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ABSTRACT:  

By considering the absorbed power and energy based on heating power profile during 

extraction, a generalized model with washing coefficient (b), diffusion coefficient (k) and 

predictive parameter namely absorbed power density (APD) was developed for microwave-

assisted extraction (MAE) at any operational heating modes. To study the model, MAE of 

flavonoids from cocoa (Theobroma cacao L.) leaves was conducted using the heating modes 

(constant-power, two-steps-power, intermittent-power and constant-temperature) at various 

microwave power (100-300 W) and extraction temperature (50 oC and 70 oC). The results 

shows that the model (b = 0.5595 and k’ = 0.01279 ml/J) is able to predict the normalised 

extraction yields of MAE at any heating modes, heating power, microwave system, extraction 

scale and batch of plant sample with less than 4% discrepancy. The accuracy of the prediction 

relies on particle size of sample (0.25-0.60 mm), type of extraction (85% ethanol) and solvent 

to feed ratio (50 ml/g). 

Keywords: absorbed power density (APD), absorbed energy density (AED), generalized 

model, heating modes, normalized extraction yield 
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1. Introduction 

Microwave-assisted extraction (MAE) is an advanced extraction technique which employs 

microwave heating in an extraction system. MAE has been widely employed to extract valuable 

active compounds from plant materials [1, 2] and plant-based waste residues [3, 4]. In general, 

the performance of MAE depends on its operational mode of heating [5], e.g. constant-power 

heating, intermittent-power heating and constant-temperature heating. Constant-power MAE 

delivers persistent heating at specific power to extraction system and it is a known as the 

standard practice to extract thermally-stable active compounds [6]; intermittent-power MAE 

provides pulsed microwave heating at certain power which is efficient in extracting thermal-

labile compounds [7] while constant temperature MAE controls extraction temperature which 

enables the extraction of highly degradable active compounds [8]. These heating modes are 

broadly adopted in MAE as far as plant extraction is concerned. Thus, their kinetic modeling 

would provide insightful information on the extraction behaviors to facilitate the optimization 

and scaling up operations.  

 

Empirical model such as film theory, chemical kinetic equation and other two-parametric 

models has been conventionally used to model assisted extraction techniques including MAE 

[9]. These models can only indicate the extraction kinetics at different operating conditions and 

extraction techniques as their extraction constants are obtained by curve-fitting through 

experimental data. Empirical models developed based on response surface methodology 

(RSM) and artificial neural network (ANN) had been applied to simulate and optimize the 

operating parameters of MAE [10, 11]. These models require lesser experimental data for the 

simulation as compared to conventional empirical MAE model. However, screening of suitable 

range of operating parameters is essential to achieve reliable optimization results. Modeling of 

MAE had been attempted using transport equations such as Maxwell’s, energy and species 
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balance equations via COMSOL MultiphysicsTM software [12]. Both the distribution of 

electromagnetic wave and temperature profile for constant-power and intermittent-power MAE 

can be simulated theoretically based on the model, whereas their extraction profiles can only 

be modeled based on experimentally-fitted empirical parameters [12]. All the models 

mentioned employ empirical approach to model the mass transport phenomenon of MAE 

process. They are applicable only at specific operating condition, heating mode and microwave 

system. To broaden the predictive capability of MAE model, two energy-related parameters 

namely absorbed power density (APD) and absorbed energy density (AED) had been 

introduced and were incorporated into conventional empirical model as parameters to predict 

the extraction profile of MAE at various microwave powers and extraction scales [13]. These 

energy-related parameters, i.e. APD and AED are indicators for heating performance of MAE 

and the progress of the extraction to reach equilibrium state, respectively. Beside the 

involvement in modeling study, APD and AED can also be adopted in the optimization of MAE 

at various extraction scale [14]. This validated APD-AED predictive model is applicable only 

for constant-power MAE and its predictive capabilities in various heating modes and extraction 

system have yet to be confirmed.  

