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Abstract—Sensorineural hearing loss (SNHL) is an increasingly
prevalent condition, resulting from damage to the inner ear and
causing a reduction in speech intelligibility, This paper proposes a
new speech intelligibility prediction metric, the neurogram orthog-
onal polynomial measure (NOPM). This metric applies orthogonal
moments to the auditory neurogram to predict speech intelligi-
bility for listeners with and without hearing loss. The model simu-
Iates the responses of auditory-nerve fibers to speech signals under
quiet and noisy conditions. Neurograms were created using a phys-
iologically based computational model of the auditory periphery.
A well-known orthogonal polynomial measure, Krawtchouk mo-
ments, was applied to extract features from the auditory neuro-
gram. The predicted intelligibility scores were compared to sub-
jective results, and NOPM showed a good fit with the subjective
scores for normal listeners and also for listeners with hearing loss.
The proposed metric has a realistic and wider dynamic range than
corresponding existing metrics, such as mean structural similarity
index measure and neurogram similarity index measure, and the
predicted scores are also well-separated as a function of hearing
loss. The application of this metric could be extended for assessing
hearing-aid and speech-enhancement algorithms.

Index Terms—Auditory-nerve model, neurogram, orthogonal
moment, sensorineural hearing loss, speech intelligibility.

I. INTRODUCTION

ERFORMING listening tests is an expensive, time con-

suming, and complicated operation, because it relies on
subject’s feedback and laboratory test conditions. However,
subjective scores can be estimated by replacing the listeners
with a model of the auditory system. Computational models of
the normal and impaired auditory system are useful to detect,
analyze, and segregate dynamic acoustic stimuli in complex
environments. The availability of these models motivates
the development of an objective measurement technique that
predicts speech intelligibility [1]. To develop the metric. the
full-reference method was used. in which neural responses to an
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original speech signal are compared with the neural responses
to distorted speech.

The speech recognition performance of human subjects with
normal hearing tends to decrease when speech is presented at
high intensities (at sound pressure levels above 90 dB). In 1922,
Fletcher first reported that the recognition performance of non-
sense syllables presented in quiet environment decreases when
the syllables are highly amplified [2].

In general, recognition performance of monosyllabic word
drops significantly when speech level is increased beyond con-
versational speech level at a constant SNR, and the amount of
deterioration may vary with the spectral content of the speech
and masker [3]-[6]. Auditory masking occurs when perception
of one speech signal is affected by the presence of another
sound. The recognition performance of listeners with hearing
loss also tends to decrease as a function of sensorineural hearing
loss (SNHL) under quiet and noisy conditions [6]. Efforts have
been made in the last few decades to develop a metric that
can successfully assess speech intelligibility under various
conditions.

Objective measures of speech intelligibility can be broadly
classified into two categories. One approach is based on the
properties of the acoustic signal and uses ad-hoc methods to
address the effects of hearing loss and supra-threshold nonlin-
earities. The articulation index (AI) [7] and speech-transmis-
sion index (STI) [8] are common examples of this method. The
other category of existing metrics uses computational models of
the auditory system. Effects of hearing loss and supra-threshold
nonlinearities are captured by the model of the auditory system
itself. The spectro-temporal modulation index (STMI) [9]. mean
structural similarity index measure (MSSIM) [10]. neurogram
similarity index measure (NSIM) [11], and neural articulation
index (NAT) [12] are examples of the second type of metric.
In general, computational model-based metric appears to incur
high computational complexity. because this type of metric re-
quires simulating responses for an extensive number of neurons
from the auditory system. Our proposed metric. NOPM is also
based on a physiological computational model of the auditory
system.

In 1947, the AI [7] was introduced as an objective measure.
and it was the most widely used technique for predicting speech
mtelligibility of a transmission channel. The AT metric mea-
sured the signal-to-noise ratio (SNR) on a dB scale in a number
of frequency bands covering the speech spectrum. The AT calcu-
lation scheme was further improved to increase its accessibility



and validity for use in the evaluation of most speech commu-
nication systems under a wide variety of noise and speech-dis-
tortion conditions [13], [14]. The AI has been modified to de-
velop speech intelligibility index (SII) that takes into account
the effects of auditory thresholds. higher presentation levels,
self-masking. and upward spread of masking. However, it is
well-known that time-demain distortions such as reverberation.
echoes. and nonlinear distortions such as peak clipping have
large negative effects on speech intelligibility of transmission
channels [15]. Kates and Arehart [16] further extended the SII
by using the signal-to-distortion ratio from the coherence in-
stead of the SNR, and the resulting metric was able to capture ef-
fects of broadband noise and distortions for both normal-hearing
and hearing-impaired listeners. The effect of fluctuating noise
was included into the SII [17] by dividing the noisy speech into
segments. computing the SII for each segment. and then aver-
aging them across all segments. The STI [8]. which is based
on the modulation transfer function (MTF) of a transmission
channel, takes into account the time-domain distortions by con-
sidering the envelope fluctuation rates encountered in running
speech. Speech intelligibility predictions made by the AT and
STI are related to the mean global transmission quality. which
has been validated for phonetically balanced word tests, and
their calculations are based on the average long-term speech
spectrum.

