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An expression to describe the current-voltage characteristics of organic bulk het-
erojunction (BHJ) solar cells is derived. The derivation is obtained by analytically
solving the drift-diffusion model for organic BHJ solar cells with the assumption
of uniform bimolecular recombination rate. The assumption of uniform bimolecular
recombination rate leads to somewhat inaccurate, for example, carrier densities as
functions of the position inside the device. However, we show that this assumption
should still produce an expression for the current as a function of applied voltage as
if the actual bimolecular recombination rate is considered in the derivation. Applying
this analytical expression to experimental current-voltage data enable us to directly
extract and analyze, for example, the recombination loss of an organic BHJ solar cell
as a function of applied voltage. C 2015 Author(s). All article content, except where
otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported
License. [http://dx.doi.org/10.1063/1.4908036]

I. INTRODUCTION

Organic bulk heterojunction (BHJ) solar cells have a huge potential as a source of clean energy
in the future.1,2 In order to improve the performance, understanding of the current–voltage (J-V)
characteristics is important. Organic solar cells differ from conventional inorganic solar cells. In
organic solar cells, the absorbed light generates excitons first instead of free electrons and holes
as in conventional inorganic solar cells. The excitons must be dissociated into free electrons and
holes in order to produce useful electric current. Two materials (donor and acceptor) with different
lowest unoccupied molecular orbitals (LUMOs) and different highest occupied molecular orbitals
(HOMOs) are needed to assist the dissociation of excitons into free charge carriers. In order to
generate and extract free charge carriers efficiently, the donor and the acceptor materials are blended
together to create donor-acceptor interfaces throughout the device’s active layer (called bulk hetero-
junction).

Drift-diffusion model with metal–insulator–metal picture3 is a widely used model for organic
BHJ solar cells.4 This model solves the continuity and the Poisson’s equations, accounting for the
drift and diffusion of the charge carriers, the effect of space charge, and the generation and loss
of the charge carriers.4,5 A numerical procedure has been widely used in order to obtain the J-V
characteristics from this model.4,6 There are a number of analytical studies attempting to describe
the J-V characteristics of organic BHJ solar cells that can be found in the literature.7–10 In previous
analytical studies,7–9 the electric field is assumed constant with negligible recombination. Hence,
the J-V characteristics are obtained by adding the photogenerated and the dark current densities
instead of solving the above mentioned drift-diffusion model. Recently, Chowdhury and Alam10

proposed an analytical model based on the drift-diffusion model but did not incorporate the intrinsic
bimolecular recombination.

The aim of this work is to derive an expression to describe the J-V characteristics of organic
BHJ solar cells by solving the drift-diffusion model analytically, where the effect of bimolecular
recombination is considered. Compared to previous analytical works, this expression should be
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more appropriate for analyzing the J-V characteristics of organic BHJ solar cells when the bimolec-
ular recombination is not negligible.

II. DRIFT-DIFFUSION MODEL

First, let us present the operational mechanism for organic BHJ solar cells that is used in this
study. After the light is absorbed, the generated excitons must reach the donor-acceptor interface
before they can dissociate into free electrons and holes. At the interface, the exciton splits into
an electron in the acceptor material and a hole in the donor material, where the electron and hole
are presumed to form a bound geminate electron-hole pair (called polaron pair). The polaron pair
needs to further dissociate into a free electron and a free hole in order to produce photocurrent.
At the interface, the polaron pair can also decay, which is a geminate monomolecular (first order)
recombination.11 Hence, the probability for a polaron pair to dissociate into free charge carriers
can be defined as the ratio of the dissociation rate of a polaron pair to the sum of the dissociation
rate and the decay rate of a polaron pair. The free electron in the acceptor and the free hole in the
donor can also meet at the interface and recombine into a polaron pair again. This is a non-geminate
bimolecular (second order) recombination where the recombination rate is the rate for free electrons
and free holes finding each other, which can be predicted by the Langevin theory.12