 

In this study, the absorbed power and energy of a MAE system at each heating steps based on 

its heating-power profile was taken into account in the development of the generalized 

predictive model to study the MAE of flavonoids from cocoa (Theobroma cacao L.) leaves at 

constant power, two steps power, intermittent power and constant temperature heating. The 

capabilities of the model to predict the extraction profile of MAE were evaluated at various 

conditions such as at different heating power, heating modes and microwave system. This work 

also analyzes the intrinsic effects exerted by the APD and AED parameters on the extraction 

mechanism of MAE.  
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2. Materials and Methods 

 

2.1. Materials and reagents 

Denatured alcohol was obtained from LGC Scientific co. (Malaysia) as extraction solvent. 

Standard of flavonoid compounds such as isoquercitrin, (-)-epicatechin and rutin were 

purchased from Sigma-Aldrich co. (USA). Acetonitrile and ethanol are purchased from Merck 

co. (Germany) as mobile phase for chromatography analysis. 

 

2.2. Sample preparation 

Fresh cocoa leaves collected from local cocoa plantation were dried using conventional air-

drying oven at 40 oC for a day. The dried leaves (5-6% moisture content) were then cut and 

powdered to 0.25-0.60 mm particle size and stored at 4 oC in a container.  

 

2.3. Microwave-assisted extraction at various heating modes 

Two (2) g of cocoa leaves sample was mixed with 100 ml of 85% (v/v) aqueous ethanol 

(optimum solvent) in a 500 ml closed Duran bottle. The mixture was put inside a microwave 

system and heated up using predetermined operating conditions based on certain heating-power 

profile as shown in Fig. 1. In this study, domestic microwave oven (Samsung MW718) was 

employed to perform constant-power, two-steps-power and intermittent-power MAE at various 

microwave power ranging from 100-300 W. In constant-power MAE, the extraction mixture 

was heated up using fixed power without stirring; two-steps power MAE involved sequential 

heating using two power levels and the intermittent-power MAE provided pulsed heating at 

fixed power. The latter heating mode was adjusted by turning on and off the microwave system 

based on intermittency ratio, α = τon/(τon + τon) [7], where τon and τoff are the respective on and 

off periods (min) of each cycle (one on plus one off periods). On the other hand, temperature-
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controlled microwave system (Milestone RotoSYNTH) was used to carry out constant-

temperature MAE at 50 oC and 70 oC. In this MAE, microwave power of 500 W was applied 

to ramp up the extraction temperature to the desired set point. After the desired temperature 

was reached, the extraction temperature was maintained by regulating the nominal microwave 

power. Upon subjected to certain mode of heating, the extraction mixture was cooled down to 

room temperature using a water bath. The extract was filtered using fine cloth followed by 0.2 

µm regenerated cellulose filter prior to HPLC analysis. To construct an extraction profile of 

MAE, extractions at predetermined operating conditions were conducted at varying extraction 

times using fresh samples.  

 

 
 

 

Fig. 1: Heating-power profiles of various operational modes of MAE: (a) constant power 

heating; (b) two-steps power heating; (c) intermittent power heating; (d) constant temperature 

heating. 
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2.4. Quantification of flavonoids in cocoa leaves extract 

High performance liquid chromatography (HPLC) was performed to quantify three flavonoid 

compounds from cocoa leaves extract. Agilent 1200 Series HPLC device with Agilent 

ZORBAX Eclipse Plus C18 column, 5 µm (4.6 mm × 150 mm) configured with Bonaccorsi et 

al. method [15] was employed in this analysis. The flavonoids was analysed at 350 nm for 

isoquercitrin and rutin compounds and 280 nm for (-)-epicatechin compound using UV-DAD 

detector. Mobile phase used in this analysis consists of linear gradient of acetonitrile in water: 

5–20% (0–15 min), 20–30% (15–20 min), 30–50% (20–30 min), 50–100% (30–35 min), 100% 

(35–40 min), and 100–5% (40–50 min) at flow rate of 1.0 ml/min. The extraction yield is 

expressed as the mass of extracted active compounds (mg) per mass of sample used (g). The 

total extraction yields of isoquercitrin, (-)-epicatechin and rutin were the response of the 

modeling study.  

 

2.5. Determination of energy-related parameters 

The proposed model relies on values of absorbed power density (APD) and absorbed energy 

density (AED) of the MAE system at various heating powers. APD and AED represent the 

absorbed microwave power (W/ml) and absorbed microwave energy (J/ml) per unit solvent 

volume, respectively. The detail procedure for the determination of APD and AED was 

reported in the previous work [13]. APD can be determined experimentally by measuring the 

absorbed power of a blank extraction solvent heated using a specific nominal microwave power 

based on Eq. (1). 