The STMI [9] is a computational model-based metric that ex-
tracts spectro-temporal modulation information from the audi-
tory neurogram. A neurogram is a two dimensional representa-
tion in which responses of neurons with different characteristic
frequencies (CF) is displayed as a function of time. The STMI
quantifies the degradation in the spectral and temporal modula-
tions due to noise and can handle difficult and non-linear dis-
tortions such as phase-jitter (due to fluctuations of the power
supply) and phase shifts, which cannot be handled by the STI.
However. the STMI depends only on the slow-varying envelope
and cannot explain speech intelligibility for various behavioral
studies [18]. Few recent studies have reported that although en-
velope information from a few spectral bands is sufficient for
speech intelligibility in quiet. TFS information is needed when
speech is presented in a fluctuating or noisy background [19].
[20]. In addition, the auditory periphery model used to compute
STMTI is a linear model and thus cannot handle non-linear effects
of hearing loss observed at the level of auditory nerve (AN).

The auditory filters in the cochlea decompose the complex
broadband sounds into a series of relatively narrowband signals.,
each of which can be considered as a slowly varying envelope
(ENV) superimposed on a more rapid temporal fine structure
(TFS). Although TFS information depends on phase locking to
individual cycles of the stimulus waveform, both ENV and TFS
information are represented in the timing of neural discharges
[21]. Depending on the dominant fluctuation rates of speech sig-
nals, Rosen [22] separates the temporal features of speech into
three primary categories: envelope, periodicity, and TFS. En-
velope. which fluctuates at a rate (modulation frequency) be-
tween 2 and 50 Hz. conveys information of manner of articu-
lation, voicing. vowel identity, and prosodic cues. Periodicity.
which carries segmental information about voicing and manner
and prosodic information relating to intonation and stress, fluc-

tuates at rates between 50 and 500 Hz. TFS has dominant fre-
quencies between 600 Hz to 10 kHz [12]. Smith er a/. [18] ob-
served that the envelope is most important for speech recep-
tion (speech intelligibility in quiet), and the TFS is important
for pitch perception and sound localization. In general. recog-
nition of English speech in quiet is dominated by the envelope,
whereas recognition of melody is dominated by the TFS [23].
Pitch perception should also help convey prosody cues in speech
and may enhance speech reception for tonal languages, such as
Mandarin Chinese, where pitch is used to distinguish different
words. Xu [23] observed that lexical-tone recognition depends
on fine structure, not on envelope. when the number of fre-
quency bands was between 4 and 16. Lorenzi ef al. [24] reported
that TFS cues convey more important phonetic information. Nie
et al. [25] studied the importance of spectral and temporal cues
in cochlear implant patients. Their results show the trade-off ef-
fect of spectral and temporal cues on speech intelligibility for
implant users.

The dichotomy between the acoustic temporal ENV and TFS
cues motivated the researchers to explore the relative role of
ENV and TFS information in human speech perception. In this
study, the contribution of neural ENV and TFS information
(neurograms) to speech mtelligibility is studied. Based on
temporal resolution (bin width of 10 and 100 ps. which will
subsequently be referred to as TFS and ENV. respectively).
two types of neurogram were constructed from the output
of the model for the auditory periphery. By applying image
processing to the auditory neurogram. Hines [10] proposed
the MSSIM to predict speech intelligibility for a range of sen-
sorineural hearing losses (SNHLs). The MSSIM is a function
of luminance, contrast, and structure of the neurogram. which
was treated as an image.