There are also other possible recombination mechanisms (see. Ref. 11 for example) and their
importance is still being studied and debated. It is generally believed that trap-assisted recombina-
tion can be significant if trap densities are high. For example, Cowan et al.13 concluded that the
recombination in organic BHJ solar cells evolves from being monomolecular at short circuit to
being bimolecular at open circuit. This finding suggests that non-geminate monomolecular recom-
bination (i.e. trap-assisted recombination) should be considered. However, Kniepert et al.14 recently
demonstrated that the recombination in their as-prepared and annealed poly(3-hexylthiophene) and
[6,6]-phenyl-C71-butyric acid methyl ester (P3HT:PCBM) solar cells is strictly bimolecular and
trap-assisted recombination cannot account for their results. In our study here, we assume the
contribution of trap-assisted recombination in the studied organic BHJ solar cells is negligible.

Next, we present the basics of the drift-diffusion model for organic BHJ solar cells based on
the operational mechanism described above. Details of the model can be referred to Refs. 4 and 5
for example. As usual, the transport, generation, and loss of the charge carriers are assumed to be
1-dimensional. The Poisson’s equation is given by

dF(x)
dx

=
q
ε
[p(x) − n(x)] , (1)

where F is the electric field, q is the elementary charge, ε is the effective permittivity of the organic
active layer, p is the hole density, and n is the electron density.

Based on the above operational mechanism, the continuity equations for electrons and holes in
steady-state condition can be written as4,15

−1
q

dJn(x)
dx

= PG(x) − [1 − P] RL(x), (2a)

1
q

dJp(x)
dx

= PG(x) − [1 − P] RL(x), (2b)

where Jn is the electron current density, Jp is the hole current density, P is the dissociation prob-
ability of polaron pairs into free charge carriers, G is the generation rate of polaron pairs per unit
volume, and RL is the non-geminate bimolecular recombination rate.

The electron and the hole current densities consist of the drift and the diffusion components,
and are given by16

Jn(x) = qn(x)µnF(x) + qDn
dn(x)

dx
, (3a)

Jp(x) = qp(x)µpF(x) − qDp
dp(x)

dx
, (3b)
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where µn is the electron mobility, µp is the hole mobility, Dn is the electron diffusion coefficient, and
Dp is the hole diffusion coefficient. For simplicity, µn and µp are assumed to be constant, which is
needed in order to solve the drift-diffusion model analytically. In a more realistic model, the carrier
mobility is electric field, temperature, and carrier density dependent.17 The diffusion coefficients are
given by

Dn,p =
µn,pkT

q
, (4)

where k is the Boltzmann constant, and T is the absolute temperature. Regarding the non-geminate
bimolecular recombination in organic BHJ solar cells, it was found that the recombination rate
determined experimentally is reduced compared to the Langevin’s theory.18 Taking this into ac-
count, a reduction factor ς is often included, and the bimolecular recombination rate reads

RL(x) = ςγn(x)p(x). (5)

where γ = q
�
µn + µp

�
/ε is the Langevin recombination constant.

Regarding the polaron pair dissociation in organic semiconductor blends, the exact mechanism
is still uncertain. The Onsager-Braun theory19,20 is a commonly used quantitative model for consid-
ering the polaron pair dissociation at the interface (see Refs. 4, 5, and 21 for instance). In this study,
we use the Onsager-Braun model where the dissociation probability of polaron pairs P is defined as

P =
kd(a,F,T)

kd(a,F,T) + kf
, (6)

where kd is the polaron pair dissociation rate, a is the polaron pair separation, and kf is the
polaron pair decay rate. Besides the Onsager-Braun model, the role of charge delocalization in the
dissociation of polaron pairs into free charge carriers has also been studied and proposed.22

In order to numerically solve the continuity and the Poisson’s equations, boundary conditions at
the contacts between the electrodes and the active layer are required. For the electrical potential ψ
(where ψ/q = −


Fdx), the boundary condition is

ψ(L) − ψ(0) = q [Vbi − Va] , (7)

where Vbi is the built-in voltage and Va is the applied voltage. Here, x = 0 and x = L are the contacts
at the anode and the cathode, respectively. The built-in voltage Vbi is defined as

