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Abstract— Designing a reliable flight control for an autonomous 
helicopter requires a high performance dynamics model. This 
paper studies the recurrent neural network nonlinear model 
identification of a small scale helicopter. We have selected a 
Nonlinear AutoRegressive with eXogenous Inputs Series- 
Parallel (NARXSP) network model which identifies the dynamics 
model of an unmanned aerial helicopter from real flight data. 
The identification process is conducted by using the well known 
Levenberg-Marquardt learning algorithm. The obtained 
dynamics model shows good fitness with the actual data. This 
accuracy might be used to realize a reliable flight control for an 
autonomous helicopter.      
 
Keywords— Dynamics model, Recurrent Neural Network 
(RNN), System Identification, Small-Scale Helicopter 

I. INTRODUCTION 
     Designing flight controller for unmanned aerial vehicles 
(UAVs) represents a great challenge for engineers because of 
their platforms complexity and nonlinear dynamics. Model 
Helicopters are popular platforms for unmanned aerial 
vehicles (UAVs) in both academic and military domains. 
Their ability to take off and land vertically, sideslip, hover and 
low speed cruise, make them useful for wide research 
applications. They can be used for agricultural crop dusting, 
search and rescue missions, traffic monitoring, inspection of 
bridges or power line and surveillance of larger areas etc. [1], 
[2].   
     A common problem in the design of high performance 
flight control for unmanned aerial helicopter is obtaining the 
dynamics model with high fidelity. Earlier, first principle 
modelling based on Newton’s law and Euler’s angle, have 
been applied in [3] to develop a nonlinear model. Then in 
order to design a linear controller, linearization of the 
nonlinear model is required [3]. Helicopters are well known to 
have complicated dynamics model. Therefore, their dynamics 
models are usually obtained through system identification 
techniques, using experimental collected data. The US 
army/NASA have developed a tool named CIFER 
(Comprehensive Identification from Frequency Response) to 
identify the model of full Rotorcraft dynamics. This method 
has been applied in [4], and successful obtain linear model for 
a Thunder Tiger Raptor-90 helicopter platform. The Prediction 
Error Method (PEM) was used in [5] as an estimation 

algorithm, which is based on minimizing the quadratic error 
between the predicted output and the experimental data.   
Artificial Intelligence control methods, such as neural 
networks, fuzzy logic and fuzzy/neural controllers have 
possibilities of high performance without large computing 
overhead to identify and control an unknown nonlinear 
dynamic system [6], [7], [8], [9], [10].  
     In recent years application of artificial neural network 
(ANNs) has received an increasing attention for identification 
and control of unknown nonlinear dynamic systems [11], [12], 
[13].  
   By taking into account the high nonlinearity of the helicopter 
system, we proposed Nonlinear AutoRegressive with 
eXogenous Inputs Series-Parallel Neural Network structure 
model to learn the dynamics model of a RUAV.  Based on 
NARXSP structure a nonlinear dynamics model of helicopter 
plant is identified off-line from the collected data.  
      The present work is organized as follows, section II deals 
with describing the experimental platform we have used to 
collect flight data.  Section III explains the methodology 
achieved for system identification to generate the dynamics 
model of an autonomous helicopter. We then deal with the 
simulation results in Section IV and finally, section V is the 
conclusion.  

II. PLATFORM DESCRIPTION 
     Experiments in this research were conducted on a size 50 
HIROBO SCEADU R/C helicopter. Due to its ability payload 
capability and manoeuvrability, adding autopilot system, 
sensors and communication devices make it easy to upgrade 
onto UAV helicopter. The helicopter actuation is performed 
by five onboard servo actuators. The swash plate is controlled 
by the Cyclic Collective Pitch Mixing (CCPM) method, to 
execute all the swash plate movements (collective, aileron and 
elevator). The main centrepiece of the helicopter onboard 
systems are: 1) - an onboard flight computer (PC/104). 
However, in the experiments PC/104 is used as memory for 
data storage.  2) - The Inertial Measurement Unit (IMU) 
connected directly to the flight computer through a special 
serial port. This latter provides measurement of the airframe 
accelerations (ax, ay, az), which are then integrated to obtain 
velocities (u, v, w), angular rates (p, q, r) and Euler angles 
,) ,ߠ ߮). 3) - A diamond GPIO-MM Timer/Counter card is 
used to capture the PWM duty cycle signals coming from the
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onboard receiver.  Table 1 shows some important parameters 
of the HIROBO SCEADU helicopter platform.  