H

Q
APD

V t



           Eq. (1) 

where Q is the total energy absorbed by solvent during heating (J), V is the solvent volume (ml) 

and tH is the heating time (min). The total heat absorbed, Q can be calculated from the evolved 

temperature profile based on heat capacity of the solvent. In this study, a representative value 
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of APD of blank extraction solvent under various nominal microwave power were determined 

by averaging the APD values calculated for each conditions at different heating time (tH). Due 

to fluctuation in microwave irradiation power during constant-temperature MAE, the APD 

values were determined based on two average microwave powers, i.e. the power to ramp the 

extraction temperature to desired set point and the power to maintain the desired temperature 

across the time as indicated in Fig. 1. The calculated average APD values of MAE systems are 

tabulated in Table 1. The energy-related parameter, AED is related to APD and the extraction 

time via Eq. (2). 

tAED APD t            Eq. (2) 

where AEDt  is the total microwave energy absorbed per solvent volume during the extraction 

(J/ml) and t is the extraction time (min).   

 

Table 1: APD values of MAE systems  

Microwave system 
Solvent loading, V 

(ml) 

Microwave irradiation 

power, P 

 (W) 

Absorbed power 

density, APD 

(W/ml) 

Samsung MW718  100 

100 0.15 ± 0.02 

150 0.30 ± 0.03 

300 0.93 ± 0.06 

Milestone 

RotoSYNTH  
100 

38 0.11 ± 0.03 

62 0.17 ± 0.02 

101 0.60 ± 0.02 

209 1.26 ± 0.05 

 

 

 

 

Example of calculation of APD by calorimetric method 

MAE operating 

conditions 
Heating time, tH 

Total heat 

absorbed, Q 

Absorbed power 

density, APD 
Average APD 

 (min) (J) (W/ml) (W/ml) 

100 ml, 100 W 

(Samsung 

MW718) 

5.00 5266 0.18 

0.15 13.00 10796 0.14 

27.00 23649 0.15 
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2.6. Generalized energy-based MAE model 

The typical extraction profile, i.e. yield vs. time of MAE consists of two stages. The first stage 

involves the washing of active compounds from the broken plant cells by the bulk solvent in a 

fast rate due to sample preparation e.g. grinding and in the second stage, the diffusion of active 

compounds from the microwave-ruptured cells into the bulk solvent. This study focuses only 

on the diffusion stage as this stage is strongly influenced by the operating conditions of MAE. 

Film theory model [16] as expressed in Eq. (3) is suitable to model the normalized extraction 

yield of the diffusion stage. 

Film theory model 

1 (1 )exp( )
s

y
Y b k t

y
              Eq. (3) 

where Y is the normalized extraction yield, y is the extraction yield (mg/g), ys is the equilibrium 

extraction yield (mg/g), b and k indicate the extraction kinetics for the washing (1) and diffusion 

(min-1) stages, respectively. By adapting Eq. (3) with AED as a basis to replace the extraction 

time t, a simple energy-based model can be developed to simulate the progress of a MAE to 

reach equilibrium extraction stage based on the amount of microwave energy absorbed in the 

system as follows: 

AED-film theory model 

1 (1 )exp( ' )t

s

y
Y b k AED

y
             Eq. (4) 

where k is the kinetic constants for the diffusion stage in energy basis (ml/J). The simulated 

energy-based extraction profile, i.e. normalized yield vs. AED is generally applicable over 

constant-power MAE operated at any heating conditions [13]. This model can be rewritten in 

Eq. (5) to predict the normalized extraction profile in time basis based on the actual heating 

power of the MAE system (APD value). 
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Predictive AED-film theory model 

1 (1 )exp( ' )
s

y
Y b k APD t

y
              Eq. (5) 

To extend the applicability of this model to two-steps-power, intermittent-power and constant-

temperature MAE, the APD values of each heating steps involved in the MAE were 

incorporated into the model as illustrated in Fig. 2. As a result, a generalized energy-based 

MAE model was proposed to describe the normalized extraction yield of MAE at ith heating 

step, Yi as shown in Eq. (6) 