Vbi =
χa − χc

q
, (8)

where χa and χc are the work functions of the electrodes at anode and at cathode, respectively. The
carrier densities at the contacts (x = 0,L) can be simply given by the Boltzmann statistics with

n(0) = Nc exp

−
�
Eg − φa

�

kT


, (9a)

p(0) = Nv exp
(
− φa

kT

)
, (9b)

n(L) = Nc exp
(
− φc

kT

)
, (9c)

p(L) = Nv exp

−
�
Eg − φc

�

kT


, (9d)

where Nc and Nv are the effective density of states for the LUMO of the acceptor and the HOMO
of the donor, respectively, Eg is the effective band gap (i.e. the difference between the LUMO of
the acceptor and the HOMO of the donor), φa is the hole injection barrier at the anode (i.e. the
difference between the HOMO of the donor and the work function of the electrode at anode), and
φc is the electron injection barrier at the cathode (i.e. the difference between the LUMO of the
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acceptor and the work function of the electrode at cathode). For simplicity, the energetic disorder in
the organic active layer is not considered in this study.

In order to obtain the J-V characteristic, the continuity and the Poison’s equations are numeri-
cally solved using the Scharfetter–Gummel discretization23 and an iteration approach based on the
work of Gummel.24

III. RESULTS

A. Analytical solution

In order to solve the drift-diffusion model analytically, several approximations and assumptions
are required. The electric field F inside the active layer is assumed to be uniform. This should be
valid since drift-diffusion simulations show that F is almost constant inside the active layer.4 The
uniform electric field F is given by (see Ref. 7 for example)

F =
Va − Vbi

L
, (10)

where L is the thickness of the active layer. The polaron pair dissociation probability P is also
assumed to be uniform inside the device. For the Onsager-Braun model, a uniform F together with
constant charge mobilities will automatically lead to a uniform P. Furthermore, we assume that
the generation rate of polaron pairs per unit volume G is constant and uniform inside the device.
For organic BHJ solar cells, it has been shown that a constant generation profile gives identical
electrical characteristics compared to the generation profile obtained from optical model as long as
the thickness of the active layer is less than 250 nm.25 Therefore, this assumption should be valid
when the thickness of the active layer is less than 250 nm.

The bimolecular recombination rate RL [Eq. (5)] is dependent on the position inside the active
layer x because the product of n and p is different at different x. In order to obtain an analytical
solution, let us also assume that the bimolecular recombination rate inside the device is uniform
(denoted by RC) and equal to the average RL. Therefore, RC is independent of x and its value is
given by

RC =

 L

0

RLdx
L

. (11)

The recombination current density JR is given by

JR = q


Rdx, (12)

where R is any recombination rate in general. From Eq. (12), for R = RC (where RC is independent
of x) and integrating over x from 0 to L, we get

JRC = qRCL. (13)

Equation (13) gives the total recombination current density in the device for R = RC. Applying
Eq. (11) to Eq. (13), we get

JRC = q
 L

0
RLdx. (14)

Therefore, the total recombination current density using R = RC is the same as the one using
R = RL. We can argue that for the current-voltage (J-V) characteristic of a solar cell, it is not
important where inside the active layer the charge carriers are generated and lost, as long as the
net charge carriers that are collected by the electrodes are the same. For example, by integrating
Eq. (2a) over x from 0 to L (with P and G are independent of x), it can be seen that the net flow of
the electron current density inside the device [i.e. Jn(0) − Jn(L)] depends on the total recombination
current density. This means that we can replace RL with RC in Eq. (2a) and still be able to get
the same net electron current density. Therefore, the basic idea of assuming uniform bimolecular
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FIG. 1. Ratio of the bimolecular recombination current density JRL to the polaron pair dissociation probability P as a function
of applied voltage Va obtained using drift-diffusion numerical simulation. The values of the parameters used are shown in
Table I.

recombination rate RC is to obtain an analytical solution that should be able to describe the J-V
characteristics of organic BHJ solar cells. However, this assumption may not lead to very accurate
descriptions of carrier densities, electron current density, and hole current density as functions the
position inside the active layer x.

