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Summary. In this second sequel, the integrated rate law expression is the basis for a new
method of projecting all its parameters to be determined as function of one primary vary-
ing parameter -in this case the rate constant- by utilizing the experimental data points
to construct the functional dependency where this method is called the principle of in-
duced parameter dependence (PIPD). Such a technique avoids problems associated with
multiple minima and maxima because of the possibly large number of parameters. The
method is applied to first and second order reactions based on published data where the
results accord very well with standard treatments. The PIPD and its method could be a
promising optimization technique for a large class of phenomena that have a large number
of parameters that need to be determined without leading to "unphysical" and anomalous
parameter values.

1 INTRODUCTION

The PIPD application is tested against the same first order reaction (i) as in sequel
I involving the methanolysis of ionized phenyl salicylate with data derived from the
literature [1, Table 7.1,p.381]
and a second order reaction (ii) the details being
(ii) the reaction between plutonium(VI) and iron(II) according to the data in [2,
Table II p.1427] and [3, Table 2-4, p.25].

Reaction (i) may be written

(1)

where for the rate law is pseudo first-order expressed as
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Reaction (ii) was studied by Newton et al. [2, eqns. (8,9),p.1429] and may be
written as

Pu(VI) + 2Fe(II) ~ Pu(IV) + 2Fe(III) (2)

whose rate ( is given by ( = ko[PuO;~+][Fe2+]where ko is relative to the constancy
of other ions in solution such as H+.. The equations are very different in form to the
first-order expressiona and serves to confirm the viability of the current method.
We use their data [2, TABLE II,p.1427] to verify the principles presented here. Es-
penson had also used the same data as we have to derive the rate constant and
other parameters [3, pp.25-26] and we refer to his values for the final concentration
parameter and rate constant to check on the accuracy of our methodology.

2 PIPD .introduction

Deterministic laws of nature arefor the simplest examples written in the form

Yiaw = Yiaw(P, k, t) (3)

linking the variable Yiaw to the experimental series of measurements of physical
variable t (which in this case involves time). The components of P, Pi(i = 1,2, ...Np)

and k are parameters. Verification of a law of form (3) relies on an experimental
dataset {(Yexp(ti), ti),i = 1,2, ...N)}. Several methods [4, 5, 6, 7, etc.) have been
devised to determine the optimal P, k parameters, but these methods consider the
(P, k) parameters as autonomous and independent (e.g. [5)) subjected to free and
independent variation during the optimization process. On the other hand, if one
considers the interplay between the experimental data and Yiaw one can derive
certain parameters like the final concentration terms (e.g. >'00 and Y00 in what
follows in Sec.(4) ) if k, the rate constant is known. To preserve the viewpoint
of interdependency, we devise a scheme that relates P to k for all Pi via the set
{Yexp(ti), t;}, and optimize the fit over k-space only. i.e. there is induced a PiCk)
dependency on k via the the experimental set {Yexp(ti), td. The advantages of the
present method is that the optimization is over 1D k space, leading to a unique
determination of P with respect to k, whereas if all P are considered equally free, the
optimization could lead to many different local solutions for each of the {Pi}, some
of which would be considered erroneous on physical grounds. The rate constant is
considered constant over all measurements, although this assumption is not strictly
correct [8).

3 Outline of Method

Let N be the number of dataset pairs {Yexp(ti), ti}, Np the number of components
of the P parameter, and N, the number of singularities where the use of a particular
dataset (Yexp, t) leads to a singularity in the determination of PiCk) as defined below
and which must be excluded from being used in the determination of PiCk). Then
(Np + 1) S (N - Ns) for the unique determination of {P,k}. Define N-N·CNp = Ne
as the total number of combinations of the data-sets {Yexp(ti), ti} taken Np at a
time that does not lead to singularities in Pi. Write Yiaw in the form

Yiaw(t,k) = f(P,t,k).