Generalized predictive AED-film theory model 

1

0

( ) 1 (1 )exp
i

i i i j

js

y
Y t b k t

y






  
        

   
       Eq. (6) 

where τ is the total time period in a heating step, bi and ki are the washing and diffusion 

coefficient at ith heating step, respectively. The individual washing and diffusion coefficients 

involved in each heating steps can respectively be calculated using Eq. (7) and Eq. (8): 

1 1 1 1 1 1( ) 1 (1 )exp( ' ),  where i i i i i ib Y b k APD b b                 Eq. (7) 

'i ik k APD            Eq. (8) 

The coefficient bi indicates the final extraction yield obtained at previous i-1th heating step 

whereas the coefficient ki is calculated based on the APD value at the ith heating step.  
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Fig. 2: Schematic diagram of the development of generalized predictive film theory-APD 

model. 

 

 

2.7. Evaluation of the applicability of the model 

The extraction profile of constant-power MAE in Table 2 (No. 1) was used to calibrate the 

model’s coefficients, i.e. the initial washing coefficient, b and the energy-based diffusion 

coefficient, k’. The coefficients were determined by curve-fitting Eq. (4) with the experimental 

data using Matlab curve fitting toolbox (version 2.1). The coefficients were then substituted 

into Eq. (6-8) to predict the extraction curves of two-steps-power, intermittent-power and 

constant-temperature MAE as tabulated in Table 2 (No. 2-7) based on their APD values 

involved in the extraction. The goodness of fit for the predictions were evaluated based on the 

average relative error (%) by comparing with the experimental data. 
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Table 2: Experimental design for extraction curves of MAE 

No. 
Heating 

modes 
Heating conditions 

Equilibrium extraction yields (mg/g) 
Total 

equilibrium 

extraction 

yield (mg/g) 
IQ EC RT 

1 
Constant 

power  
Samsung MW718; 150 W, 20 min 

2.35 ± 0.02 2.59 ± 0.03 4.89 ± 0.06 9.82 ± 0.07 

2 

Two-steps 

power  

Samsung MW718; step 1: 100 W, 

13.46 min; step 2: 300 W, 4.14 min 

2.55 ± 0.01 2.80 ± 0.01 5.15 ± 0.05 10.50 ± 0.05 

3 
Samsung MW718; step 1: 300 W, 

3.20 min; step 2: 100 W, 6.40 min 

2.62 ± 0.02 2.76 ± 0.07 5.27 ± 0.03 10.65 ± 0.12 

4 
Intermittent 

power  

Samsung MW718; 150W, α = 0.50 

(on: 4 min, off: 4 min) for 32 min 

2.31 ± 0.09 2.49 ± 0.01 5.08 ± 0.02 9.89 ± 0.11 

5 
Samsung MW718; 300W, α = 0.25 

(on: 1 min, off: 3 min) for 16 min 

2.38 ± 0.01 2.52 ± 0.03 5.02 ± 0.05 9.93 ± 0.10 

6 

Constant 

temperature  

Milestone RotoSYNTH; 500 W 

(ramping for 25 sec), 50 oC, 30 min 

2.04 ± 0.09 2.66 ± 0.07 5.10 ± 0.02 9.79 ± 0.06 

7 
Milestone RotoSYNTH; 500 W 

(ramping for 40 sec), 70 oC, 15 min 

2.20 ± 0.04 2.67 ± 0.11 5.13 ± 0.06 10.00 ± 0.18 

 

 

 

3. Results and Discussion 

 

3.1. Calibration of model parameters 

The initial washing coefficient b and the energy-based diffusion coefficient k’ in Eq. (4) were 

calibrated based on constant-power MAE at 150 W as shown in Fig. 3. Approximately 56% 

out of total yield was obtained at the beginning of the extraction before heating. The coefficient 

k’ (0.01279 ml/J) obtained at 150 W in this study is close to that reported at 100 W in the 

previous work (0.01452 ml/J)[13]. This suggests that the initial washing coefficient b and the 

energy-based diffusion coefficient k’ are constant regardless of the heating power. 