TABLE I 
50 SIZE HIROBO SCEADU HELICOPTER DESCRIPTION 

 
 

III. SYSTEM IDENTIFICATION 
     As mentioned earlier, helicopters have a very complex 
dynamics system, MIMO characteristics and highly 
nonlinearity. Therefore, their dynamics model is not easily 
represented in terms of first principles. System identification is 
an experimental approach to generate dynamics model which 
identify the unknown model parameters. One approach known 
as Gray-box system identification combines physical 
modelling and numerical methods integration to estimate the 
unknown parameters in the model equations. This approach 
has been applied in several researches for helicopter dynamics 
identification [4], [5]. But this approach needs to be decoupled 
the physical model into subsystems due to higher orders. The 
insufficient model structure may complicate the design of the 
controller. Black box identification, without physical model 
integration is considered as a critical tool which is mostly used 
in intelligent control systems.  
     A number of experimental test flights have been made to 
collect flight data via a human operator pilot. The flight data 
were collected at sampling interval of 30ms rate. During the 
flight data test, the IMU sends back the airframe data of the 
vehicle to PC/104. Whereas, the Counter/Timer captures the 
PWM signals sent by the receiver to the actuators. For the 
identification purpose, the selected data were taken in near 
hover conditions.     

A. Helicopter model system representation   
A standard NARX discrete time nonlinear multivariable 

model system with m outputs and r inputs, which is a general 
parametric form for modelling nonlinear systems [14] can be 
described by the following equation  

ݐሺݕ     ݀ሻ ൌ ܰሾݕሺݐሻ, ݐሺݕ െ 1ሻ, … , ݐ൫ݕ െ ݊௬  1൯, ݑሺݐሻ, ݐሺݑ െ 1ሻ, … , ݐሺݑ െ ݊௨  1ሻ                                      ሺ1ሻ   
  

where,  

ሻݐሺݕ    ൌ
ێێۏ
ۍێێ

ۑۑےሻݐሺݕ...ሻݐଶሺݕሻݐଵሺݕ
ېۑۑ ሻݐሺݑ    , ൌ

ێێۏ
ۍێێ
ۑۑےሻݐሺݑ...ሻݐଶሺݑሻݐଵሺݑ

 ሺ2ሻ                                     ېۑۑ

The above mentioned vectors are the system output, the input 
system and the noise respectively, ݊௬ and ݊௨  are the maximum 
lags in the output and input. t is time and d is the step time. 
N(.) represent unknown nonlinear function, which needs to be 
approximated.  
According to the basic state of the IMU model frame-out back 
to the system, the helicopter coordinates can be represented as 
nine outputs. This model has three accelerators, three angular 
rates and three angles all can specify by a 9x9 dynamics model 
parameters.       

 
B- Neural Networks Architecture 

     Fig.1 shows the overall of the NARX Series Parallel 
Recurrent Neural Networks structure which is commonly has 
three layers (input, hidden and the output). Since we have 
collected both inputs and outputs flight data (Actual model). 
The series parallel networks have chosen rather than the 
feedback networks. A nonlinear transfer function used in the 
hidden layer, and a linear function in the output layer. The 
nonlinear function given as a sigmoid function: 
ሻݔሺߪ    ൌ 1  ݁ି௫1 െ ݁ି௫                                                                       ሺ3ሻ 
                
 The relationship between input-output of a generic node, the 
ith node in the lth layer is given by: 
 ݊ሺሻ ൌ  ሺିଵሻݔሺሻݓ  ܾሺሻషభ

ୀଵ                                                        ሺ4ሻ 

ሺሻݕ                               ൌ ݂൫݊ሺሻ൯                                                                                ሺ5ሻ 
 

where,  ݓሺሻ and  ܾሺሻ are the connections weights and the 
biases respectively. ݔሺିଵሻ is the input vector coming from the 
previous layer, ݕሺሻ is ith node output and ݂ሺ. ሻ is the activation 
function. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                  = unit delay operator 
                 = input elements  

Fig. 1 Series Parallel Recurrent Neural Network Structure 
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From Fig. 1 we can expressed the identification model as 
the follows equation   ݕොሺݐ  ݀ሻ ൌ ܰሾݕሺݐሻ, ݐሺݕ െ 1ሻ, … , ݐ൫ݕ െ ݊௬  1൯, 

,ሻݐሺݑ    ݐሺݑ െ 1ሻ, … , ݐሺݑ െ ݊௨  1ሻ                                   ሺ6ሻ    
where ݕො is the model output,  ݕ is the actual output, ܰ ൌ݃ሺ݅ݓሺ݆݈ሻ, ܾሺ݈݅ሻ, ,ሺ݆݈1ሻ݅ݓ ܾሺ݈݅1ሻሻ is the neural network approximation 
function which involves the adjustment of the weights through the 
back propagation.  

