
(lk)(fl)( SEOUL
KOREA

I T
SEOUL, KOREA
Sungkyunkwan University

August 6-9, 2014

,.
r= I=:I m AcIMty Group on
~ IL.Linear Algebra

Ravindra Bapai tLxtvlA Lecturer)
Peter Benner
Dario Bini tLAA Lecmrer)
Shaun Fallat (Taussky Todd Lecturer)
Andreas Frommer (SlAG/LA Lecturer)
Stephane Gaubert
Chi-Kwong Li
Yongdo Lim
Panayioiis Psarrakos
Vladimir Sergeichuk
Bernd Sturmfels
Tin Yau Tam

INVITEDM(IIS~A

Combinatorial Problems in Linear Algebra
(Richard. A. Br;wldi and Ceir Dahl)
Matrix Inequalities
(Futhen Zhang and Minghua Lin)
Spectral Theory of Graphs and l lypergraphs
(Vlodilllir S. Nikiforov)

• Tensor Eigenvalues
, (Lia- Yu Shuo and Liqun Qi)

Quantum Information and Computing
tCui-Kwcnu; £i lind Yill Tung POOII)
Riordan [mays and Related Topics
tOi-Sang Clieon and LOllis iV. Shapiro)
Nonnegative Matrices and Generulizations
(Judi McDonald)
Toeplitz Matrices and Operators
iTorsten El!rha rdr)

""" Natioanal Research
NRFJ Foundation of Korea

'-"" S(OUl
v- " leM
'.~' 2014

.. i~~~~..., I>.~ SEOUL METROPOLITAN Q Taylor & Frdllm
OR(w\MLAlI<lN r GOVERNMENT ~ ta".."· .•·"h .......u

+~.n B +M~T~BKQi Surgl<yunkwan Uruv KQi Pusan Nafl. Uruv



19TH CONFERENCE

2014-

INTERNATIONAL LINEAR ALGEBRA SOCIETY

AUG. 6-9, 20141 SEOUL IIKOREA
SK-tCU Sungkyunkwan University

SUNGKYUNKWAN a SEOUL
UNIVElISllY(SKKU) D ~~~ NIMS N~ N.tiOlnIIR •••• rch ",IJ SEOUlMETROPOUTAN

="'=~""..... Foundation of KOtN (GOVERNMENT
KOREA
TOURISM
ORGANIZATION

,
8KntMATH S"~ InsmueotBasicSclenoeot "I"m ActMIyGroupon W Taylor & Francis

':LlPusanNat'l.llniv "~~.nnlM._nl"""''''''''''' .. ...



4.CONTRIBUTED TALKS(CT)

Y OF PER-ALTERNATE TRIANGULARGEOMETR
MATRICES
Kiam Heong Kwa
University of Malaya, MALAYSIA
Aug 6 (Wed), 10:30-10:55, (2B, 9B208)

. lk tudy bijective adjacency invariant mapsIn this ta ,we s .
It te upper triangular matrices over an ar-on per-a erna . ..

. fi ld Contrary to those on full matrices, It ISbttrary e . .
d h t ch maps not only carry rank-2 matrices tofoun t a su .

rank-2 matrices, but may also fix all rank-2 matnces.

(This is a joint work with Wai Leong Chooi and Ming
Huat Lim from University of Malaya.). ...
Keywords: Per-alternate triangular matrices, bijective
adjacency invariant maps, rank-2 preservers
E-mail: khkwa@um.edu.my

CONVEXITY OF LINEAR IMAGES OF REAL
MATRICES WITH PRESCRIBED SINGULAR
VALUES AND SIGN OF DETERMINANT
Pan-Shun Lau
The Urriversfty of Hong Kong, HONG KONG
Aug 6 (Wed), 10:55-11:20, (2B, 9B208)

