
Synchronous Gravitational Search
Algorithm vs Asynchronous Gravitational
Search Algorithm: A Statistical Analysis

Nor Azlina AB. AZIZa,b,1, Zuwairie IBRAHIMc, Sophan Wahyudi NAWAWId,
Shahdan SUDINd, Marizan MUBINa,1 , and Kamarulzaman AB. AZIZb

aFaculty of Engineering, University of Malaya, Malaysia
bMultimedia University, Malaysia

cFaculty of Electrical & Electronic Engineering,Universiti Malaysia Pahang, Malaysia
dFaculty Electrical Engineering, Universiti Teknologi Malaysia, Malaysia

Abstract. Gravitational search algorithm (GSA) is a new member of swarm
intelligence algorithms. It stems from Newtonian law of gravity and motion. The
performance of synchronous GSA (S-GSA) and asynchronous GSA (A-GSA) is
studied here using statistical analysis. The agents in S-GSA are updated
synchronously, where the whole population is updated after each member’s
performance is evaluated. On the other hand, an agent in A-GSA is updated
immediately after its performance evaluation. Hence an agent in A-GSA is
updated without the need to synchronize with the entire population. Asynchronous
update is more attractive from the perspective of parallelization. The results show
that both implementations have similar performance.

Keywords. Gravitational search algorithm, asynchronous, synchronous, statistical
analysis, optimization

Introduction

Gravitational search algorithm (GSA) is a population based metaheuristic
algorithm which is a physic inspired. It was introduced in 2009 by E. Rashedi, H.
Nezamabadi-pour, and S. Saryazdi [1]. Agents in GSA look for optimal solution by
emulating the interaction between masses in the universe. The Newton’s law of
universal gravitational state that, two masses in universe attracts each other and the
attraction force is directly proportional to the product of the two masses and inversely
proportional to the square of the distance between them.

The masses in universe are represented in GSA by agents. The agents are
distributed within the search area. The agents’ masses are changed based on the fitness
of the solution according to their position in the search space. An agent with good
solution has a bigger mass therefore the attraction force exerted by this agent is bigger.

1 Corresponding authors: Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia;
Email: azlina.aziz@mmu.edu.my, marizan@um.edu.my

New Trends in Software Methodologies, Tools and Techniques
H. Fujita et al. (Eds.)

IOS Press, 2014
© 2014 The authors and IOS Press. All rights reserved.

doi:10.3233/978-1-61499-434-3-160

160

GSA is gradually gaining attention from research community [2]. It has been
found superior to some well-established optimization algorithms, such as Central Force
Optimization (CFO), Genetic Algorithm (GA) and Particle Swarm Optimization (PSO)
[1]. In [3], GSA was compared with GA in solving the cell placement problem of VLSI
circuits design process, the results show that GSA has a better performance than GA.
GSA and a modified PSO algorithm were applied for synthesis of scanned thinned
array in [4], which GSA was found to outperform the modified PSO.

Many variations of GSA have been introduced either to improve on results, speed
of convergence, computational requirements or to cater to specific problem. A fast
discrete GSA (FDGSA) is proposed in [5] to solve discrete optimization problem. A
new variation of GSA to solve multiobjective optimization problem, vector evaluated
GSA (VEGSA) is presented in [6]. In [7] GSA is merged with PSO algorithm to
benefit from the exploitation ability of PSO and exploration ability of GSA.

Here, the performance of the original GSA which is synchronously updated (S-
GSA) is statistically compared with asynchronous GSA (A-GSA) [8]. In S-GSA the
agents update their mass using information of the best and worst performer after the
whole population update their performance. S-GSA is the original GSA. A-GSA was
introduced in [8]. In A-GSA, an agent updates its mass as soon as its own performance
is evaluated. Therefore, the agents in A-GSA use mixture of updated and outdated
agents’ positions to update their mass. Since the agents in A-GSA can be updated
independent of one another, this version of GSA algorithm has a better potential for
parallelization.