 

 
Fig. 2 photograph of Collecting Flight Data for System Identification  

 

C. Neural Networks Learning  Algorithm  
     The training process used to approximate the helicopter 
dynamics model plant is illustrated in Fig. 3. The system 
identification diagram based on back propagation learning 
algorithm with the approximation of Levenberg-Marquardt 
function is used. Levenberg-Marquardt training algorithm is 
applied for the speed of convergence. The algorithm adjusts 
the weights to minimize the cost function (e) Fig. 3. The 
performance of the approximate plant model is shown to 
outperform the Recurrent Neural Networks in terms of 
convergence speed and mean squared error (MSE). The mean 
square error is given as 
 ݁ ൌ 1݊     ሺݕොሺݐሻ െ ሻሻଶݐሺݕ

௧ୀଵ                                             ሺ7ሻ 

where, ݕො is the output of the model from networks, ݕ  
represents the actual (measured) output at index time t and ݊ is 
the number available patterns. The idea of the algorithm in this 
study is to obtain an approximation for the function ܰ in the 
equation (6) that minimizes the error between the measured 
outputs and the networks outputs. The flexibility of 
Levenberg-Marquardt learning algorithm between Gradient 
descent and Guass Newton Methods make it more useful [15]. 
   The weights updated via Levenberg-Marquardt learning 
algorithm can be written as follows      ܹሺݐ  1ሻ ൌ ܹሺݐሻ െ ሾ ܬ   ்ܬ   ሺ8ሻ                   ݁ ்ܬ  ሿିଵܫߤ

where  ܬ is the Jacobian matrix which can be written for a 
single neuron as: 
 

ܬ ൌ
ێێۏ
ۍێێ ߲݁ଵ߲ݓଵ … ߲݁ଵ߲ݓିଵ   ߲݁ଵ߲ݓ..߲߲݁ݓଵ … ߲߲݁ݓିଵ   ߲߲݁ݓۑۑے

 ሺ9ሻ                                             ېۑۑ

 
and ߤ is the adaptive parameter which can modified based on 
the development of the error ݁.  
   In the proposed neural network architecture, one input layer 
with five nodes corresponding to the five servo control signals, 
one hidden layer with twenty five units (neurons) and one 
output layer with eight nodes corresponding to angular rates, 
translation velocities and Euler angles of the helicopter system 
out-frame are used in the proposed structure (Fig. 1). The yaw 
angle has eliminated, because it is already controlled by the 
gyro system.     As mentioned earlier the hidden layer has a 
sigmoid nonlinear transfer function, and the output layer has 
linear function. By using a forward selection method to decide 
the number of neurons in the hidden layer which begins with 
small number of neurons, then train and test the neural 
networks outputs up to get a better convergence between the 
network outputs and the experimental data set.  
Before starting the training of the identifier neural networks 
plant, the collected data requires some filtering to screen out 
noises, moving average filter is used in this study.  
 
   

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Fig. 3 System identification diagram procedure 

 

IV. SIMULATION RESULTS & DISCUSSION 
A- Results 
  Fig. 4 shows a comparison of the recurrent neural network 
output with the experimental data. The upper left panel 
displays the predicted angular rates output response about the 
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rigid body axis (x, y, z) which is almost close to the measured 
output variance. The upper right panel displays the translation 
velocities along the three directions. The lower panel displays 
the predicted Euler angles (roll and pitch angles). The results 
demonstrate that the proposed neural network computation 
structure is capable to generate the dynamics model with high 
accuracy for a small-scale helicopter. The training 
performances are shown in table II. 
 

TABLE II 
training algorithm performance 

 
 

 
Angular rate along x axis  

 

 
Angular rate along y axis 

 

 
Angular rate along z axis  

 

 
Roll angle 

 
 
 

B. Discussion 
 The simulation results demonstrate that the recurrent neural 
network as a black-box computation tool is useful for 
modeling and analyze the dynamics model of a small-scale 
helicopter. From the study in Section III. A, the NARXSP 
model having a structure of 5 inputs and 8 outputs inferred 
respectively from the Counter/Timer signals and the IMU 
airframe outputs of an autonomous helicopter, on this model 
structure, the recurrent neural network computational tool 
were implemented in Section III. C, with the suggested 
parameters: learning rate ߤ ൌ 0.01, training performance goal 
is zero and training epoch of 700. The method successfully 
minimizes the error to identify an accurate model structure for 
an autonomous helicopter. Additionally, this computational 
structure tool is capable of training a large data set.   
 
 

 
Pitch Angle 

 

 
Translation velocity along x axis 

 

 
Translation velocity along y axis 

 

 
Translation velocity along z axis 

 
 
  

MSE (performance) 0.00273692/0 

Levenberg-Marquardt 
performance 0.000232992/1e-006 

Fig. 4 comparison of recurrent neural network output with experimental flight data set 
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V. CONCLUSION 
It has been successfully shown that a model small-scale 

helicopter dynamics plant can be identified using NARXSP 
neural network model as a system identification approach. The 
NARXSP has been implemented in a recurrent neural network 
structure which is based on the Levenberg-Marquardt learning 
algorithm. This latter algorithm was trained to map the 
relationship between the input and output patterns. 

The identified model of the small-scale helicopter did not 
require the physical model parameters calculation. These 
results may have practical significance in analysis of the 
helicopter dynamics model and it could lead to more efficient 
intelligent flight control strategies.   
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