International Conference on Rings and Algebras
(10-16 July 2011 :Taipei, Taiwan).

1) Some studies on the geometry of block triangular matrices , by Chooi Wai Leong.

2) Bounded distance preserving surjective mappings on block triangular matrix algebras, by Chooi Wai Leong.
Some studies on the geometry of block triangular matrices

Chooi Wai Leong

Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia

Abstract

In this talk, we will present some latest studies of surjective mappings preserving bounded distance in both directions on matrix spaces, which is an continuation study of adjacency preserving mappings. Some recent works on surjective mappings preserving bounded distance in both directions on block triangular matrix algebras will be discussed.

E-mail address: wlchooi@um.edu.my
Some studies on the geometry of block triangular matrices

Wai Leong Chooi
Institute of Mathematical Sciences, Faculty of Science
University of Malaya, Malaysia
wlchooi@um.edu.my

The 6-th Workshop on Matrices and Operators MAO 2011
Chengdu, Sichuan, China, July 8-11, 2011
Introduction

In the geometry of matrices, the points of the associated matrix space \mathcal{M} are a certain kind of matrices of a given size, and the arithmetic distance, or simply the distance, of two points of \mathcal{M} is the rank of their difference.

Two points of \mathcal{M} are said to be adjacent if their distance is one or minimal.

Hua discovered that the invariant of adjacency alone is sufficient to characterize the transformation groups of the geometries of four types of matrices, namely rectangular matrices, symmetric matrices, Hermitian matrices and alternate matrices.
Introduction

In the fundamental theorem of the geometry of matrices, every bijective mapping \(\psi \) on the associated matrix space for which \(\psi \) and \(\psi^{-1} \) preserve adjacency (or equivalently, bijective mapping \(\psi \) preserving adjacency in both directions) are characterized.

For an extensive expository survey of the geometry of matrices, see the books of Wan (1996) and Huang (2006), and the references therein.

Introduction

Inspired by the elegant and fundamental results of Hua's work in this area, it has been attracted and followed by many mathematicians.

- similar problems have been studied in various of finite and infinite dimensional linear spaces;
- the fundamental theorem of the geometry of matrices has been improved under weaker assumptions:
 - dropping bijectivity assumption, and
 - replacing preserving adjacency in both directions by preserving adjacency;
- some continuation studies have been considered in classifying surjective mappings preserving pairs of elements with maximal distance, bounded distance as well as fixed distance in both directions.
Motivation

Surjective Mappings Preserving Bounded Distance in Both Directions.
Motivation

In 2006, motivated by a result concerning geometric mappings in Grassmann spaces, Havlicek and Šemrl, using Hua's fundamental theorem, classified bijective mappings ψ preserving maximal distance in both directions (i.e., $A - B$ is of full rank $\iff \psi(A) - \psi(B)$ is of full rank) on rectangular matrices.

- H. Havlicek, P. Šemrl, *From geometry to invertibility preservers.*
Motivation

Later on, Lim and Tan characterized surjective mappings ψ on the spaces of rectangular matrices, symmetric matrices, Hermitian matrices and alternate matrices preserving bounded distance in both directions, namely

$$\rho(A - B) \leq r \iff \rho(\psi(A) - \psi(B)) \leq r$$

for some integer $1 < r < \ell$, where ρ is the rank function and ℓ is the maximal rank of matrices of the space.

As a continuation work, Lim studied surjective mappings preserving bounded distance in both directions on Grassmann spaces in

Motivation

In 2008, W.L. Huang and Havlicek, with a different approach, by considering a class of graphs subjects to five conditions including the finiteness of diameters, showed that the maximal distance preservation in both directions implies the adjacency preservation in both directions, and then, this result was applied to the graphs arising from the adjacency relations for four kinds of matrix spaces, namely the spaces of rectangular matrices, symmetric matrices, Hermitian matrices and alternate matrices, as well as for the Grassmann spaces.

By a similar idea employed in the paper of W.L. Huang and Havlicek, W.L. Huang studied surjective mappings preserving bounded distance in both directions on the spaces of rectangular matrices, symmetric matrices, Hermitean matrices and alternate matrices. Grassmann spaces, and classical dual polar spaces in the following two papers.