Figure 1 shows the ratio of the recombination current density for R = RL (denoted as JRL)
to the polaron pair dissociation probability P as a function of applied voltage Va obtained using
drift-diffusion numerical simulation. In this study, all numerical simulations are performed using a
commercial program called SETFOS,26 which is specifically made for simulating organic BHJ solar
cells based on the drift-diffusion model as described in Sec. II. The values of the parameters used in
the simulation are shown in Table I. The simulation produces a short circuit current density Jsc of
-102.6 A/m2, an open circuit voltage Voc of 0.59 V, and a fill factor FF of 0.578, which are typically
measured values for a P3HT:PCBM solar cell.

The behavior seen in Fig. 1 can be easily understood. As the applied voltage Va is increased,
the electric field decreases. This makes it harder for the electrodes to extract the generated free
charge carriers (given by the product of P, G, and L). As a result, this increases the carrier densities

TABLE I. Values of the parameters used in numerical simulation.

Parameter Value

Effective band gap (Eg) 1.0 eV
Effective density of states (Nc, Nv) 4.0×1025 m−3

Electron mobility (µn) 2.0×10−8 m2/Vs
Hole mobility (µp) 2.0×10−8 m2/Vs
Permittivity (ε) 3.1×10−11 F/m
Hole injection barrier at anode (φa) 0 eV
Electron injection barrier at cathode (φc) 0 eV
Polaron pair generation rate (G) 7.4×1027 m−3s−1

Decay rate coefficient (kf) 2.0×104 s−1

Polaron pair separation (a) 1.8 nm
Temperature (T ) 300 K
Active layer thickness (L) 100 nm
Langevin reduction factor (ς) 1
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per generated free charge carriers, thus increases the recombination per generated charge carriers.
Therefore, it is expected that the ratio of the bimolecular recombination to the generated charge
carriers (or to the dissociation probability P, since G and L are constants) increases with Va. As
seen in Fig. 1, we find that the natural logarithmic of JRL/P is somewhat nonlinear as a function of
applied voltage Va. Varying the values of various parameters, we find that the general behavior seen
in Fig. 1 is the same at least between zero applied voltage and the open circuit voltage. From this, let
us approximate and write

ln (JRL/P) = ln (J0) + gV s
a , (15)

where J0, g, and s are (fitting) constants. Equation (15) can be rewritten as

JRL = PJ0 exp (gV s
a ) . (16)

If we assume that the bimolecular recombination rate is uniform inside the device as given by
Eq. (11), the total recombination current densities using RC and RL must be equal (i.e. JRC = JRL),
as shown before. Since Eq. (13) equal to Eq. (16), we get

RC = PR0 exp (gV s
a) , (17)

where R0 = J0/qL.
Inserting Eqs. (3a) and (3b) into Eqs. (2a) and (2b), and replacing RL [Eq. (5)] with RC

[Eq. (17)], the continuity equations become

−µnF
dn
dx
− µnkT

q
d2n
dx2 = PG − (1 − P) RC, (18a)

µpF
dp
dx
−
µpkT

q
d2p
dx2 = PG − (1 − P) RC . (18b)

Equations (18a) and (18b) can be solved using

n = An + Bn exp
(
−qFx

kT

)
− PGx
µnF

+
(1 − P) RCx

µnF
, (19a)

p = Ap + Bp exp
(

qFx
kT

)
+

PGx
µpF

− (1 − P) RCx
µpF

, (19b)

where An, Bn, Ap, and Bp are independent of x. Applying the boundary conditions at the contacts
[i.e. Eqs. (9a) to (9d)] to Eqs. (19a) and (19b), we can solve for An, Bn, Ap, and Bp, which are given
by