For any 8 = (81, ... , 8n) E R", let 0(8) denote the set

{Udiag(81' ... , 8n)V : U, V E SO(n)},

where diag( 81, ... , 8n) is the diagonal matrix with
81, ... , 8n as diagonal entries, and SO(n) the set of all
real orthogonal matrices of order n with positive deter-
minant, It is clear that 0(8) is the set of all real n x n
matrices with singular values 1811,... , 18nl and their sign
of determinant equal to the sign of n:l 8i. In this pa-
per we consider linear maps L from lRnxn to lR2, and
prove that for any 8 E jRn with n ~ 3, the linear image
L(0(8» is always convex. We also give an example to
show that L(0(8» may fail to be convex if L is a lin-
ear map to ]R3. Our study is motivated by a result of
RC Thompson which gave some necessary and sufficient
conditions on the existence of a real square matrix with
prescribed sign of determinant, prescribed diagonal ele-
ments and prescribed singular values. To prove our con-
vexity result, we first consider two types of semi-group
actions on ]Rn to obtain a new necessary and sufficient
condition on Thompson's result. Then for 8,8' E R",
we apply this new condition to study inclusion relations
of the form L(0(8» C L(0(8'» which hold for all lin-
ear maps L under consideration. Such inclusion rela-
tions are then applied to give our convexity result on
L(0(8». The techniques we used are motivated by a
result of YT Poon which gave an elegant proof on the
convexity of the c-numerical range. We also extend the
results to real non-square matrices. This is a joint work
with NK Thing.
Keywords : Singular values, linear images.

Contributed Talks

E-mail: panlau@hku.hk

APPROXIMATION PROBLEMS IN THE
RIEMANNIAN METRIC ON POSITIVE DEFINITE
MATRICES
Rajendra Bhatia, Tanvi 'Jain'
Indian Statistical Institute, INDIA
Aug 6 (Wed), 11:20-11:45, (2B, 9B208)

There has been considerable work on matrix approxima-
tion problems in the space of matrices with Euclidean
and unitarily invariant norms. The purpose of this talk
is to initiate the study of approximation problems in the
space of positive definite matrices with the Riemann-
ian metric. In particular, we focus on the reduction of
these problems to approximation problems in the space
of Hermitian matrices and in Euclidean' spaces.
Keywords: Matrix approximation problem, positive
definite matrix, Riemannian metric, convex set, Finsler
metric
E-mail: tanvi@isid.ac.in

DIRECT ALGEBRAIC SOLUTIONS TO
TROPICAL OPTIMIZATION PROBLEMS
Nikolai KrivuIin
Saint Petersburg State University, RUSSIA
Aug 6 (Wed), 10:30-10:55, (2B, 9B215)

Multidimensional optimization problems are considered
within the framework of tropical (idempotent) algebra.
The problems consist of minimizing or maximizing func-
tions defined on vectors of a finite-dimensional semi-
module over an idempotent semifield, and may have
constraints in the form of linear equations and inequali-
ties. The objective function can be either a linear func-
tion or a nonlinear function that is given by the vector
operator of multiplicative conjugate transposition.
We start with an overview of known optimization prob-
lems and related solution methods. Certain problems
that were originally stated in different terms, but can
readily be reformulated in the tropical algebra setting,
are also included.
First, we present problems that have linear objective
functions and thus are idempotent analogues of those
in conventional linear programming. Then, problems
with nonlinear objective functions are examined, in-
cluding Chebyshev and Chebyshev-like approximation
problems, problems with minimization and maximiza-
tion of span seminorm, and problems that involve the
evaluation of the spectral radius of a matrix. Some of
these problems admit complete direct solutions given in
an explicit vector form. The known solutions to other
problems are obtained in an indirect form of iterative
algorithms that produce a particular solution if any or
show that there is no solution.
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Geometry of Per-alternate Triangular Matrices

Kiam Heong Kwa

In~titute of Mathematical Sciences, University of Malaya, Malaysia

August 6, 2014

Kiam Heong Kwa Geometry of Per-alternate Triangular Matrices

In this talk, we study bijective adjacency invariant maps on per-alternate
upper triangular matrices over an arbitrary field. Contrary to those on full
matrices, it is found that such maps not only carry rank-2 matrices to
rank-2 matrices, but may also fix all rank-2 matrices.

(This is a joint work with Wai Leong Chooi and Ming Huat Lim from
University of Malaya.)
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Standard adjacency preserving bijections

Adjacency preserving by strictly triangular matrices

Decomposition Lemma

Properties of \I.1x's

IWMWN3% §i.I.,;;@'M@i,"M"H.iJiiNMM!iii¥

Throughout this talk, we use the following notation.

JF: an arbitrary field.

Mm,n(JF): the totality of m x n matrices over 'IF.

Jvtn(JF): Mn,n(JF)·
T,l(JF): the totality of upper triangular elements of Mn(1F).

FAllOn: the totality of per-alternate elements of Mn(JF)

FA/n(1B'): /nOF) n FAnOF).



For any A E= Mn08'), let
A+ - JnAT In,

where A T is the transpose of A and In is the element of Mn(JF) with
ones on the minor diagonal and zeros elsewhere":

o 0 0 0 1
o 0 0 1 0

o 1 0 0 0
1 0 0 0 0

An A E= Mn(lF) is called per-alternate provided

A+ = A

and the minor diagonal of A vanishes. As indicated above, PATn(1F)
denotes the totality of per alternate upper triangular matrices of order n.