Because there was not much effect of contrast on the MSSIM
score, the NSIM was introduced by ignoring the effect of con-
trast. But both MSSIM and NSIM have relatively small dynamic
ranges. meaning that the scores for two different extreme situa-
tions (flat 10 dB loss vs. profound hearing loss) do not vary sub-
stantially. For example. in Fig. 3 of Hines and colleagues [10]
the dynamic range from flat 10 dB to profound hearing loss 1s
approximately 0.5 to 0.1. Also there is a sharp decrease in the
MSSIM and NSIM scores (from 1.0 to 0.5) from unimpaired to
a flat 10 dB hearing loss (see Fig. 10 from Hines and Harte),
which is unrealistic in that it does not agree with the results of
behavioral studies [26]. [27]. In general, if hearing thresholds
of the listeners are within 10 — 15 dB of the normal hearing.
most behavioral studies treat them as normal listeners [3]. [28].
So. the recognition score would be very close to that of normal
hearing (very slow roll-off). On the other hand, it is expected
that the recognition score for listeners with profound hearing
loss (> 60 — 70 dB loss in octave frequencies ranging from
250 Hz to 8 kHz) would be very low at conversational speech
level (~ 65 dB SPL). because the signal would be inaudible for
most frequencies.

In order to avoid the above-mentioned problems, a speech-in-
telligibility metric, the NOPM, is proposed in this study that em-
ploys orthogonal moments as a feature extractor from the au-
ditory neurograms. Orthogonal moments have become widely
used in various areas in image processing. Their application in-
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Fig. 1. Block diagram summarizing the methodology of NOPM. The speech signal was applied as an input to the models for the normal and impaired auditory
systems, and the responses of the AN fibers with a wide range of characteristic frequencies were simulated to construct the neurograms. Neurograms were divided
into blocks (8 x 8) and orthogonal moments were applied on each block. Finally the features of the unimpaired and impaired moment coefficients were compared

to provide an NOPM score.

cludes object identification or pattern recognition, image seg-
mentation and edge detection, image compression, texture re-
trieval. and multi-resolution analysis [29]. [30]. Due to their in-
herent properties such as information compactness, oscillating
kernels and phase information of an image, orthogonal moments
have successfully been employed in the aforementioned appli-
cations. Orthogonal moments have the ability to represent a
signal using a limited number of coefficients without substan-
tially compromising signal quality [31]. In addition to energy
compaction. one of the most important properties of orthog-
onal moments is the ability to localize in space. So. selectively
choosing a portion of the moment coefficients will allow recon-
structing only a certain part of the original signal, which could
contain the important perceptual feature of the acoustic signal
(phoneme) to identify them. This motivated us to employ or-
thogonal moments in this study. However. DCT does not pos-
sess this property.

Motivated by the above-mentioned applications of orthog-
onal moments in various areas of image processing. a novel
metric is proposed in this study to predict speech intelligibility
under quiet and noisy conditions for listeners with normal
hearing and also for listeners with a range of SNHLs. To
our knowledge, there has been no previous study that uses
orthogonal moments to extract features from auditory neu-
rograms. Two types of orthogonal moments, the Tchebichef
and Krawtchouk moments. are frequently used in the field of
image processing. However, in this study only the Krawtchouk
moments were employed to simulate the results, because the
Tchebichef moments used as a feature extractor produced
similar results.

This paper is organized as follows. Section II briefly intro-
duces the phenomenological model of the auditory periphery
employed in this study along with the components of the NOPM
metric. Results of the NOPM metric using the TIMIT and NU6
database are described and compared with the results from the
respective behavioral studies in Section III. Section IV discusses
the important features of the metric with conclusions.

II. METHODS

The following sections briefly describe the computation of
the proposed metric. the NOPM. In addition. existing compu-
tational model-based metrics, as well as the components of the
proposed metric, will be briefly explained.

Fig. 1 briefly describes the procedure of the NOPM mefric
for listeners with hearing loss. The speech stimulus is applied to
a computational model of the auditory periphery. Neurograms
for normal and impaired auditory systems are then constructed,
the neurogram features are extracted using orthogonal moment
transform. Finally. the computed impaired and unimpaired mo-
ments are compared together to provide an NOPM score for a
range of SNHLs. On the other hand, to predict speech intelligi-
bility score under noisy conditions. both the clean and its corre-
sponding noisy signals are applied to the model of the auditory
system to construct clean (normal) and distorted (equivalent to
impaired) neurograms.

