electrical components can be
catastrophic and can injure or even kill employees, maintenance
personnel, or the public.

2.7. Increased life time

The power rating of the equipment indicates the amount of
energy that the equipment can exert without being damaged. Before
failure, the equipment is operated at an excessive power level, which
resists the electricity flow and generates heat. Therefore, the equip-
ment overheats and operating efficiency is decreased. However,
thermography can increase the lifetime and efficiency of equipment
via the early detection of heat.
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3. Methodology of thermographic diagnostics
3.1. Image capture

An infrared camera is used to capture the thermal image of the
targeted electrical equipment. In this study, a total of 253 hotspots
from 139 infrared images were captured from the Main Switch Boards
(MSB). The Fluke Ti25 thermal camera with fusion technology was
used to capture the images. Table 1 shows the specifications of Fluke
Ti25. For capturing the image, the thermal imager orientation is
positioned directly toward the target equipment to obtain an accurate
measurement The emissivity value was set to 0.95, as recommended
for the thermography of most types of electrical equipment. Note that
the ambient temperature around the equipment is between 30 “C and
33 °C during the inspection.

Selecting an appropriate distance between the target equip-
ment and camera influences the reliability of the thermographic
inspection of electrical components. If the selected distance is
incorrect, small points in the test object will remain undetected.

A thermal image captured from different distances is presented
in Fig. 1. The measured maximum temperatures of the same cable
for Fig. 1(a), (b), and (c) are 57.3, 59.1, and 59.5 “C from distances of
5, 2, and 1 m, respectively. For varied distances, a small error
occurs in the measurement (Neto et al., 2006; Baranski and Polak,
2010). However, accurately detecting the ROl of equipment is a
challenge because of the reduced image size with increasing
distance. For example, the image at 5m in Fig. 1(a) shows a
reduced ROI width compared with images at 2 and 1 m. Therefore,
identifying the spots that need to be recognized is challenging if
the images are randomly taken from long distances.

On the contrary, pixel intensity varies with ROl size and the
proposed features depend on the pixel intensities of the target
component. Therefore, the thermographic inspection should follow
a distance criterion by assuming that the ROI can be focused easily. In
this research, we consider the ROIs taken from a distance of 0.5-1 m.

3.2. Typical condition monitoring by IRT

The manual monitoring of component conditions is based on
the comparative temperature analysis between hot and reference
spots (Huda and Taib, 2013). This technology is simply called
qualitative AT factor analysis. After capturing the thermal images,
the hotspot and reference areas are identified visually by analyzing
a color map. The hotspot supports the maximum temperature of
faulty components, whereas the reference area is the minimum
temperature of the same type, load, or the same repeated com-
ponent of the equipment. Thereafter, the difference between the
hotspot and reference spot temperatures is determined as the AT
factor, which is used as the decision-making parameter for the
condition of the overheated component. The AT factor can be
interpreted directly from RGB data. Several standards for measur-
ing AT include those of the International Electrical Testing

Association (STD, 2011) and the American Society for Testing and
Materials (ASTM) (ASTM, 2012). The technique is widely used for
electrical thermography because of its simplicity and minor
emissivity influence. However, the main drawback of this techni-
que is that it does not work in a three-phase system because all
phases over heat simultaneously; this situation is infrequent in
electrical systems. Fig. 2 shows the flowchart of the IRT inspection
of a three-phase electrical system.

In our survey of 253 detected regions, 37 hotspots are critical (AT
(°C)= 15), 63 spots are in the warning condition (5 < AT (°C) < 15),
and 153 spots are normal (AT (°C) < 5). All these component condi-
tions (ie, AT (°C)) are evaluated manually by using infrared image
analysis software. Some examples of the conditions are illustrated in
Fig. 3. Regions with high brightness (denoted by the red color) show
more defects than regions with low brighmess. For instance,

Compare temperature pattern
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Trace conductor path for any
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Compare thermal images between

two phases

!

Camera displays heat pattern
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Interpretation of data analysis of
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Fig. 2. Flowchart of the infrared thermographic inspection (Bakar et al,, 2013).

Fig. 1. Thermal images from (a) 5, (b) 2, and (c) 1 m distance.




Fig. 3. (a) Hotspots in Phases A and C are normal compared with Phase B, (b) the hotspot in Phase C appears to be in a warning condition compared with that in Phase A, and
(c) the hotspot in Phase C appears to be in critical condition compared with that in Phase A. (For interpretation of the references to color in this figure, the reader is referred

to the web version of this article.)

Fig. 3(c) shows that the maximum temperature values of B and C are
72.7 and 90.9°C, respectively, whereas 64.6 °C is the maximum
temperature value of A or the reference area. The temperature
difference between these two phases reveals that B and C are in
normal and critical conditions, respectively.

4. Hotspot detection and feature extraction
4.1. Hotspot detection

Daime software version 1.3.1, which is a digital image analysis
tool, is used to detect equipment defects and extract quantitative
features from defect images (Daims et al., 2006). Segmentation was
performed to find the hotspots of electrical components. Daime can
segment hot regions on the basis of the threshold value. In the
present study, the custom thresholding technique (i.e, manual
thresholding) value is set to generate an image of a defect. The
image of the defect was produced by setting the threshold value
T manually. The original grayscale image shows the hotspot clearly
in the value of T; thus, this value was selected as the threshold value
for identifying the defect of an image. Thereafter, the image was
segmented on the basis of the threshold image.