An =

Nc exp
( −φc
kT

)
− Nc exp


−(Eg−φa)

kT


exp

(
− qFL

kT

)
+ PGL

µnF
− (1−P)RCL

µnF

1 − exp
(
− qFL

kT

) , (20a)

Bn = Nc exp


−
�
Eg − φa

�

kT


− An, (20b)

Ap =

Nv exp

−(Eg−φc)

kT


− Nv exp

( −φa
kT

)
exp

(
qFL
kT

)
− PGL

µpF
+

(1−P)RCL

µpF

1 − exp
(
qFL
kT

) , (20c)

Bp = Nv exp
(−φa

kT

)
− Ap. (20d)

It should be noticed that the values of An, Bn, Ap, and Bp are different at different applied voltages Va.
Inserting Eqs. (19a) and (19b), and their differentiations with respect to x into Eqs. (3a) and (3b), we
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can get the expressions for Jn and Jp, where

Jn = qµnAnF − qPGx + (1 − P) qRCx − kTPG
F
+

kT (1 − P) RC

F
, (21a)

Jp = qµpApF + qPGx − (1 − P) qRCx − kTPG
F
+

kT (1 − P) RC

F
. (21b)

The total current density J is the sum of Jn and Jp, which is given by

J = qF
�
µnAn + µpAp

�
− 2kTPG

F
+

2kT (1 − P) RC

F
. (22)

It can be seen that the total current density J is independent of x, which must be the case for a
steady current density. Using Eq. (10), we can rewrite the term RC/F in Eq. (22) as RCL/ (Va − Vbi).
Applying Eq. (11), this equal to

 L

0 RLdx/ (Va − Vbi). Hence, it can be seen that although we assume
uniform bimolecular recombination rate RC to obtain Eq. (22), it should still give a J-V character-
istic as if we consider the actual bimolecular recombination rate RL. It is worth noting that Eq. (22)
can be derived using any other form of bimolecular recombination rate [i.e. not limited to the form
of Eq. (17)] as long as the recombination rate used is independent of x and equal to the average
of the actual bimolecular recombination rates RL. Similarly, any other form of polaron pair disso-
ciation (i.e. not limited to the Onsager-Braun model) can also be used as long as it is independent
of x.

IV. DISCUSSION
In order to test this analytical expression, let us compare Eq. (22) with the J-V curve ob-

tained using drift-diffusion simulation, which is widely used to analyze the experimental J-V
characteristics of organic BHJ solar cells. Figure 2 compares the J-V characteristic obtained using
drift-diffusion simulation with the one obtained using the analytical expression. The parameters
used for the simulation and the analytical expression are given in Table I. It can be seen that
the J-V characteristic obtained using the analytical expression is in good agreement with the J-V
characteristic obtained using drift-diffusion simulation. In order to obtain the constants R0, g, and s
[see Eq. (17)], let us rewrite Eq. (22) as

J = mRC + c, (23)

FIG. 2. Current–voltage characteristics of an organic BHJ solar cell with properties as shown in Table I obtained using the
analytical expression (dots) and drift-diffusion numerical simulation (solid line).
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FIG. 3. Electron densities n and hole densities p within the active layer at short circuit obtained using the analytical approach
[i.e. Eqs. (19a) and (19b)] (symbols), and using drift-diffusion numerical simulation (lines) for an organic BHJ solar cell with
properties as shown in Table I.

where the values of m and c at any given Va can be determined from the values of the parameters in
Table I. By inserting the simulated current density at short circuit into Eq. (23), we can easily solve
for R0. To obtain g and s, we can insert the simulated current densities at two other applied voltages
to obtain two equations that enable us to solve for g and s. However, this requires numerical tech-
niques where numerical solvers such as MATLAB can be helpful. Alternatively, we can insert the
open circuit voltage and current density (i.e. J = 0 A/m2) into Eq. (23), and guess the value of s in
order to get the value of g. Then, the obtained g and s, together with R0 determined earlier are used
to obtain the J-V curve. This process of guessing the values of s and g is repeated until a good fit
to the simulated J-V curve is obtained. The dots in Fig. 2 are obtained with R0 = 3.69 × 1029m−3s−1,
g = 17.65V−1, and s = 5.