Asynchronous update metaheuristic algorithms have been reported to possess
higher exploration ability [9]. This is due to lack of synchronization on the information
used to guide the search, which in the case of GSA are best and worst performers of the
population. Unlike other metaheuristic algorithms such as particle swarm optimization
(PSO), GSA’s agents do not have memory, hence, their search is strongly driven by
current situation of the population. Lack of memory causes more exploration by the
agents. Therefore it is interesting to observe how asynchronous update which is known
to cause more exploration will affect the performance of GSA. In [8], the performance
of S-GSA and A-GSA was compared using set of benchmark functions consisting of
unimodal and multimodal functions. However, no statistical analysis was conducted,
thus this could lead to bias and in accurate findings. Therefore, statistical analysis on
the performance of S-GSA and A-GSA is conducted here using a set of more
challenging test functions which are extracted from 2014 IEEE Congress on
Evolutionary Computation (CEC2014) Special Session and Competition on single
objective real-parameter numerical optimization [10].

This paper is organized as follows. The original GSA algorithm, S-GSA, is
presented in section followed by the A-GSA algorithm in section . The performance
of A-GSA is compared with S-GSA using a set of benchmark functions in section
and the results are statistically analysed. Finally, the work is concluded in section .

1. Synchronous GSA

As mention in the previous section, GSA is inspired by how masses in universe
attract each other. The attraction force is influenced by the mass of the body and also
the distance between them. A body with bigger mass exerts a higher attraction force

1 2
3

4

N.A. Ab. Aziz et al. / Synchronous GSA vs Asynchronous GSA: A Statistical Analysis 161

while attraction force between masses is reduced when the distance between them is
bigger.

The universe is the search area in GSA while the masses are the agents. Each of
the agents has mass which is based on the fitness of the solution suggested by the
position of the agent. An agent’s position, Xi, in the search space represents the solution
suggested. The position of agent ith is,

 (1)

Therefore the position of an agent at dimension dth is denoted as, . The initial
values of the agents’ positions are randomly initialized according to the search area.

The fitness of each agent’s position is evaluated using problem dependent fitness
function. Given that an agent’s fitness at iteration is represented as, , the mass
of the agents is calculated as follow;

 (2)

 (3)

The and represent the best and worst fitness among the agents in
the population. These values are selected depending on whether the problem to be
optimized is a maximization or minimization problem. Assuming a minimization
problem, the definitions of these values are as follow;

 (4)

 (5)

The masses are then used to calculate the force of an agent towards other agents,
.

 (6)

 is the Euclidian distance between agent ith and jth. A small constant is added to
avoid division by zero when the distance between the agents is zero.

 and are passive and active gravitational mass of agent ith and jth
respectively. G(t) is the gravitational constant at time t. The equations for ,

 and G(t) are;

 (7)

 (8)

N.A. Ab. Aziz et al. / Synchronous GSA vs Asynchronous GSA: A Statistical Analysis162

Go is the gravitational constant at the start of the universe. This is typically set to 100.
is another constant and normally set to 20. T is the total number of iteration.

The total force acting on agent ith is;

 (9)

where, is a random number in the interval [0,1].
The agents in GSA are also subjected to Newton’s law of motion, where the

acceleration of a body is directly proportional and in the same direction as the net force
acting on itself and inversely proportional to its mass. According to this law of motion,
the acceleration of agent ith over dimension dth, can be calculated using the
following equation;

 (10)

The agents’ velocities and positions are then updated using the equations below;

 (11)

 (12)

The flow of the original GSA algorithm is shown in Figure 1(a). The fitness of the
whole population is evaluated first before best and worst values are identified. The
agents in the population are then synchronously moved to new position.

2. Asynchronous GSA

Asynchronous update method is a more accurate natural evolution model and
increases the potential of parallelization of the algorithms [11, 12]. In other
optimization algorithms such as PSO and GA, asynchronous update method had been
proposed and successfully implemented [11, 13]. In PSO, asynchronous update
increases its exploration ability. PSO is an algorithm which is strong in exploitation,
therefore, prone to premature convergence.

Figure 1(b) shows the flow of the A-GSA algorithm. In A-GSA an agent’s position
and velocity are updated as soon as the agent’s performance is evaluated without
waiting for the entire population to be evaluated. Therefore, when an agent position is
updated the best and worst agents are identified using mix of updated positions and old
positions and the respective fitness of these positions. This mixture of information
encourages more exploration by agents [9].