Ilndeed, A+ can be obtained from A by reversing the rows of A followed by the
columns and finally transposing.
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Two (distinct) elements A and 8 of Mn(IF) are called adjacent provided

rank(A - 8) - 2.

We are interested in bijective maps \!! : PATn(1F) > PATn(IF)
preserving adjacency in the sense that

1rank( A 8) = 2 if and only if rank(\!!( A) \!!( 8)) = 21

for any two (distinct) A, 8 C PATn(IF). These maps are called
adjacency preserving bijections. For simplicity, it is assumed that these
maps carry 0 to 0.



Standard adjacency preserving bijections abound. For instance, if n> 4,
then for any a E= 18'\0 and any invertible P E 'Tn(lF) ,

W(A) = apCJ(A)P+ VA C PATn(lF),

where CJ is either the identity A I > A or the map A > A+ = JnA I In, is

an adjacency preserving bijection .

•••••••••••••• m.• 'IIMI,IJI3IW •• Sh.!f@'.".fiS,irUiJii.®@iIiH_

Each per-alternate strictly triangular matrix induces uniquely an
adjacency preserving bijection distinct from the standard ones. Explicitly,

Theorem
Let X E ~PATn(18') be strictly triangular, where n > 4. Then the map

n-2

\lJx(A) - ~A(XA)k :c_:: A + AXA + ... + A(XAt-
2

k=O

is an adjacency preserving b(jection on PATn(18'). Furthermore, if
Y c PAT n(IF) is strictly triangular, then \lJx = \!Iy only if X = Y.

As far as the authors can ascertain, it is not obvious that such a map \!Ix
is an adjacency preserving bijection. It is the goal of this talk to elucidate

this. We do this by studying the "constituents" of \lJx



The collection of maps

{\If x IX is a strictly triangular element of PAT n(IF)}

is a commutative group under composition of maps isomorphic to the
group of strictly triangular elements of PAT n(JF) under matrix addition

through the isomorphism

•••••••••••••• ml!.ml!!§.iIl!l.,SIIIMI.•• SM,·!§@i.!iSi&!N·i@b11d@MM¥-

We need the collection of triangular pairs of indices of order n, i.e, the

set
~n = {(i,j) C N x Nli < j < nil 1}.

For any exf IF and each (i,j) f !J.n, let

where Ej,j is the element of Mn(lF) with one on the (i,j)th entry and

zeros elsewhere, and let

Note that W o..i] = W Xc<,I.J' For ease of reference, such a matrix X(\"j,j IS

called a generating matrix and the map Wcx,j,j a generator.

ry of Per-alternate Triangular Matrices



Lemma (Decomposition Lemma)

For each strictly triangular X E PATn(I8'), let

X=

be the unique decomposition of X into generating matrices Xcx;,j,i,j for
some {ai.j}(i,j)Ell.n elF. Then

n-2

\lJx =- )~A(XA)k = O(i,j)Ell.n\IJa',J,i,jl
k=O

where 0 denotes the usual composition of maps.

Let

0 a12 al3 0 all a12 al3 0

X=
0 0 0 -a13 and A =

0 a22 0 -a'13

0 0 0 -a12 0 0 -an -a12

0 0 0 0 0 0 0 all

Then

\lJx(A) = A I AXA I A(XA)2

all alla22a12 I a12 aUa22al3 I al3 0

0 a22 0 al'l J22ClI3 - al3

0 0 a22 alla22a12 a12

0 0 0 all



Decompose

0 0.12 a13 0 0 LX12 0 0 0 0 a13 0

0 0 0 a13 0 0 0 0 0 0 0 a13

0 0 0 0 0 0
-\ 0 0 0 0

-LX12 -a12

0 0 0 0 0 0 0 0 0 0 0 0

X X"'1,2,1,2 X"'1,3,L3

Decomposition Lemma says

where

all a'll a220:-12 + a12 a13 0

Wa1,2,1,2(A) =
0 a22 0 a13

0 0 -a22 -al1a22O:l2 - a12

0 0 0 -all

aI-I a-12 - an a22a13 + a13 0

WO'l,3,1,3(A) =
0 a22 0 a11a22a13 a13

0 0 -a22 -a-12

0 0 0 -au



Is it true that for any A E= PATn(1F),

n 2 n-2

I:\lJX(A)(Y\lJx(A))k = \lJyo\IJx(A) = \lJxo\IJy(A) = L\lJy(A)(X\lJY(A))k?
k 0 k=O