A. Neurogram Orthogonal Polvnomial Measure (NOPM)

The neurogram orthogonal polynomial measure is an objec-
tive intelligibility measurement metric that uses orthogonal mo-
ments to quantify the change in signal information even for
small changes in magnitude (pixel intensity) and phase (loca-
tion) of the neurogram. It is well known that structural infor-
mation significantly influences the quality of the image (neuro-
gram). The local phase (discharge timing) of a neurogram con-
tains more structural information than the magnitude. and any
change in neurogram structure may lead to changes in the phase
shifts. So. phase information is necessary to predict distortion
precisely and the location of the distortion of a signal is as 1m-
portant as its magnitude [32]. Discrete orthogonal moments are
zood signal descriptors that can represent image information
with minimum redundancy and are able to capture even small
changes or differences of pixel intensity in an efficient manner
and thus produce variations in the computed moment’s values
due to small changes of the pixel intensities.



1) Auditoryv-Nerve Model: The AN model [33] used in this
study simulates the responses of the cochlea. inner hair cells
(IHC's). outer hair cells (OHCs). and the IHC-AN synapse up to
the responses of the AN fiber. The model successfully captures
most of the nonlinearities such as compression, two-tone rate
suppression, frequency selectivity. level-dependent rate, phase
responses, and the shift in the best frequency (the frequency at
which the fiber response is maximum) at higher levels observed
at the level of the AN [33]-[38]. The model responses have
been validated against a wide range of physiological recordings
from AN fibers to simple (tone-like) and complex (speech-like)
stimuli [39].

This study uses the AN model introduced by Zilany and
colleagues [33]. [40] to predict human speech-recognition
performance. The schematic diagram of the current AN model
is shown in Fig. 1 of Zilany ef al. [37]. The model consists
of some phenomenological functional components. The input
instantaneous pressure waveform is passed to the middle ear,
which is followed by the basilar membrane (BM) filter. The
feed forward control path (which includes OHC functions)
regulates the gain and bandwidth of the BM filter to account
for the level-dependent properties of the cochlea. Basilar-mem-
brane responses are passed through the IHC. which transduces
the mechanical responses of the BM to an electrical potential.
The THC 1s modelled with a static nonlinearity followed by a
low-pass filter. The spontaneous rate. adaptation properties,
and rate-level function of the AN model are determined by the
model of the IHC-AN synapse. The spike timings are provided
by a non-homogenous Poisson process driven by the synapse
output.

Noise-induced impairment in the cochlea causes damage to
both the THC and OHC stereocilia [39], [41]. [42]. Damage to
the OHC stereocilia causes both elevated threshold and broad-
ened tuning of AN-fibers, whereas THC stereocilia damage
results only in the elevation of the tuning curve without any
substantial effect on the bandwidth. The effects of the OHC
and THC status are incorporated in the model by introducing a
scaling factor Comc (0 < Conc < 1) to the control path output
and Cre(0 € Ciae € 1) to the IHC transduction function.
respectively. Cogc = 1 simulates the normal functioning
and Copyc = 0 indicates complete impairment in the OHC.
Similarly. the normal functioning of the IHC is represented
by Cige = 1. whereas Cigc = 0 corresponds to complete
impairment in the IHC. These two scaling factors successfully
capture the phenomena reported for damage to the OHC and
THC stereocilia [34]. [37].

2) Newrogram: The neurogram is similar to a spectrogram,
except that neural responses are simulated for a range of CFs as
opposed to analyzing the acoustic waveform. In this study, neu-
rograms were constructed by simulating the responses of the
AN fibers to phonemes and words from the standard databases.
The original speech token sampled at 16 kHz for TIMIT [43]
and 44.1 kHz for NU#6 [44] was resampled at the rate required
for the AN model (100 kHz) [33]. Responses of the AN for dif-
ferent presentation levels ranging from 60 to 99 dB SPL were
simulated. In this study. responses of 32 AN fibers logarithmi-
cally spaced from 250 to 8000 Hz were simulated. Neural re-
sponses at each CF were simulated to the 50 repetitions of the

same stimulus. To be consistent with the physiology. responses
of three different types of AN fibers (high, medium. and low
spontaneous rates) were simulated, and their responses were
weighted according to the distribution of the spontaneous rates
(high = 0.6. medium = 0.2, and low = 0.2 of total popu-
lation) [39]. Two neurogram representations were initially cre-
ated by averaging the neural responses of each CF with a bin
(time window) size of 10 us for TFS and 100 ps for ENV re-
sponses. The neural responses of each CF were then divided
into frames using a Hamming window (50% overlap between
adjacent frames) of length 32 samples for TFS and 128 samples
for ENV [45]. and the average value of each frame was calcu-
lated. The combination of binning to 100 gs and smoothing with
the 128-sample accounted for spike synchronization to frequen-
cies up to ~ 160 Hz [1/(100 x 107% x 128 x 0.5)], whereas
the binning at 10 ps and smoothing with the 32-sample Ham-
ming window extended the range of included synchronization
frequencies up to ~ 6.25 kHz [1/(10 x 107% x 32 x 0.5)]. So
the ENV neurogram excludes spike timing information about
the temporal fine structure. but the TFS neurogram includes it.