Figure 3 compares the carrier densities as functions of x obtained using drift-diffusion simula-
tion with the ones obtained using Eqs. (19a) and (19b) with the values of R0, g, and s as mentioned
above. As expected, the carrier densities obtained using the analytical approach are only in moder-
ate agreement with the ones obtained using drift-diffusion simulation. As mentioned in Sec. III, the
assumption of uniform bimolecular recombination rate may lead to somewhat inaccurate descrip-
tions of carrier densities, electron current density, hole current density, and others as functions
of x.

There are a few advantages of the analytical expression over numerical simulation of the
drift-diffusion model. For example, it is practically impossible for the simulation to exactly repro-
duce the experimental J-V curve of an organic BHJ solar cell. Moreover, the quality of fittings to
experimental J-V curves obtained using simulations may not be very good for some solar cells.
This means that the recombination current densities obtained from simulations may differ quite
significantly from the actual recombination current densities of the studied solar cells. Using the
analytical expression, it is possible to directly extract the recombination current densities from
experimental J-V characteristics. This can be done by inserting the experimental current densities
and the associated applied voltages into Eq. (22) [or Eq. (23)], and then directly determine the value
of RC at each applied voltage. Then, the recombination current density can be obtained by multi-
plying the extracted RC with the thickness of the solar cell and the elementary charge. Therefore,
this analytical expression enables us to directly extract the overall recombination loss of an organic
BHJ solar cell from the experimental J-V curve. It is worth noting that series and shunt resistances
in solar cells should be minimized and maximized, respectively. If the effects of these resistances
are significant, then the experimental J-V curve should be adjusted accordingly before the analytical
expression can be used to analyze it.
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TABLE II. Values of the parameters used in numerical simulation. Other values that are not shown here are the same as the
values in Table I.

Parameter Value

Effective band gap (Eg) 1.5 eV
Hole injection barrier at anode (φa) 0, 0.9, 1.0, 1.1, 1.2 eV
Electron injection barrier at cathode (φc) 0 eV
Polaron pair generation rate (G) 2×1027 m−3s−1

Furthermore, we also find that our numerical program fails to produce the desired output when
simulating an organic BHJ solar cell with a relatively large band gap and a high injection barrier.
A large band gap organic BHJ solar cell has a useful application as a sub-cell of a tandem solar
cell. Hadipour et al.27 showed that the J-V characteristic of a tandem solar cell can be constructed
from the J-V characteristics of individual sub-cells. Hence, it is important to analyze the J-V
characteristic of each sub-cell. The values of the parameters used in the simulations are shown in
Table II. The simulation with φa = 0 eV produces Jsc = −28.92 A/m2, Voc = 1.06 V, and FF = 0.72.
However, for a tandem solar cell with series configuration, it is unlikely that both φa and φc are
zero since the anode (cathode) of a large band gap sub-cell is connected to the cathode (anode) of a
smaller band gap sub-cell, and the effective band gaps of the sub-cells almost certainly overlap with
each other. When φa = 0.9 eV is used in the drift-diffusion simulation, we get Jsc = −26.08 A/m2,
Voc = 0.367 V, and FF = 0.513. However, when φa = 1.0 eV is used, the drift-diffusion simulation
starts to become unstable, producing Voc = 0.267V but Jsc = 0 A/m2. When φa = 1.1 eV, we get
Jsc = 0 A/m2 and Voc = 0 V. When φa = 1.2 eV is used, the numerical simulation simply fails to
produce any result. Since a commercial program is used for the simulations, we are only able to
vary the numerical mesh size and the residual error. Increasing those iteration parameters decrease
the accuracy, but increase the possibility of getting the desired output in general. The exact reason
for the failure is uncertain since we are unable to get the desired output even if those two iteration
properties are increased and decreased. It is possible that when certain values of certain param-
eters are used, the drift-diffusion simulation would fail to fully converge (which is unsurprising
for a numerical approach). However, by using the analytical expression, we should be able to, for
example, extract and analyze the recombination current density as a function of applied voltage if
the experimental J-V curve of the large band gap solar cell with properties as shown Table II is
available.