N.A. Ab. Aziz et al. / Synchronous GSA vs Asynchronous GSA: A Statistical Analysis 163

(a)

(b)

Figure 1. Flowchart for (a) S-GSA (b) A-GSA

3. Results and Discussion

The S-GSA and A-GSA algorithms are implemented here without parallelization

and their performances are compared. The algorithms are tested using a set of 8
benchmark functions consisting of three unimodal and five multimodal functions.
These benchmark functions are extracted from the CEC2014 test suite for single
objective real-parameter numerical optimization competition [10]. Table 1 lists the
benchmark functions used, while Table 2 shows the parameters for the benchmark
functions, the dimension is set to 30, thus making these as high dimensional problem,
while the other parameters follow CEC2014’s guidelines.

The parameters for GSA are listed in 0. Each function was subjected to 50 runs
and the position giving the lowest fitness per run was recorded. In a run, the maximum
iteration, T, was set to 1000. The number of agents used, N, is 10. The values for

 follow the recommended values in [1].

N.A. Ab. Aziz et al. / Synchronous GSA vs Asynchronous GSA: A Statistical Analysis164

Table 1. Benchmark Functions

Modality Function Function Definition Basic Function

U
ni

m
od

al

Rotated High
Conditioned
Elliptic

100

Rotated Bent
Cigar

200

Rotated
Discus

300

M
ul

tim
od

al

Shifted and
Rotated
Rosenbrock

400

Shifted and
Rotated
Ackley

500

Shifted and
Rotated
Weierstrass

600

Shifted and
Rotated
Griewank

700

Shifted
Rastrigin

800

Table 2. Parameters of Benchmark Functions

Parameter Value

Dimension, D 30

Shifted global optimum, randomly distributed in

Search range

Rotation matrix, function dependent

N.A. Ab. Aziz et al. / Synchronous GSA vs Asynchronous GSA: A Statistical Analysis 165

Table 3. Parameters of GSA

Parameter Value

Number of agents, N 10

 100

 20

T 1000

Table 4. Average Results

S-GSA A-GSA

f1 1.1779E+09 1.2733E+09

f2 8.2312E+10 8.0093E+10

f3 1.7107E+05 1.6205E+05

f4 1.5930E+04 1.5262E+04

f5 5.2111E+02 5.2109E+02

f6 6.4250E+02 6.4234E+02

f7 1.4496E+03 1.4562E+03

f8 1.2043E+03 1.1979E+03

The results are presented here using boxplot (Figure 2 and Figure 3). The symbol *

in the figure represents the mean while ○ represents outliers. The Wilcoxon signed rank
test with significant level, α, equal to 0.05 is used to look for any significant difference
between S-GSA and A-GSA. Table 4 shows the mean results for each test functions,
which are then used for the Wilcoxon test.

The Wilcoxon test indicates that there is no significant difference between S-GSA
and A-GSA.This is confirmed by the boxplots in Figure 2and Figure 3. The size and
the location of the box plot for both S-GSA and A-GSA are similar to each other. This
findings contradict what was reported in [8], which confirms the important of proper
statistical analysis methods in ensuring accurate and unbiased evaluation of
metaheuristic algorithms.

The findings observed here confirmed that GSA has strong exploration ability.
This is due to the fact that the agents of GSA are driven by present best and worst
values, instead of using memory. Therefore, implementing asynchronous update in
GSA does not contribute to much significant difference. This also shows that GSA is a
good candidate for parallelization through asynchronous update implementation, which
is the preferred method in parallelization, as A-GSA performs as good as S-GSA.

The results also show that GSA is only able to find near optimal solution for
shifted and rotated Ackley and shifted and rotated Weierstrass. This is due to the nature
of the other test functions where their global optimum are not protruding as these two
functions, hence stronger exploitation is needed to locate them, which is an aspect
lacking in GSA.

N.A. Ab. Aziz et al. / Synchronous GSA vs Asynchronous GSA: A Statistical Analysis166

Figure 2. Boxplot for Test on Unimodal Functions (F1, F2 and F3)

Figure 3. Boxplot for Test on Multimodal Functions (F4, F5, F6, F7 and F8)

N.A. Ab. Aziz et al. / Synchronous GSA vs Asynchronous GSA: A Statistical Analysis 167

4. Conclusion

Two variants of GSA algorithm known as S-GSA and A-GSA are studied and

compared here. The agents in S-GSA are updated synchronously while agents in A-
GSA are updated asynchronously. The results are statistically analysed and it is found
that both versions of GSA have similar performance. A-GSA performed as good as S-
GSA but has a higher parallelization potential. The finding also shows that GSA has
good exploration ability but lacking in exploitation. Therefore, enhancement of
exploitation by GSA is a good research topic to be explored in the future.