Theoretically, they are affected only by the operating parameters such as extraction solvent, 

solvent to feed ratio and particle size of sample that have no direct effect on the microwave 
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heating. This is because extraction solvent that affects the microwave absorption capability 

also at the same time, affects the solubility of the active compounds whereas solvent to feed 

ratio controls the accessibility of solvent to dissolve the compounds and sample particle size 

has an effect on the diffusion of the active compounds from the plant matrices. After 

calibration, the model coefficients obtained at b = 0.5595 and k’ = 0.01279 ml/J were 

substituted in Eq. (6-8) to predict the extraction profile of MAE conducted using various 

heating modes, heating powers and microwave systems.  

 

Fig. 3: Determination of the coefficients of film theory-AED model based on curve fitting; 

MAE conditions: constant power heating of 150 W and APD of 0.3 W/mL; ● experimental 

extraction yield; — fitted extraction curve; − − solvent temperature. 
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3.2. Predictive capability of the generalized model 

Based on constructed model Eq. (8-10), the individual washing and diffusion coefficients of 

MAE at two steps power, intermittent power and constant temperature heating were calculated 

and tabulated in Table 3. All the predicted extraction profiles are able to capture the trends of 

the experimental extraction profiles as the average relative error in most cases was less than 

4%. This indicates that the generalized model is feasible in predicting the MAE kinetics by 

adapting suitable diffusion coefficient according to the heating power involved in the 

extraction. As observed in Table 3, the diffusion coefficient k is strongly influenced by the 

heating power employed or the APD parameter. The performance of the generalized model, 

related extraction mechanism and the intrinsic effects of APD and AED parameters on each 

operational heating modes are elaborated accordingly. 

 

3.2.1. Two-steps-power MAE 

The extraction profiles of two-steps-power MAE at power configuration of 100-300 W and 

300-100 W were predicted by the generalized model as depicted in Fig. 4. The extraction 

profiles exhibit similar trend with respective to their temperature profiles consisting of two 

distinct regions with different growth rates. Both the temperature and extraction profiles are 

dependent on the heating power of MAE as higher APD conditions for faster heating and 

extraction rate. An interesting findings on MAE using two steps power is that it gives the 

highest equilibrium extraction yields among operational heating modes as shown in Table 2. 

At least 5% additional extraction yields can be achieved using this heating mode regardless of 

the order of the power configuration at low-high or high-low power level. This implicated that 

MAE conducted using two steps power heating is more effective than continuous heating at 

fixed power to heat up the dielectric content and disrupt the plant cells. The effectiveness of 

two-steps-power MAE resulted in evaporation of more than 30% (vol.) of extraction solvent 
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as the extraction temperature was constantly at the boiling point of the solvent (about 70 oC) 

due to rapid heating.  

 

Table 3: Predictive capability of generalized predictive AED-film theory model in MAE  

 

 

 

 

 

  

Operational 

heating mode 
Heating steps 

Predicted extraction constant Average 

relative 

error (%) 
b (1) k (min)-1 

Two-steps 

power 

heating 

(1) 100 W (0.15 W/ml), 13.46 min 

(2) 300 W (0.93 W/ml), 4.14 min 

b1 = 0.5595 

b2 = 0.9064 

k1 = 0.1151 

k2 = 0.7137 
3.18 

(1) 300 W (0.93 W/ml), 3.20 min 

(2) 100 W (0.15 W/ml), 16.40 min 

b1 = 0.5595 

b2 = 0.9551 

k1 = 0.7137 

k2 = 0.1151 
2.93 

Intermittent 

power 

heating 

(1) 150 W (0.30 W/ml), 4 min 

(2) 0 W, 4 min 

(3) 150 W (0.30 W/ml), 4min 

(4) 0 W, 4 min 

(5) 150 W (0.30 W/ml), 4 min 

(6) 0 W, 4 min 

(7) 150 W(0.30 W/ml), 4 min 

(8) 0 W, 4 min 

b1 = 0.5595 

b2 = 0.8246 

b3 = 0.8246 

b4 = 0.9302 

b5 = 0.9302 

b6 = 0.9722 

b7 = 0.9722 

b8 = 0.9889 

k1 = 0.2302 

k2 = 0  

k3 = 0.2302 

k4 = 0 

k5 = 0.2302 

k6 = 0 

k7 = 0.2302 

k8 = 0 

2.52 

 