Map f ---+ yt" (P, t, k) as follows

Yth(t,k) = f(P,t,k)

(4)

(5)
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where the term P and its components is defined below and where k is a varying
parameter. For any of the (i1' iz, ... , iNp) combinations where ij == (Yexp( tij), tij)
is a particular dataset pair, it is in principle possible to solve for the components of
P in terms of k through the following simultaneous equations:

Yexp(ti,) = f(P,ti"k)

Yexp(ti2) = f(P,ti2,k) (6)

Yexp(tiNp) = f(P,tiNp,k)

For each Pi, there will be Nc different solutions, Pi(k,1),Pi(k,2), ... Pi(k,Nc)
Define an arithmetic mean for the components of P where

_ 1 Nc

Pi(k) = N L,Pi(k,j).
c i=1

(7)

Each Pi(k,j) is a function of k whose derivative are known either analytically or
by numerical differentiation. To derive an optimized set, then for the least squares
method, define

N'

Q(k) = L,(Yexp(ti) - Yth(k, ti)?
i=l'

(8)

Then for an optimized k, we have Q'(k) = O.Defining

N'
Pk(k) = L,(Yexp(ti) - Yth(k, ti)).~~(k, ti)

i=l'

(9)

the optimized solution of k corresponds to Pk(k) = O.The most stable numerical
solution is gotten by the bisection method where a solution is assured if the initial
values of k yield opposite signs for Pk(k). Since all Pi(k) functions are known, their
values may all be computed for one optimized k value of Q in (8). For a perfect
fit of Yexp with Yiaw, Q(k') = Q'(k') = 0 =} Pj -+ Pj (\/j) and so in this sense we
define the above algorithm as giving optimized values for all Pi parameters via the
k determination. This method is illustrated for the determination of two parameters
in chemical reaction rate studies, of 1st and 2nd order respectively using data from
the published literature referred to above.

4 Applications in Chemical Kinetics

The first order reaction studied here is reaction (i) and the second order one is reac-
tion (ii) both described above. For both these reactions, we plot the Pk(k) function
as in Fig.(l) to test whether the method does in fact yield a unique solution. It can
be observed that in both cases, a unique solution exists for Pk(k) = 0 , and the
region about this value of Pk is indicated a line for each of the reaction orders. The
graph proves that for these systems a unique solution exists; as to whether this is
a reasonable solution can only be deduced by comparison to experimental determi-
nations and the results from other standard techniques. The details of deriving the
Pk function, very different in form for the two reaction orders, are given in what
follows.
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4.1 First order results

For this order, the change in time t for any material property A(t), which in this
case is the Absorbance A(t) (i.e. A(t) == A(t)is given by

A(t) = Aoo- (Aoo- AO) exp (-kat) (10)

for a first order reaction where AO refers to the measurable property value at time
t = 0 and Aoois the value at t = 00 which is usually treated as a parameter to
yield the best least squares fit even if its optimized value is less for monotonically
increasing functions (for positive ~;at all t) than an experimentally determined A(t)
at time t. In Table 7.1 of [1) for instance, A(t = 21608) = 0.897 > Aopt,oo = 0.882
and this value of Aoo is used to derive the best estimate of the rate constant as
16.5± 0.1 x 1O-3sec-1.
For this reaction, the Pi of (4) refers to Aooso that P == Aoowith Np = 1 and
k == ka. To determine the parameter Aooas a function of ka according to (8) based
on the entire experimental {(Aexp, ti)} data set we invert (10) and write

(11)

where the summation is for all the values of the experimental dataset that does
not lead to singularities, such as when i, = 0, so that here N, = 1. We define the
non-optimized, continuously deformable theoretical curve )..th where Ath == Yih (t, k)
in (5) as

(12)

With such a projection of the Aooparameter Ponto k, we seek the least square
minimum of Q1(k), where Q1(k) == Q of (8) for this first-order rate constant kin
the form

N

Q1(k) = :2)Aexp(ti) - Ath(ti,k))2
i=l

(13)

where the summation is over all the experimental (Aexp(ti), td values. The resulting
Pk function (9) for the first order reaction based on the published dataset is given
in Fig. (1).The solution of the rate constant k corresponds to the zero value of the
function, which exists for both orders. The P parameters (Aooand Y00 ) are derived
by back substitution into eqs. (11) and (15) respectively. The Newton-Raphson (NR)
numerical procedure [9, p.362)was used to find the roots to Pk.For each dataset,
there exists a value for Aooand so the error expressed as a standard deviation may
be computed. The tolerance in accuracy for the NR procedure was 1. x 10-10 .

We define the function deviation f d as the standard deviation of the experimental
results with the best fit curve fd = J*n:::i:1(Aexp(ti) - Ath(ti)2} Our results are
as follows:
ka = 1.62 ± .09 x 1O-2s-\ Aoo= 0.88665 ± .006; and fd = 3.697 x 10-3•
The experimental estimates are :
ka = 1.65 ± .01 x 1O-2s-1; Aoo= 0.882 ± 0.0; and fd = 8.563 x 10-3.
The experimental method involves adjusting the Aoo == )..00 to minimize the fd
function and hence no estimate of the error in Aoo could be made. It is clear that our
method has a lower fd value and is thus a better fit, and the parameter values can be
considered to coincide with the experimental estimates within experimental error.
Fig.(2(a))shows the close fit between the curve due to our optimization procedure
and experiment. The slight variation between the two curves may well be due to
experimental uncertainties.
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Fig. 1 Pk functions (9) for reactions (i) and (ii) of order one and two in reaction rate.