Acknowledgement

This research is funded by the Department of Higher Education of Malaysia under
the Fundamental Research Grant Scheme (4F374, FRGS/1/2012/TK06/MMU/03/7)
and Dana Pembudayaan Penyelidikan (RDU121403). This work is also funded by
Universiti Malaya under UM-UMRG Scheme (CG031-2013) and UM-Postgraduate
Research Grant (PG097-2013A). The authors also would like to acknowledge the
anonymous reviewers for their invaluable comments and insights.

References

[1] E. Rashedi, H. Nezamabadi-pour, and S. Saryazdi, “GSA: A Gravitational Search Algorithm,” Inf.
Sci. (Ny)., vol. 179, no. 13, pp. 2232–2248, Jun. 2009.

[2] T. Nadzion, T. Ibrahim, T. Marapan, S. H. Hasim, A. F. Zainal, N. Omar, N. A. Nordin, H. I.
Jaafar, K. Osman, Z. A. Ghani, S. Faisal, M. Hussein, and A. T. P. Published, “A Brief Analysis of
Gravitational Search Algorithm (GSA) Publication from 2009 to,” in International Conference
Recent treads in Engineering & Technology (ICRET’2014), 2014, no. May 2013, pp. 16–24.

[3] T. Eldos and R. Al Qasim, “On The Performance of the Gravitational Search Algorithm,” vol. 4,
no. 8, pp. 74–78, 2013.

[4] A. Chatterjee, G. Mahanti, and N. Pathak, “Comparative performance of gravitational search
algorithm and modified particle swarm optimization algorithm for synthesis of thinned scanned
concentric ring array,” Prog. Electromagn. …, no. September 2010, pp. 331–348, 2010.

[5] H. C. Shamsudin, A. Irawan, Z. Ibrahim, A. F. Z. Abidin, S. Wahyudi, M. A. A. Rahim, and K.
Khalil, “A Fast Discrete Gravitational Search Algorithm,” in Computational Intelligence,
Modelling and Simulation (CIMSiM), 2012 Fourth International Conference on, 2012, pp. 24–28.

[6] Z. Ibrahim, B. Muhammad, K. H. Ghazali, K. S. Lim, S. W. Nawawi, and Z. M. Yusof, “Vector
Evaluated Gravitational Search Algorithm (VEGSA) for Multi-objective Optimization Problems,”
in Computational Intelligence, Modelling and Simulation (CIMSiM), 2012 Fourth International
Conference on, 2012, pp. 13–17.

[7] S. Mirjalili and S. Z. M. Hashim, “A new hybrid PSOGSA algorithm for function optimization,” in
Computer and Information Application (ICCIA), 2010 International Conference on, 2010, pp. 374–
377.

[8] N. A. Ab Aziz, Z. Ibrahim, S. W. Nawawi, M. Mubin, I. Ibrahim, and M. Z. Mohd Tumari,
“Synchronous vs Asynchronous Gravitational Search Algorithm,” in First International
Conference on Artificial Intelligence, Modelling & Simulation, 2013, pp. 29–34.

[9] J. Rada-Vilela, M. Zhang, and W. Seah, “A performance study on synchronicity and neighborhood
size in particle swarm optimization,” Soft Comput., vol. 17, no. 6, pp. 1019–1030, Feb. 2013.

[10] J. Liang, B. Qu, and P. Suganthan, “Problem Definitions and Evaluation Criteria for the CEC 2014
Special Session and Competition on Single Objective Real-Parameter Numerical Optimization,”
no. December 2013, 2013.

N.A. Ab. Aziz et al. / Synchronous GSA vs Asynchronous GSA: A Statistical Analysis168

[11] V. Coleman, “The DEME Mode: An Asynchronous Genetic Algorithm,” University of
Massachusetts, Amherst, MA, USA, 1989.

[12] B.-I. Koh, A. D. George, R. T. Haftka, and B. J. Fregly, “Parallel asynchronous particle swarm
optimization.,” Int. J. Numer. Methods Eng., vol. 67, no. 4, pp. 578–595, Jul. 2006.

[13] A. Carlisle and G. Dozier, “An Off-The-Shelf PSO,” in In Workshop on Particle Swarm
Optimization, 2001.

N.A. Ab. Aziz et al. / Synchronous GSA vs Asynchronous GSA: A Statistical Analysis 169