In this study, two cases were considered to select the desired
hotspots: objects with the highest pixel intensity and objects with
an area equal to or greater than the half of the maximum area
object. The maximum temperature region of an image carries the
maximum intensity value. Therefore, the maximum area of the
component is generally the region with the highest pixel intensity.
In some cases, more than one hotspot is detected in the selected
image. Some fake hotspots will be generated because of the
electrical installation material and the special structure that causes
a high reflection rate or reflection from the sun, thus jeopardizing
the infrared emission measurement (Chou and Yao, 2009). By
using the object editor, hot defects are manually selected, whereas
spurious defects and background are removed. Fig. 4 shows the
different steps of defect detection in electrical equipment.

4.2. Automatic feature extraction

A total of six intensity features were computed by using the
pixel intensity values of the connected image components. The
features are maximum intensity, minimum intensity, average
intensity, median intensity, standard deviation, and variance of
intensity values. The extracted features are defined as follows:

Maximum intensity = max i qp(q). (1)
=)
-1
Minimum intensity= min ¥ gp(q). @)
=0
. . 1 11
Mean intensity, pg==— ¥ qp(g), 3
24,50
) 1] 2
Variance, o’ = ¥ (q—u)"D(Q), )
ZQq=0
-1
Standard deviation — | |—— ¥ (q-p)’plg), 5)
24,50

where g is the number of distinct gray levels in the object image,
plq) is the histogram of the object's pixel intensity, and [ is the
object's possible intensity level. Mean intensity is the average pixel
value, which determines the brightness or darkness of the defined
object image. Maximum and minimum intensities define the max-
imum and minimum pixel intensity values of the object image,
respectively. Variance determines the dispersion of gray-level pixels
from the mean and standard deviation of pixel intensities, which is
similar to variance but is different in value. If the intensity values are
arranged in ascending order, the middle value is defined as the
median intensity value.
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5. Condition monitoring of hotspots: recursively constructed
output-context fuzzy approach

5.1. Preliminaries: distinct points and effective rulebase

The main feature of the RCFS is its ability to identify prominent

distinct points in the output domain and construct an effective
rule base. Fig. 5 illustrates the prominent distinct points in the
output domain. A prominent distinction point describes the highly
distinct data which depict points with reasonable approximation
errors. Therefore, selecting these distinct points to partition the
output domain reduces the model error. Wang et al. (2010), Kosko
(1995), and Ding et al. (2000) previously described the selection of
splitting points to reduce approximation errors. However, unlike
the ECSFS (Wang et al., 2010) where the LSM algorithm is used to
select the splitting points, the RCFS is evolved and self-determines
the distinct output-context to obtain an effective rulebase.

Consider a modeling problem with n input variables and N data
samples. Assume an input vector of ith training data [, d];, where
input vector x; and the corresponding output d; and x =(x;, X2,
..oy Xp, ....Xn ) belong to an output context (s) that encodes an IF-
THEN Mamdani-type fuzzy rule at the tth evolving stage:

R¥: IF %y i A, and x, is A5, ..., and %, is A;® THEN y is C*¢, (6)

where C** is the sth consequent part associated with the sth output
context and A:,”’ is the sth antecedent part associated with the pth
input variable. A Gaussian membership function is described for C**'
and its corresponding A",

p=e(x c'}z_."c:% (7)
and

_ L[ak —by)?
=\ ""ha ®)

where c and & are the center and width of the membership function,
respectively; a, (or by) denotes that the data are located at the
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Fig. 6. Flowchart of the RCFS.

border of the kth output context; « > 0is a minimum membership
value (Tung and Quek, 2010) that is also a distinguishability factor
that maintains the semantic value for the output contexts.

The flowchart of the recursive procedure to construct the output-
context fuzzy system is shown in Fig. 6. The RCFS employs the
Mamdani-type fuzzy system and starts with an initial domain of the
whole output space followed by the further partitions of the output
domain to identify the prominent distinction point(s). Adaptation is
performed for both distinct output context and its corresponding
input clusters. In the RCFS, each output-context associated with the
input clusters is considered the output-context structure. Previous
knowledge in the system and new knowledge from the training data
are incorporated in the system to provide an accurate representation
of the fuzzy model. Recursive partitioning and evolving processes
are continued until a termination criterion is achieved to obtain an
effective rulebase.

The output model of the sth domain of the RCFS is defined for
the sth rule (or sth output-context) on the basis of Mamdani-type
fuzzy systems, which uses the center of the averaging method
(Tung et al, 2011; Wang et al., 2011; Tung and Quek, 2010):

L8] "
AV o @) % €y e domain,
= 9

T
Ala p. Xk e domain,

where ¢*® is the center of the sth consequent part of the output
context (C**) and

" & n "
A L oa@= T (" 9m) = I1 (). (10)
domains i=1

The input cluster is adapted to cover all the input data associated
with the sth output context. Therefore, Eq. (10) can be represented
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