(1) 300 W (0.93 W/ml), 1 min 

(2) 0 W, 3 min 

(3) 300 W (0.93 W/ml), 1min 

(4) 0 W, 3 min 

(5) 300 W (0.93 W/ml), 1 min 

(6) 0 W, 3 min 

(7) 300 W(0.93 W/ml), 1 min 

(8) 0 W, 3 min 

b1 = 0.5595 

b2 = 0.7842 

b3 = 0.7842 

b4 = 0.8943 

b5 = 0.8943 

b6 = 0.9482 

b7 = 0.9482 

b8 = 0.9746 

k1 = 0.7137 

k2 = 0  

k3 = 0.7137 

k4 = 0 

k5 = 0.7137 

k6 = 0 

k7 = 0.7137 

k8 = 0 

2.10 

Constant 

temperature 

heating 

Extraction temperature of 50 oC 

(1) Average 101 W(0.60 W/ml), 2 min  

(2) Average 38 W (0.08 W/ml), 28 min 

 

b1 = 0.5595 

b2 = 0.8246 

 

k1 = 0.4604 

k2 = 0.0844 

4.09 

Extraction temperature of 70 oC 

(1) Average 209 W (1.26 W/ml), 2 min 

(2) Average 71 W (0.20 W/ml), 13 min 

 

b1 = 0.5595 

b2 = 0.9363 

 

k1 = 0.9669 

k2 = 0.1305 

3.35 
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Fig. 4: Prediction of extraction curve of MAE at two steps power heating: (a) 100 W for 13.46 

min followed by 300 W for 4.14 min; (b) 300 W for 3.20 min followed by 100 W for 16.40 

min; ● experimental extraction yield; — predicted extraction curve; − − solvent temperature. 
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3.2.2. Intermittent-power MAE 

The MAE was also conducted in intermittent power heating mode at 150 W and 300 W to 

evaluate the predictive ability of the proposed model. Intermittent-power MAE gave similar 

extraction yield as the constant-power MAE (refer to Table 2) but at lower extraction 

temperature and lesser solvent evaporation (less than 10% vol.). Fig. 5 shows that the predicted 

extraction curves were close to the experimental data, in which the trend increased during 

microwave heating and stabilized across the off heating period. Their respective temperature 

profiles also follow similar stepwise increment trend. This implies that extraction occurs in 

MAE during the presence of microwave heating disregards of its extraction temperature. 

Microwave heating is associated to the mechanism of disrupting plant cells [17], whereas 

extraction temperature affects both the thermal stability of active compounds [18] and also the 

rate of diffusion due to concentration gradient effect as described in Fick’s law of diffusion 

[19], As the mechanism of rupturing plant cells is relatively more significant than the 

concentration-gradient diffusion mechanism in MAE process, it is justified to emphasize only 

on the cell rupture mechanism for future theoretical modeling. 
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Fig. 5: Prediction of extraction curve of MAE at intermittent power heating: (a) 150W, α = 

0.50 (on: 4 min, off: 4 min) for 32 min; (b) 300W, α = 0.25 (on: 1 min, off: 3 min) for 16 min; 

● experimental extraction yield; — predicted extraction curve; − − solvent temperature. 
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3.2.3. Constant-temperature MAE 

The constant-temperature MAE at 50 oC and 70 were conducted to evaluate the performance 

of the proposed model. Based on their irradiation power and temperature profiles in Fig. 6, the 

average microwave power to ramp the extraction temperature up to 50 oC and 70 oC were 101 

W for 209 W respectively. Meanwhile, the respective average powers to maintain the desired 

temperatures were 38 W and 62 W. By using APD values computed based on these average 

powers, the proposed model is able to predict the extraction profiles of constant-temperature 

MAE conducted using a different microwave system with great accuracy as illustrated in Fig. 