In order to simulate the responses for the hearing-impaired
AN fibers, the model parameters for the inner hair cell (Cie)
and outer hair cell (Copc) were varied from 1 to 0 according
to the degree of hearing loss. For normal hearing, both of the
parameters were set to 1. and the complete impairment in the
THC and OHC was implemented by setting both parameters to
0. The hearing loss profiles used in this study were flat 10 dB,
flat 20 dB, mild. moderate. and profound hearing loss. The
audiograms for the five profiles of hearing losses are shown
in Fig. 2(A). and the corresponding scaling factors. Ciuc and
Conc. are shown in Fig. 2(B) and 2(C). respectively. The
audiograms were taken from Dillon [46] to illustrate typical
hearing losses at different frequencies. The hearing losses for
32 CFs were determined using interpolation. and the corre-
sponding model parameters (Cige and Conc) were evaluated.
To compare the performance of the proposed method with the
results from a behavioral study. specific hearing loss profiles
(HI2 in [6]) were used and model parameters were estimated
accordingly.

3) Orthogonal Moments: Orthogonal moments use orthog-
onal polynomials as a basis function and provide better feature
representation capability than other real transforms (such as dis-
crete cosine transform) and improved robustness to noise [47].
Discrete orthogonal moments can be used to transform signals
(1-D or 2-D) from time or spatial domains to moment domain
using a set of useful basis functions. Signals have more compact
representations in the moment domain. Lower- and higher-order
moments represent low- and high-frequency components of a
signal. respectively [31]. Generally speaking. most of the signal
energy in the moment domain is combined in the lower-order
moments. whereas most of the noise energy is contained in the
higher-order moments. However. in case of colored noise, both
lower- and higher-order moments describe the noise [48], [49].

The inherent properties and mathematical modelling of
a well-known set of orthogonal moments., the Discrete
Krawtchouk Transform (DKT), which are formed based on the
orthogonal polynomial kernels of the Krawtchouk polynomials,
are briefly described as follows [47]. Orthogonal polynomials
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Fig. 2. Profiles for the hearing losses and the corresponding scaling parame-
ters for the AN model (A) Six profiles of hearing loss are shown in dB loss
as a function of frequency. (B) Corresponding IHC parameter. and (C) Corre-
sponding OHC parameter.

can be defined using a hyper-geometric series, ,.F, which are
given as follows:
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Fig. 3. The Krawtchouk polynomials plots for different values of polynomial
order 7. and parameter. p. N = 100

It is not suitable to define orthogonal moments using general
hypergeometric functions because when the moment order
becomes larger the discrete orthogonal moments tend to ex-
hibit numerical instabilities. Some computational aspects and
recurrence algorithms can be used to calculate the polyno-
mial coefficients. Moments with basis functions, including
Krawtchouk polynomials. have better feature extraction capa-
bilities than other moments [50]. Hence. orthogonal moments
of Krawtchouk polynomials were used in this study as a feature
extractor to quantify speech intelligibility.

Krawtchouk Polvnomials: Orthogonal polynomials can be
represented by a 2-D array with two parameters, n (order of the
polynomial) and z (time or spatial index of the signal of length
N). The nth-order normalized Krawtchouk polynomial, K, ().
for a signal of length IV is given by:
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wherep € (0,1). 2 =0,1,...,N —lL.andn =0,1,2,..., N
— 1. . The recurrence algorithms of K, (z) are given in [47].
[51].

The value of p controls the moment’s localization on the re-
gion-of-interest (ROI). When p = (1.5, the ROI will be located
in the middle of the signal frame. If p < 0.5 the ROI is shifted
to the left. and for p > 0.5. the ROI is shifted to the right. Plots
for the DKT matrix for few values of n and p are shown in
Fig. 3 which illustrates the effect of the parameter p on the po-
sition of ROI within the signal frame. Lower-order Krawtchouk
polynomials can extract the low-frequency components of the
different parts of the signal depending on parameter p. For ex-
ample, the moment for n = 0. p = 0.5 extracts the low-fre-
quency components of the middle part of the signal. whereas
the moment for n = 0, p = 0.2 extracts the low-frequency
components of the earlier part of the signal.
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Orthogonal Transformation: The DKT for a block, f(z,y).
with a size of N x N extracted from the neurogram is defined
as