Motivation

In 2010, L.P. Huang, in his paper

- L.P. Huang. Good distance graphs and the geometry of matrices,
 Linear Algebra Appl. 433 (2010) 221-232,

introduced the concept of a good distance graph and proved the following assertions are equivalent
- ψ is a graph isomorphism.
- ψ is a surjective mapping preserving a fixed bounded distance k in both directions.
- ψ is a surjective mapping preserving a fixed distance $k/2$ in both directions.

Then, he characterized surjective mappings preserving bounded distance as well as fixed distance on Hermitian matrices and symmetric matrices.
Geometry of Block Triangular Matrices

Motivated by Hua's pioneer work in the geometry of matrices, in 2002, Chooi and Lim initiated the study of the geometry of block triangular matrices over an arbitrary field in the following paper

They characterized bijective mappings preserving adjacency in both directions on block triangular matrices. The result is quite different from and more complicated that the corresponding theorem on spaces rectangular matrices, symmetric matrices, Hermitian matrices and alternate matrices.
Recently, the geometry of block triangular matrices have been studied in

Bounded Distance Preserving Mappings

As a continuation of our previous work, we study surjective mappings preserving bounded distance in both directions on block triangular matrices.

For the sake of our discussion, we need some notation.

- \mathcal{M}_n is the space of $n \times n$ matrices over a field \mathbb{F}.
- $\mathcal{T}_{n_i,k}$ denotes a subalgebra of \mathcal{M}_n consisting of $k \times k$ block upper triangular matrices (A_{ij}) with $A_{ii} \in \mathcal{M}_{n_i}$ for $i = 1, \ldots, k$ and $n_1 + \cdots + n_k = n$.
- E_{ij} stands for the matrix unit whose (i,j)-th entry is one and the others are zero.

For each block triangular matrix subalgebra $\mathcal{T}_{n_i,k}$ of \mathcal{M}_n, we denote by

- $\max(n)$ the greatest integer $1 \leq j \leq n$ such that $E_{j,n+1-j} \in \mathcal{T}_{n_i,k}$.
Main Theorem

Theorem 1

Let $T_{n,k}$ and $T_{m,h}$ be block triangular matrix subalgebras of M_n and M_m, respectively, over a field with at least three elements, and $n_k, n_k = 1$ or $n_k, n_k \geq 2$. Let r be an integer such that $1 \leq r < \min \{\max(m), \max(n)\}$. Let $\psi : T_{n,k} \rightarrow T_{m,h}$ be a surjective mapping satisfying

$$\rho(A - B) \leq r \iff \rho(\psi(A) - \psi(B)) \leq r$$ \hspace{1cm} (1)

for every $A, B \in T_{n,k}$. Then ψ is a bijective mapping preserving adjacency in both directions, and $T_{m,h} = T_{n,k}$ or $T_{m,h} = T_{n+1-k,k}$.

Wai Leong Cheung - MAO 2011 - Shengde | Some studies on the geometry of block triangular matrices
Example 2

Let \(T_5 \) denote the algebra of \(5 \times 5 \) upper triangular matrices over a field. Let \(\psi : T_5 \rightarrow T_5 \) be the mapping defined by

\[
\psi(A) = A + (a_{24} - a_{15})E_{15} + (a_{15} - a_{24})E_{24}
\]

for every \(A = (a_{ij}) \in T_5 \). We note that \(\psi \) is a bijective mapping satisfying condition (1) for \(r = 4, 5 \). But, \(\psi \) does not preserve adjacency in both directions.
Key Lemmas

Let $1 \leq r \leq n$ and let $T_{n,k}$ be a block triangular matrix subalgebra of M_n. For each nonempty subset S of $T_{n,k}$, we define

$$S^{\uparrow r} := \{ T \in T_{n,k} \mid \rho(T - X) \leq r \text{ for all } X \in S \}$$

and

$$S^{\uparrow r, \downarrow r} := (S^{\uparrow r})^{\downarrow r}.$$

Lemma 1

Let $T_{n,k}$ be a block triangular matrix subalgebra of M_n over a field F with at least three elements. Let $1 \leq r < \max(n)$. If $A, B \in T_{n,k}$ with $\rho(B - A) = 1$, then $|\{A, B\}^{\uparrow r, \downarrow r}| \geq 3$.