6. This signifies that the proposed model is applicable to any microwave system attributing to 

the intrinsic property of APD parameter [14]. The extraction trend observed in Fig.6 are not 

different from the previous two-steps-power MAE, whereby two distinct growth rates were 

observed. Considering the performance of constant-temperature MAE, there is no significant 

advantage in terms of the equilibrium extraction yield, extraction time and solvent evaporation 

as compared to that of the intermittent-power MAE. It should be noted that this MAE requires 

shorter extraction time at higher temperature operation, which is due to higher average power 

involved in the system and not because of temperature effects as explained in the case of 

intermittent-power MAE previously.  
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Fig. 6: Prediction of extraction curve of MAE at constant temperature heating: (a) 500 W 

(ramping for 25 sec), 50 oC, 30 min; (b) 500 W (ramping for 40 sec), 70 oC, 15 min; ● 

experimental extraction yield; — predicted extraction curve; − − solvent temperature; ▬ 

nominal power; ••• average nominal power.  
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3.3. Energy-performance curve of MAE 

The selection of operational heating mode of MAE is crucial as it affects the performance of 

MAE. Both constant-power and two-steps power MAE are suitable for extracting thermally-

stable active compounds. However, two-steps power mode gives slightly higher equilibrium 

extraction yields due to rapid heating. On the other hand, intermittent-power and constant-

temperature MAE can be applied to the extraction involving thermal-sensitive compounds and 

low boiling point solvent such as methanol as they can operate at milder temperature condition. 

The performance of a MAE at any operational modes and heating conditions can be determined 

based on the energy-performance curve obtained for the specific plant-based extraction. The 

curve is plotted corresponded to the normalized extraction yield and AED of the extraction 

system. Normalized yield indicates the degree of completion of an extraction whereas AED 

indicates the amount of input microwave energy required for the MAE system to achieve 

specific extraction performance. To further elaborate, AED used in this context refers to the 

energy required to heat up an extraction solvent to facilitate the cell rupture mechanism.  

 

In this study, the energy-performance curve of MAE for the extraction of flavonoids from 

cocoa leaves is shown in Fig. 7. The plot shows that the normalized extraction yield of the 

MAEs conducted at various heating modes, heating powers and microwave setups are aligned 

with their respective AED values. Similar to the previous study [13], whereby three 

performance regions under the effect of AED are identified as steady diffusion (AED<100 

J/ml), equilibrium region (100 J/ml<AED<300 J/ml) and overheating (AED>300 J/ml). This 

signifies that AED affects the MAE intrinsically and its effect is consistent regardless of the 

heating mode employed. The energy performance curve in Fig. 7 can be used to predict the 

optimum extraction time of MAE conducted at any heating mode, heating power, extraction 

scale and microwave system based on the amount of energy absorbed in the solvent. However, 
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the prediction cannot be applied to MAE with different particle size of sample, extraction 

solvent and solvent to feed ratio as the effects of the mentioned variables are not addressed by 

AED and APD. This further implicated that reproducibility of the extraction results of MAE 

can be ensured by providing the details of APD, AED, size of plant sample used, type of 

extraction solvent and solvent to feed ratio when reporting the experiment in the literature. In 

brief, the AED-kinetic model (b = 0.5595 and k’ = 0.01279 ml/J) presented in Fig. 7 is 

specifically for MAE of flavonoids from 0.25-0.60 mm cocoa leaves sample using 85% (v/v) 

aqueous ethanol at ratio of 50 ml/g.  

 
Fig. 7: Energy-performance curve of MAE of flavonoids compounds from cocoa leaves; ● 

constant power heating at 150 W (20 min); ○ two-steps power heating at 100 W (13.46 min) 

followed by 300 W (4.14 min); ▼ two-steps power heating at 300 W (3.20 min) followed by 

100 W (6.40 min); △ intermittent power heating at 150 W, α = 0.50 (32 min); ■ intermittent 

power heating at 300 W, α = 0.25 (16 min); □ constant temperature heating at 50 oC (30 min); 

◆ constant temperature heating at 70 oC (15 min).  
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4. Conclusion 

A generalized energy-based kinetic model was developed for the MAE of bioactive compounds 

from plants. This model can be used to predict the extraction profiles of MAE at various heating 

modes based on the absorbed power density (APD) involved in the extraction. The model 

prediction is applicable to any extraction scale, heating power and microwave system of MAE 

thus is useful for optimization and scaling up. From the energy-performance curve, i.e. 

normalized yield vs absorbed energy density (AED) obtained from this model, the 

reproducibility of MAE at any operational mode for a specific plant extraction is guaranteed 

based on five operating parameters: APD, AED, size of plant sample used, type of extraction 

solvent and solvent to feed ratio.  
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