N—-1N-1
i«'i'nm = Z Z Kﬂ(T}Km(yjf(-Tvy) (4)
=0 y=0

where. n.m = 0,1,..., N — 1. In matrix form:
@ = K«F+KT, (5)

Here, (N x N) represents the moment values of f(z,y) in
the transform domain. The operator () refers to matrix multi-
plication. and ()T refers to transpose of the matrix. K is the
N x N dimensional polynomial matrices of Krawtchouk co-
efficients derived from Eq. (3). and F'(N x N) is a block ex-
tracted from the neurogram. The neurogram block can be re-
constructed using the inverse transformation:

N-1N-1
f(‘l': y) = Z Z @L"ann(:L')Kw:(y)
n=0 m=0
z,y=0,1,2...,N — 1. (6)

Also, Eq. (6) can be written in matrix form as

F - KT usK %)

4) Similarity Measure: Cross-correlation is a measure of sim-
ilarity of two signals or images and can be represented as a
sliding dot product or inner-product. Correlations can be applied
in pattern recognition, single particle analysis, and neurophys-
iology. In this study cross-correlation is used to compare two
moment neurograms (neurograms transformed into moment do-
main) to provide quantitative results. The 2-D correlation co-
efficient between two images (A and B) can be calculated as
follows:

2ima 2o (Aig — pa)(Bij — )

VI Ay pa? S Y By )

®)
Here, y14 and ptp represent the mean value of image A and B.
respectively.

3) Test Corpora: This section introduces the test corpora used
to estimate the scores of NOPM metric. Two databases were
used: TIMIT [43] and NU#6 [44]. TIMIT database was used
to predict NOPM scores for listeners with hearing loss. TIMIT
is a corpus of phonemically and lexically transcribed speech of
American English speaker. The core portion of the test set con-
tains 24 speakers. 2 male and 1 female from each dialect re-
gion. There are 7753 phoneme utterances in the core test set. The
fifty seven distinct phoneme types in TIMIT were divided into
six phoneme groups (Table I). These phoneme utterances were
used in this experiment to quantify the speech intelligibility at
different sound presentation levels for a range of SNHLs.

To compare the NOPM scores with the results from be-
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havioral studies, NU#6 database was used for listeners with
both normal hearing and hearing loss. The NOPM scores were
predicted as a function of SPL and SNR (using speech-shaped
noise) to compare with the scores from the behavioral studies
of Studebaker et al. [6] and Dubno ef al. [3]. NU#6 is a corpus

TABLEI
TIMIT PHONEME GROUPS FOR CORE TEST
Phoneme No. in Phonemes
group core set
Vowels 2703 fiyl, Ak, leh/, feyi, faef, faad, faws, / ay/, fab/, f
ao/, foy/, low/, /[ ub/, fuw/, fux/, fer/, fax/, fix/,
faxr/, fax-h/
Stops 2363 o/, ddl il ipd, I I ddxd gl ieeld, ibell, fdeld,
/pel/, /kell, /gel/
Affricates 90 fin/, feh/
Fricatives 1013 /sty sk, iz, tzh, T A, i dhd
Nasals 670 fm/, i/, ingl, fem/, len/, feng/, Inx/
SV/glides 1012 A, el i, fyd, Thind, Thd, el

of 200 monosyllabic words from a male speaker recorded by
Auditec of St. Louis.

6) Procedure: The input to the model was the set of
phonemes or words from the database; each utterance was
up-sampled at a rate of 100 kHz required for the AN model. The
high sampling rate was required in the model to ensure stability
of the digital filters implemented for faithful replication of
frequency responses of different stages (e.g.. middle ear) in the
peripheral zmdlitow_,r system [34]. [37]. In this study. the output
of the synapse model was used to construct ENV and TFS neu-
rograms. In order to capture small changes in the neurogram, it
was necessary to divide the neurogram into small blocks. The
neurogram was first divided into blocks of 4 x 4. and then each
block was appended by 50% overlap from the adjacent blocks
on each side (2 % 4 in top and bottom side. and 4 x 2 in left and
right side). and thus the size of each resulting block became
8 x 8. The array of polynomials is generated according to the
size of the block to be processed. The block size (N x N) was
chosen such that the time corresponding to N does not exceed
~ 32 ms for which a speech signal is quasi-stationary. The
moment features were then computed for each block. From
the transformed neurogram (8 x 8). only the middle 4 x 4
part was chosen which reflects the maximum change in energy
from normal to distorted condition. The correlation coefficient
between normal and impaired (distorted) moment neurograms
was computed to produce a NOPM score. Speech presented at
64 dB SPL in quiet for a normal listener was used as a reference
to compute NOPM scores for all conditions.