Yes by Decomposition Lemma, if so are the generators W 0' . i )·'s.
I .J> ,

Generators are pairwise commutative. That is, for any Ct', j3 C IF and all
(i,j), (k, I) C c;

1\IJ,oW?lkl=W?lk oW "I0',1,) jJ, ' jJ, ,I 0',1,)'

In addition,

[W "oW?l .. -\IJ 8,,10'.,1,) jJ,I,) - A+. ,I,),

so that

Kiam Heong Kwa Geometry of Per. alternate Triangular Matrices

If

X= ~ Xoo· i)' and Y =Z:: 1,)"

(i,j)Eb.n

~ X» ..
~ jJi.j,I,),

(i,j)Ef:"n

so that

Wx - 0(i,j)Eb.nWCXi.j,i,j and Wy - o(i,j)E~nWf3i.j,i,j,

then

\lJx 0 \lJy = \lJy 0 Wx = o(i)')E/\ \lJO'. '+{3" i)' = \lJx+y
, L...ln I,J I -J ~ ,

because

x + Y - L XCX',j+{3"j,i,j.
(i,j)Ef:"n

Kiam Heong Kwa Geometry of Per-alternate Triangular Matrices



For any B c PATn(IF) , is there a unique A C PATn(lF) such that

n-2

B = Wx(A) = ~ A(XA)k?
k=O

Not easy to address is directly. However, it follows from the preceding

slide that
WX 0 W -x = Wo = identity.

Thus

Kiam Heong Kwa Geometry of Per-alternate Triangular Matrkes

Is it true that

rank(A B) = 2 if and only if rank(Wx(A) Wx(B)) = 2?

Yes by Decomposition Lemma, if 50 are the generators WO;,j,;'/s.

We state some facts without proofs

(a) For any generating matrix Xo,i,j and any A E= PATn(IF) ,

Xa iJ·AXo iJ' - O." , ,

(b) For any rank-2 A f PATn(IF) , there is a nonsingular P E= Tn(lF) and
a generating matrix X(3,k,/ such that

A = PX{3,k,/P+.

(c) As a consequence, for any rank-2 Z C PATn(IF) and any generating

matrix Xo.i,j,



Let A, B E' pA'f,(lF) be adjacent, so that Z -- A - B has rank 2. Using

the above-mentioned facts, It can be shown that

Wa,ij(A) - Wa,ij( B) - A + AXa,ijA - B - BXa,ijB
_ A - B + AXa,i,jA - (A - Z)Xa,i,j(A - Z)
= A B ~AXa,i,j(A B) I (A B)Xa,i,jA
_ (In + AXa,i,j)(A - B)(ln + Xa,i,jA),

where In is the identity matrix- Since AXa,i,j and Xa,i.jA are strictly

triangular, Wa,i,j(A) Wa,i,j(B) has the rank of A - - B.

IS••••••••••••• EM!.II!:rIMmalll.M .3i.i"h#,i'Mii%HN,w"4"'IM@i!ii¥

Say ,-----X - 0 Xa"j,i,j and Y -
(i ,j) EDcit«,

are such that

0(") A W(3 ,,= Wy - \Vx - ° .. ,I,, -J E L> n ' ,j ,I .j - - ( 1 -J ) EL'l n 'Va, .s,i ,j .

Then

\Vy-X _ O(I'j')E
A

\V (3- ,_~_, ,'j- - O(I-j')E" \lJ-l ,,0,11(3 - - ,1,-1
0
,11 Id, ...,. n ' .J '" ,J' ' . J..J. n a, ,j ,1 ,j 'V i,j ,1 ,j - 'V X 'V Y -

where Id stands for the identity map, because

Y X= ~ (X(3 .,
i,j ,I,j

Xa" ij') .
I.)' )

, .



Since Wy x 10, we have
A + A(Y _ X)A + ... + A((Y - X)At-2 - Wy_x(A) - A or

A(Y - X)A + A((Y - X)A)2 + ... + A((Y - X)Ay-2 - 0

for all A C PATn(lF)- Left multiplying the last equation with A(Y X),
together with the fact that A((Y - X)A)n-l is null, yields

A((Y X)A)2 I ." I A((Y X)Ar-2 = 0

for any A E= PATn(lF). Hence the conclusion Y - X follows from the

fact that
A(Y X)A = 0

for all A C PATn(lF) and

Lemma
A strictly triangular Z E PAT n(IF) is such that AZA = 0 for all
A C PAT n(lF) if and only if Z = 0-

Yes by Decomposition Lemma, if so are the generators Wai,j,i,/s-

Say A C PATn(IF) is a fixed point of Wx, i.e,

Wx(A) - A + AXA + ... + A(XAt-2 - A

or
AXA + A(XA? + A(XAy-2 - O.

