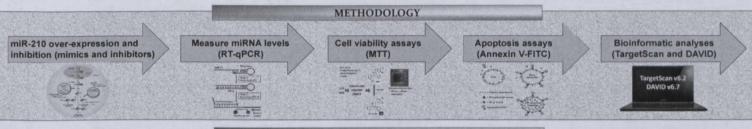


BIOTECHNOLOGY for GLOBAL SUSTAINABILITY and

Down-regulation of miR-210 enhances sensitivity towards 1'S-1'-acetoxychavicol acetate (ACA) in human cervical carcinoma cells.

¹Phuah Neoh Hun, ²Mohamad Nurul Azmi, ³Halijah Ibrahim, ²Khalijah Awang and ^{1,4}Noor Hasima Nagoor.

¹Institute of Biological Sciences (Genetics and Molecular Biology), Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia. ²Centre for Natural Product Research and Drug Discovery (CENAR), Dept. of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia.


³Institute of Biological Sciences (Ecology and Biodiversity), Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia.

⁴Centre for Research in Biotechnology for Agriculture (CEBAR), University of Malaya, 50603, Kuala Lumpur, Malaysia

*Corresponding author: hasima@um.edu.my Tel: +60379675921, Fax: +60379675908

INTRODUCTION

Cervical cancer is the second most common cancer in women worldwide after breast cancer¹, and the third most common cancer among Malaysian women after breast and colorectal cancer². Although chemotherapy has led to improvement in the overall response and survival of cancer patients, drug resistance and toxicities remain major obstacles³. The 1'S-1'-acetoxychavicol acetate (ACA) is a natural compound isolated from Alpinia conchigera and has been shown to induce apoptosis and potentiates the effects of cisplatin in both in vitro and in vivo studies⁴⁶. MicroRNAs (miRNAs) are short non-coding RNA that regulate genes negatively at posttranscriptional level, and has been implicated in diverse biological processes such as cell proliferation and apoptosis⁷. Various studies have shown that they play an important role in regulating response towards natural agents⁵. We have previously reported miR-210 to be among the differentially expressed miRNAs following treatment with ACA on human cervical carcinoma cells⁶. Hence, the aims of this study were to investigate the effects of miR-210 over-expression and inhibition in regulating response towards ACA on CaSki and SiHa human cervical carcinoma cells.

RESULTS & DISCUSSION

(1) Transfection with miR-210 mimics and inhibitors alters the expression of miR-210 in human cervical carcinoma cells

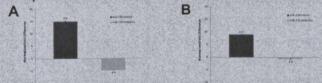


Fig. 1: RT-qPCR of miR-210 presented as normalized fold difference in miR-210 mimics- or inhibitors-transfected (A) CaSki and (B) SiHa cervical carcinoma cells, in comparison to cells transfected with negative controls. Data presented as mean \pm standard error mean of three replicates. Note: ** indicates *p* value ≤ 0.05

(3) Inhibition of miR-210 increases percentage of apoptosis following treatment with ACA on human cervical carcinoma cells

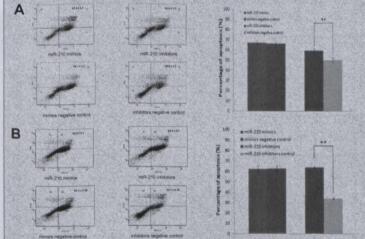


Fig. 3: Percentage of apoptosis in dot plots and bar charts following treatment with ACA in miR-210 mimics- and inhibitors-transfected (A) CaSki and (B) SiHa cervical carcinoma cells, in comparison to cells transfected with negative controls. Data presented as mean \pm standard error mean of three replicates. Note: ** indicates p value ≤ 0.05

CONCLUSION

This study demonstrated that inhibition of miR-210 decreased cell viability and increased apoptotic cells following treatment with ACA in human cervical cancer cells, indicating that down-regulation of miR-210 enhances sensitivity towards ACA. We also showed that miR-210 targets genes involved in regulating cell proliferation and apoptosis. Therefore, our study provides a platform to study the roles of miR-210 in regulating response towards anticancer drugs and provide potential therapeutic approaches by exploiting the miRNA expression to improve efficacies in chemotherapy.

ACKNOWLEDGEMENT

This study was financed by the University Malaya Research Grant (RP001B-13BIO), University Malaya High Impact Research Grant (H-21001-F0036) and RU Operation Grant (RU005C-2014)

(2) Inhibition of miR-210 increases sensitivity towards ACA on human cervical carcinoma cells

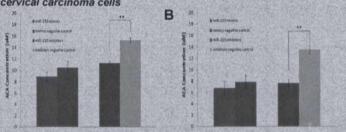


Fig. 2: IC₅₀ values of ACA on miR-210 mimics- or inhibitors-transfected (A) CaSki and (B) SiHa cervical carcinoma cells, in comparison to cells transfected with negative Data presented as mean ± standard error mean of three replicates. controls Note: ** indicates p value ≤ 0.05

(4) Predicted targets of miR-210 involved in regulating cell proliferation and apoptosis

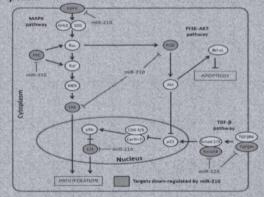


Fig. 4: A hypothetical network of signaling pathways illustrating the interaction of miR-210 with its predicted targets. Key signaling pathways involved are MAPK, PI3K-AKT and TGF-B, which regulates cell proliferation and apoptosis. Inhibitory relationships are denoted as flat arrow heads, whereas positive interactions are denoted as open arrow heads

REFERENCES

- Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman I F, "GLOBOCAN 2012 v1.0, Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 11. 1) n D, Bray
- 2)
- 3) 4)
- F. "OLOBOCAN 2012 v1.0, Cancer Incidence and Mortainy Professional Activity of the second structure of the second seco 5)
- 6)
- Phuan Nr., II. LC, Servical carcinoma cells (Ca Ski) toward 1'S-1'-acetoxychavicol acetate and crements. Reprod Sci, 20(5):67-578. Lagos-Quitana M, Rauhut R, Lendeckel W, Tuschi, T. (2001) Identification of novel genes coding for small expressed RNAs. Science. 294: 653-558. Phuan NH, Nagoor NH. (2014) Regulation of MicroRNAs by Natural Agents: New Strategies in Cancer Therapies. BioMed Research International. http://dx.doi.org/10.1155/2014/804510 7)