B. Existing Metrics

The NOPM results were compared to existing metrics. the
mean structural similarity index and neurogram similarity index
which are full-reference metrics to account for degradation in
speech intelligibility due to hearing loss [10]. MSSIM is a func-
tion of luminance (1), contrast (c). and structure (s):

MSSIM(z,y) = [(Uz,y), clz,y), s(x, ) (©)

where luminance. {(z,y) is a measure that compares the mean
values across the two signals (normal and distorted), the con-
trast. ¢(x,y) measures the variance of two signals using the



relative standard deviation, the structure, s(z,y) is an inner
product of two vectors which is equivalent to the measurement
of Pearson correlation coefficient.

MSSIM is defined as (See Wang er @/. [52]. Hines and Harte
[10] for a full description)

2ppapry + C1 ) “
p2 42 +C1

20,0, +C2 \* [ op+C3\"
a2 +o02+C2 ooy + C3

(10)

MSSIM(z,y) = (

Here. e, 3. 7 and are weights for luminance. contrast. and
structure, respectively. pi,. g1, are the mean and o, o, are the
standard deviation of normal and impaired neurograms, respec-
tively. In Hines. &« = [ = v = 1 and constant C1 = 0.02.
C2 = 0.03. and C'3 = C'2/2 was employed. As contrast has
no significant effect on the MSSIM, Hines er al. [11] proposed
a new metric called NSIM, defined as follows:

2pppiy +C1 gy + C2

NSIM(z,y) = 5~ ’
(z,9) P2+ 2+ C1 oy -y + C2

(1)

In this study. the performance of the proposed metric. NOPM.,
has been compared to the performance of MSSIM and NSIM,
because these are recent measures that employed the same phe-
nomenological model of the auditory nerve [33] to construct au-
ditory neurograms. In addition, both the proposed and the ref-
erence metrics used tools from image processing to extract fea-
tures from the neurogram. and the performance of the metrics
was evaluated for people with hearing loss.

III. RESULTS

This section provides simulation results of predicted speech
intelligibility for listeners with normal hearing and hearing loss
using the NOPM metric proposed in this paper. The estimated
NOPM scores were then compared with the subjective scores
from behavioral experiments. The effects of different parame-
ters on the predicted score were considered, including the block
size. ROL SPL. and SNR. The estimated scores using existing
measures including MSSIM and NSIM were compared to the
scores predicted by NOPM. The time required to compute an
NOPM score in response to a typical NU#6 word was approx-
imately 28.2 secs (using a standard computer with a 64-bit op-
erating system and a processor speed of 3.1 GHz).

A. NOPM Score for Listeners with Hearing Loss

In this section. phonemes extracted from the TIMIT database
were used to compute NOPM scores for a range of SNHL.
Fig. 4 shows simulation results for six phoneme groups at
65 dB SPL. The NOPM scores are shown for different phoneme
groups with their TFS and ENV responses.

The NOPM score at any point represents the correlation
coefficients between unimpaired (normal) and impaired mo-
ments averaged across a phoneme group. In general. the NOPM
score for both ENV and TFS progressively deteriorates as
the degree of hearing loss becomes greater. The error bars
show +1 standard deviation from the mean. It is clear that the
dynamic range of the NOPM score for the TFS neurogram is
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Fig. 4. NOPM scores for different phoneme groups using Krawtchouk mo-
ments. (A) NOPM scores using ENV response. (B) NOPM scores using TES
response. Results for all phoneme groups at 63 dB SPL are shown as a function
of hearing loss. (A. B): NOPM scores using Krawtchouk moments for a window
size of § x 8. constant p = 0.9, and moment order N = 8 with +1 standard
deviation.

higher (0.1-1.0) than the dynamic range of the envelope-based
NOPM score (0.3-1.0). Among the six types of phonemes,

the score based on TFS for vowels drops more compared to
other phonemes when the hearing loss changes from mild to
moderate. In general. it is interesting to note that the change
in the NOPM score from unimpaired to 10-dB hearing loss is
small compared to the noticeable decrease in the NOPM score
for the other profiles of hearing loss. This result reflects the
ability of the NOPM metric to predict closely the responses
for the respective behavioral studies. as mentioned earlier. To
examine the statistical significance, a pair-wise (two adjacent
hearing-loss profile) t-test was applied to the NOPM scores for
all phoneme groups. The level of significance (p) was found to
be less than 0.01 (p < 0.01).
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Fig 5. Effects of SPL on NOPM score. Results are shown for Vowels using

TFS response at 50, 65, and 85 dB SPL for p = (.9, a window size of W1 =
8 % 8. and moment order of NV = 8.