Left multiplying the above equation with AX, together with the fact that

A(XAy-l vanishes, yields

A(XA)2 I .. , I A(XA)n-2 = O.

This implies that



For a generating matrix Xa,i,j. recall that ZX~,i,j.Z = 0 for any rank-2
Z E= 'PAln(lF). Hence the generators Wa,.),i,j S fix rank-2 elements of

PAln(JF) and so does \(lx·

Let ~--- X .'.L_; 0::,,),1,)

(i,j)E6n

be the decomposition of X into generating matrices. The proof proceeds
by induction on the number of nonzero generating matrices X - - . - I- 0Cl'./,) ,IJ .

Basis of induction, Say X - Xa/,),i,j I- 0 for some (i,j) E 6n. Then

X-

XAX - Xa- - iJ-AXCl'. - i J' - 0'd) I ,j) ,

and whence

WCl'./,),i,j(A) = A I AXCl'./,),i,jA
_ A + AXA + AXAXA + ...._____,

A+AX"",) ",)A 0

n 2- 2: A(XAl = Wx(A) VA C PAln(IF).
k 0



Induction hypothesis. Suppose the assertion holds for all such maps \If y
induced by strictly tria.ngular ~ - I:(i,j)E~n X{3',J,i,j E PATn(IF) having
p 1 nonzero generating matrices X{3;,j,i,j s for some p > 2.

Induction step. Say X has p nonzero generating matrices, so that
p

X = 2:.: XCXk';k.Jk
k=l

for some {(ik,jk )}~='l C ~n and {CXk }~=I C IF. Let
p-l

y - ~ Xcxbik,jk'
k=l

Then, by induction hypothesis, for all A C PATn(IF),
n-2

O~:.~Wak,ikojk(A) = ~A(YA)k = Wy(A).
k=O

Thus
n-2

W .' 0 Wy(A) = ~ A(YA)k
Ccp,lpJp L....t

k=O

for all A C PATn(lF). Since A(YAt-1 = 0,

Kiam Heong Kwa G t f Peome ry 0 er-alternate Triangular Matrices



[xplicitly,
n 2 n-2 n-2

L A( YA)k XC\p,;p,jp L A( YA)k - L A( YA)k XQp,ip,jpA( YA)I

i-O k=O k,'=O
n-2L A( YA)k XQp,ip,jpA( YA)I

k+'=Ok?:_O,I?:_O
n-2

k+I=Ok?:_O,,?:_O
n-2 k

= "\+-, ,-.. A( YA)I X .. A( YA)k-1~ Z:: Qp,lp.jp
k=O 1=0
n-l k-l

_ '\. -.. '\. -.. A( YA)' X .. A( YA)k-l-l .~~ Qp,lp,jp

Kiam Heong Kwa Geometry of Per-alternate Triangular Matriccs

k=l 1=0

Standard ~'H.ij.)( ,'nt-y prt..'5PfvinS1 hijP( tions ~ ~ , " v •

Adj.)( cnr.y prc~('rviHg by strktly tdangutu matrices " r.
Decomposition Lemrna

Properties of "'X's ~ '. . • . ,
" *" " ~~ ~ ':!!x1if" "

Thus
n-'l

W .' 0 Wy(A) = '" A( YA)kQp,lp,jp Z::

n-l k-'l
'" I '" A( YA)I X .' A( YA)k-l-l~ ~ Qp,lp,jp
k=O 1=0

= A I ~ [A( YA)k I s= A( YA)I XQp,ip,jpA( =:
k-l 1=0
n-l

= A I '\.-..A(( Y I X .. )A)kZ:: Qp,lp,jp
k-l
n-l

= A I LA(XA)k
k=l
n-2

= A I 2:: A(XA)k = Wx(A)
k-l

for all A C PAT n(lF) , where use has been made of the identity that for

k ~ 1,



St~Hld(lrd ,)(11,)(t)ncy p:tl· ....i..'rvll1t1. {lift', Lotb
Adj.H\'IHY pf("'\'I\llIll~ Illy' "ttHtly tll.III~llbr l'l.ltIH(':':>

Dr-rornpo ......ition lPI·U!I.1

Properties of IVX's

Thank you very much!
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