4.2 Second order results

To further test our method, we also analyze the second order reaction (2)
For Espenson, the above stoichiometry is kinetically equivalent to the reaction

scheme [3, eqn. (2-36)]

P 02+ D 2+ kb P 0+ D 3+u 2 + J.·eaq ~ u 2 + reaq .

which also follows from the work of Newton et al. [2, eqns. (8,9),p.1429] whose data
[2, TABLE II,p.1427] we use and analyze to verify the principles presented here.
The overall absorbance in this case Y(t) is given by [3, eqn(2-35)]

Y (t) = _Yoo==--+_{"-.y,..:..o,.:-(1_-_Q....:.)_--;-y;.....:oo~}:-e__xp:_(:._-_k_..1..:....:.ot)
1- Qexp(-k..1ot)

(14)

where Q = ~ is the ratio of initial concentrations where [B]o > [A]o and [B] =

[Pu(VI)], [A] = [Fe(II)J and [BJo = 4.47 x 1O-5M and [AJo = 3.82 x 1O-5M . A
rearrangement of (14) leads to the equivalent expression [3, eqn(2-34)]

(15)

According to Espenson, one cannot use this equivalent form [3, p.25] "because an
experimental value of Y00 was not reported." However, according to Espenson, if Y00
is determined autonomously, then k the rate constant may be determined. Thus,
central to all conventional methods is the autonomous and independent status of
both k and Yoo. We overcome this interpretation by defining Yoo as a function of
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the total experimental spectrum of ti values and k by inverting (14) to define Yoo(k)
where

N'
Yoo(k) = __!__ ~ Yexp(ti) {exp(kLlotd - a)} + Yo (a - 1)

N' Z:: (exp(kLloti) _ 1) (16)
1=1'

where the summation is over all experimental values that does not lead to singu-
larities such as at t; = O. In this case, the P parameter is given by Y oo(k) = P1(k),
kb = k is the varying k parameter of (4). We likewise define a continuously deforming
function Yih of k as

Y ( t ) th = _Y=oo_,_(k-"-)_+._.!{,--Yr::..._o(~I_-_a-'-)_--;-Y...::.oo~(,....:k)-,-}_ex....:..p....:..(-_k_Ll_:o~t)
1 - aexp(-kLlot) (17)

In order to extract the parameters k and Yoo we minimize the square function Q2(k)
for this second order rate constant with respect to k given as

N

Q2(k) = L(Yexp(ti) - Yih(ti, k))2
i=1

(18)

where the summation are over the experiment ti coordinates. Then the solution to
the minimization problem is when the corresponding Pk function (9) is zero. The
NR method was used to solve Pk = 0 with the error tolerance of 1.0 x 10-10. With
the same notation as in the first order case, the second order results are:
kb = 938.0 ± IBM s-\ Yoo = 0.0245 ± 0.003; and fd = 9.606 x 10-4.

The experimental estimates are [3, p.25):
kb = 949.0 ± 22 x 1O-2s-1; Yoo = 0.025 ± 0.003.
Again the two results are in close agreement. The graph of the experimental curve
and the one that derives from our optimization method in given in Fig.(2).
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Fig. 2 Reaction (i) and (ii) results.

5 Conclusions

The results presented here show that by the method of inducing parameter de-
pendency, it is possible to derive all the parameters associated with a theoretical
curve by considering only one independent variable which serves as an independent
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variable for all the other parameters in the optimization process that uses the ex-
perimental dataset as input variables in the calculus. Apart from possible reduced
errors in the computations, there might also be a more accurate way of deriving
parameters that are more determined by the value of one parameter (such as k
here) than others; the current methods that gives equal weight to all the variables
might in some cases lead to results that would be considered "unphysical". This
might be so in the situations of optimization of geometry in complex DFT and ab
initio quantum chemical computations, where there are a myriad number of possi-
ble mechanically stable conformers that it becomes difficult to determine the most
prevalent forms. It could well be that the method presented here would indicate
the average most probable structure if an appropriate analogue of the k variable
is used that would induce the psot probable structure by optimization of the Pi
parameters.
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