B. Effects of SPL on NOPM Score

In general. speech mtelligibility increases for people with
hearing loss (moderate to severe) when the SPL is increased
from lower sound levels to a conversational speech level (~
65 — 70 dB SPL). However. when the speech level is increased
beyond the conversational speech level. the recognition perfor-
mance under quiet condition declines for people with hearing
loss [53]. This phenomenon is referred to as the roll-over effect
in the literature. In order to quantify the effect of SPL on the
proposed metric, the NOPM scores were estimated for vowel
phoneme groups at 50. 65 and 85 dB SPL in Fig. 5. In general.
the NOPM score at a constant SPL declines as a function of
SNHL. The result also shows that the NOPM score increases
when SPL increases from 50 dB to 65 dB and decreases when
speech is more highly amplified (85 dB SPL).

This decline at a high level could be attributed to the loss of
synchrony capture by higher formants and spread of excitation,
which has been successfully captured by the AN model em-
ployed to construct the auditory neurograms [54]. In response
to a vowel at higher sound levels, AN responses show the loss
of synchrony capture by the second formant whereas synchrony
to the first formant increases [33], [54].

C. Effects of Moment Parameters

The effects of block size, W, and parameter. p, on the NOPM
metric are illustrated in Fig. 6. The NOPM scores for two dif-
ferent block sizes (W) = 8 x 8. W2 = 16 x 16) as well as pa-
rameter p (0.2, 0.5, and 0.9) for representative vowel phonemes
were simulated. The NOPM score based on the ENV responses
was sensitive to both block size and parameter p (not shown in
figure). whereas scores based on the TFS responses were highly
sensitive to parameter p and less sensitive to parameter W, par-
ticularly for moderate and profound hearing loss. As the value
of parameter p increased, the contrast among NOPM scores also
increased. especially for ENV responses. A detailed analysis of
plots from the other phoneme groups revealed similar behavior

Link to Full-Text Articles :

0.8

o
g 0.6 .
b -6~ TFSHWI4pl
% 04 [ B TFS+Wi+p2
—€— TFS+W1+p3
—% - TFS+W2+pl
027} e TRSW2ep2
- B TFS+W24p3
DUNIMP 10dB 06 MILD MOD  PROF
Hearing loss Audiogram

Fig. 6. Effects of the parameter and block size, W, on NOPM scores. Results
for vowels using TFS responses at 65 dB SPL for pl = 0.2, p2 = 0.5, and
p3 = 0.9, and window size of W1 = 8 x 8(N = 8) and W2 = 16 » 16(V

= 16). are shown. Here order of moment is equal to block size.

(results not shown). In addition. it was found that the correla-
tion coefficient between the original neurogram and the recon-
structed neurogram using middle order moments with p = 0.9
was higher compared to using middle order moments with any
lower values of the parameter p. This suggests that middle order
moments with p = 0.9 captured relatively more information
from the original neurogram. and thus the result for all subse-
quent figures is reported for p = 0.9.

D. Effects of SNR on the Predicted Score for Listeners with
Normal Hearing

Fig. 7 shows the estimated mean scores of NOPM., SII! [55],
and NSIM as a function of SNR. The scores were predicted
for NU#6 words using the AN model for a normal listener. and
the SNRs were varied from —20 to 460 dB in steps of 10 dB.
Additive white Gaussian noise (AWGN) and speech-shaped
noise were used as maskers. and the words were presented at
65 dB SPL. The NOPM scores were computed using the TFS
responses. In general, the scores progressively decreased as
more and more noise was added to the signal.

This negative effect of increasing noise levels on the objec-
tive scores is consistent with the results from the relevant be-
havioral studies [3]. Studebaker et al. [6] also reported that the
effective dynamic range of speech may be considerably larger
than the commonly assumed value of 30 dB (e.g.. in AT calcu-
lation). From this figure. it is obvious that the proposed metric
(NOPM) and NSIM successfully captured this phenomenon.

E. Comparison with Existing Metric

Fig. 8 compares NOPM scores with MSSIM and NSIM

scores for the stops phoneme group using TFS responses. In
contrast to the MSSIM and NSIM score, the NOPM score

IThe Matlab code given in [55] is used to compute the SII scores for NU#6
words
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