Wai Leung Chau - MAO 2011 - Chengdu | Some studies on the geometry of block triangular matrices
Key Lemmas

Lemma 2

Let \(A, B \in \mathcal{T}_{n,k} \) be matrices with \(1 \leq p(B - A) = h \leq r < \max(n) \) and

\[
B - A = P(E_{s_1t_1} + \cdots + E_{s_ht_h})Q
\]

for some invertible matrices \(P, Q \in \mathcal{T}_{m,k} \), where \(E_{s_1t_1}, \ldots, E_{s_ht_h} \) in \(\mathcal{T}_{n,k} \) with \(1 \leq s_j \leq t_j \leq n \) for \(j = 1, \ldots, h \), \(1 \leq s_1 < \cdots < s_h \leq n \), and \(1 \leq t_1 \neq t_j \leq n \) for every \(1 \leq i \neq j \leq h \). If one of the following conditions hold:

- \(h = 2 \), and \((n_1, s_1, t_1) \neq (1, 1, 1) \) and \((n_k, s_2, t_2) \neq (1, n, n) \),
- \(h = 3 \), and \((n_1, s_1, t_1) \neq (1, 1, 1) \) and \((n_k, s_3, t_3) \neq (1, n, n) \),
- \(h \geq 4 \),

then \(\{ A, B \} \overset{L^r}{\leftrightarrow} \{ A, B \} \).
Application

By a similar technique used in the proof of L.P. Huang’s paper

- L.P. Huang, *Good distance graphs and the geometry of matrices*,
 Linear Algebra Appl. 433 (2010) 221-232,

Together with Theorem 1, we obtain

Theorem 2

Let \(T_{n,k} \) and \(T_{m,h} \) be block triangular matrix subalgebras of \(M_n \) and \(M_m \), respectively, over a field \(F \) with at least three elements, and \(m, n, k \geq 2 \). Let \(s \) be an integer such that
\[
1 < s < \min \left\{ \frac{\max(m)}{2}, \frac{\max(n)}{2} \right\}.
\]

Let \(\psi : T_{n,k} \rightarrow T_{m,h} \) be a surjective mapping satisfying
\[
\rho(A - B) = s \iff \rho(\psi(A) - \psi(B)) = s
\]

for every \(A, B \in T_{n,k} \). Then \(\psi \) is a bijective mapping preserving adjacency in both directions, and \(T_{m,h} = T_{n,k} \) or \(T_{m,h} = T_{n+1,...,k} \).
Key Lemmas

Lemma 3

Let \(T_{n,k} \) be a block triangular matrix subalgebra of \(\mathcal{M}_n \) over a field \(\mathbb{F} \) with at least three elements. Let \(A, B \in T_{n,k} \) be matrices with \(1 \leq \rho(B - A) = h < r < \max(n) \) and

\[
B - A = P(E_{s_1 t_1} + \cdots + E_{s_h t_h}) Q
\]

for some invertible matrices \(P, Q \in T_{n,k} \), where

\(E_{s_j t_j}, \ldots, E_{s_h t_h} \in T_{n,k} \) with \(1 \leq s_j \leq t_j \leq n \) for \(j = 1, \ldots, h \),

\(1 \leq s_j < \cdots < s_h \leq n \), and \(1 \leq t_j \neq t_l \leq n \) for every

\(1 \leq i \neq j \leq h \). Then \(\{A, B\}^{L, L_{tr}} \geq 3 \) if and only if one the following conditions must hold:

- \(h = 1 \);
- \(h = 2 \), either \((n_1, s_1, t_1) = (1, 1, 1) \) or \((n_2, s_2, t_2) = (1, n, n) \);
Lemma 3 - continued

- \(h = 3 \) and one of the following conditions is satisfied:
 - \((m, s_1, s_3) = (1, 1, 1)\) and \((m_1, s_1, s_3, s_5) = (1, n, n)\);
 - \((m, s_1, s_3) = (1, 1, 1)\), \(s_2 = t_2 = n - 1\), and \(s_4 = t_4 = 1\) with
 - \(m_4 = 2\);
 - \((m, s_1, s_3, s_5) = (1, n, n)\), \(s_2 = t_2 = 2\), and \(s_4 = t_4 = 1\) with
 - \(m_4 = 2\).

Bounded distance preserving surjective mappings on block triangular matrix algebras