In order to clearly demonstrate the advantage of this analytical expression, let us try to estimate
J-V curves of the solar cell with properties as shown in Table II when φa = 1.0eV and φa = 1.1eV.
Since we do not have the experimental J-V data, let us use the simulated J-V curve of the solar cell
when φa = 0.9 eV in order to estimate the RC [refer Eq. (17)] when φa = 1.0eV and φa = 1.1 eV. In
order to satisfactorily reproduce the simulated J-V curve when φa = 0.9 eV by using the analytical
expression, we set Voc = 0.35V instead of Voc = 0.367V. Therefore, it is worth noting that in order
to satisfactorily reproduce a given J-V curve by using the analytical expression with RC as given by
Eq. (17), we may need to set the Voc and/or Jsc to be slightly different compared to the Voc and Jsc of
the given J-V curve. We find that R0 = 2 × 1028m−3s−1, g = 3.423V−1, and s = 1 can satisfactorily
reproduce the simulated J-V curve for the solar cell when φa = 0.9eV. From this, let us write RC

[refer Eq. (17)] for the solar cell when φa = 1.0eV and φa = 1.1eV as

RC = P
�
2 × 1028� exp [3.423 (Va + Vdiff)] . (24)

Since R0, g, and s are obtained from the simulated J-V curve when φa = 0.9eV, Vdiff is intro-
duced to account for the difference between the built-in voltage when φa = 0.9eV and the built-in
voltages when φa = 1.0eV and φa = 1.1eV. Here, we simply take Vdiff = 0.1V when φa = 1.0eV
and Vdiff = 0.2V when φa = 1.1eV. Figure 4 shows the J-V curves estimated using the analytical
expression with RC given by Eq. (24) when φa = 1.0eV and φa = 1.1eV. When φa = 1.0eV, we get
Jsc = −24.42 A/m2, Voc = 0.245V, and FF = 0.53. When φa = 1.1eV, we get Jsc = −22.12 A/m2,
Voc = 0.145 V, and FF = 0.482. Therefore, we demonstrate that when the numerical simulation fails
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FIG. 4. Current–voltage characteristics of an organic BHJ solar cell with properties as shown in Table II and with RC given
by Eq. (24) (see text for details). The solid line shows when φa= 1.0eV and the dashed line shows when φa= 1.1eV.

to produce the J-V curve of a specific organic BHJ solar cell, the analytical expression is useful in
order to estimate the J-V curve and analyze the organic BHJ solar cell.

V. CONCLUSIONS

In conclusion, we have proposed an analytical approach to describe the current-voltage (J-V)
characteristics of organic BHJ solar cells. The derivation is obtained by analytically solving the
drift-diffusion model for organic BHJ solar cells with the assumption of uniform bimolecular
recombination rate that equal to the average of the actual bimolecular recombination rates. We
show that when the uniform bimolecular recombination rate is assumed, the derivation should still
produce an expression for the current as a function of applied voltage as if the actual bimolecular
recombination rate is used. Compared to previous analytical expressions, this analytical expression
should be more suitable for analyzing the J-V characteristics of organic BHJ solar cells when
the bimolecular recombination is not negligible. There are a few advantages of this analytical
expression compared to numerical simulation of the drift-diffusion model. As discussed in Sec. IV,
applying the analytical expression to experimental J-V data enable us to directly extract and analyze
the overall recombination loss of an organic BHJ solar cell. Furthermore, as shown in Sec. IV, we
find that when the injection barrier of a large band gap organic BHJ solar cell is high, our numerical
program fails to give the desired output. We then demonstrated that this analytical approach can be
used to analyze the large band gap organic BHJ solar cell. Therefore, when the numerical simulation
fails to produce the desired results for a specific organic BHJ solar cell, the analytical expression is
useful in order to analyze the organic BHJ solar cell.
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