Asian Workshop on Polymer Processing (AWPP 2009)
Penang, Malaysia, Dec 01-04, 2009

Oral Presentation B-201, Dec 13, 2009

By

Assoc. Prof. Dr. Aziz Hassan
Universiti Malaya, Malaysia
THERMAL AND MECHANICAL PROPERTIES OF INJECTION MOULDED SHORT GLASS/SHORT CARBON HYBRID FIBRE REINFORCED POLYAMIDE 6,6 COMPOSITES

AZIZ HASSAN *, N.M. SALLEH AND ROSIYAH YAHYA

Dept. of Chemistry, Universiti Malaya,
50603 Kuala Lumpur, Malaysia
Introduction

Hybrid fibres – to modify / tailor made the properties to suit certain application

Glass – impact properties

Carbon – tensile properties
Introduction

- Polyamide – hygroscopic, absorb moisture up to 2.5% w/w

Hybridisation

- Plasticisation – affect properties
Objectives

To study the effect of:-

• Hybridisation
• Conditioning
Materials

- Pre-compounded short carbon fibre polyamide 6,6 composites (SC), $V_f = 0.33$
- Pre-compounded short glass fibre polyamide 6,6 composites (SG), $V_f = 0.18$
Experimental

- Pre-compounded composites – physical blended, 0/100, 25/75, 50/50, 75/25 and 100/0 (SG/SC w/w %)

- Injection moulded – Boy 55 tonne injection moulding machine, single gated four cavities, two impacts and two tensile test bars
Experimental

Specimens conditioning:-

- Dry as moulded
- 50% RH
- Wet

TGA, Hot stage, ESC, Perkin Elmer, 10°C/min

DMA – Q800 TAI, three point bending, 3°C/min
Experimental

• TGA – Perkin Elmer, 10°C/min

• DSC – Hyper DSC, Perkin Elmer, 10°C/min

• DMA – Q800 TAI, three point bending, 3°C/min
Experimental

• Tensile – Instron 5569, 10 mm/min

• Impact – Instron Dynatup 9210, charpy, notched ($a/D = 0.1, 0.2, 0.3, 0.4$)
Figure 1: TGA thermographs of glass/carbon hybrid fibre composite (SG50/SC50) under different conditions
Figure 2: DSC results of hybrid fibre composites with different carbon fibre content under dry condition
Figure 3: DSC results of hybrid fibre composites with different carbon fibre content under wet condition
Table 1: Thermal properties of hybrid composite at various conditions

<table>
<thead>
<tr>
<th>Sample</th>
<th>Glass/Carbon</th>
<th>T_m (°C)</th>
<th>ΔH_m (J/g)</th>
<th>T_c (°C)</th>
<th>$-\Delta H_m$ (J/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SGD18</td>
<td>100/0</td>
<td>258.9</td>
<td>47.37</td>
<td>232.7</td>
<td>29.59</td>
</tr>
<tr>
<td>SG50%RH18</td>
<td></td>
<td>259.4</td>
<td>48.97</td>
<td>232.6</td>
<td>29.25</td>
</tr>
<tr>
<td>SGW18</td>
<td></td>
<td>260.0</td>
<td>44.39</td>
<td>233.5</td>
<td>27.98</td>
</tr>
<tr>
<td>SG75/C25D</td>
<td>75/25</td>
<td>258.7</td>
<td>45.35</td>
<td>232.3</td>
<td>27.18</td>
</tr>
<tr>
<td>SG75/C25,50%RH</td>
<td>75/25</td>
<td>259.2</td>
<td>42.89</td>
<td>232.9</td>
<td>27.24</td>
</tr>
<tr>
<td>SG75/C25W</td>
<td></td>
<td>259.9</td>
<td>42.14</td>
<td>233.8</td>
<td>25.79</td>
</tr>
<tr>
<td>SG50/C50D</td>
<td>50/50</td>
<td>258.5</td>
<td>41.14</td>
<td>232.9</td>
<td>25.13</td>
</tr>
<tr>
<td>SG50/C50, 50%RH</td>
<td>50/50</td>
<td>258.9</td>
<td>40.49</td>
<td>232.4</td>
<td>25.63</td>
</tr>
<tr>
<td>SG50/C50W</td>
<td></td>
<td>259.2</td>
<td>40.25</td>
<td>233.1</td>
<td>25.37</td>
</tr>
<tr>
<td>SG25/C75D</td>
<td>25/75</td>
<td>258.0</td>
<td>38.05</td>
<td>231.9</td>
<td>23.63</td>
</tr>
<tr>
<td>SG25/C75, 50%RH</td>
<td>25/75</td>
<td>258.5</td>
<td>37.47</td>
<td>232.4</td>
<td>24.59</td>
</tr>
<tr>
<td>SG25/C75W</td>
<td></td>
<td>258.4</td>
<td>36.62</td>
<td>232.6</td>
<td>23.43</td>
</tr>
<tr>
<td>SCD33</td>
<td>0/100</td>
<td>257.1</td>
<td>34.58</td>
<td>231.4</td>
<td>21.95</td>
</tr>
<tr>
<td>SC50%RH33</td>
<td></td>
<td>257.5</td>
<td>35.20</td>
<td>231.5</td>
<td>21.85</td>
</tr>
<tr>
<td>SCW33</td>
<td></td>
<td>257.8</td>
<td>34.29</td>
<td>231.6</td>
<td>21.47</td>
</tr>
</tbody>
</table>
Figure 4: The tan delta–temperature behaviour of unreinforced polyamide 6,6 matrix under different conditions
Figure 5: The storage modulus–temperature behaviour of unreinforced polyamide 6,6 matrix under different conditions
Figure 6: The tan delta–temperature behaviour of injection-moulded (SG50/C50) hybrid fibre composites under different conditions.
Figure 7: The storage modulus–temperature behaviour of injection-moulded (SG50/C50) hybrid fibre composites under different conditions.
<table>
<thead>
<tr>
<th>Glass/Carbon</th>
<th>Sample</th>
<th>$\tan \delta_{25}^A$ (x 10^-2)</th>
<th>$\tan \delta_{\text{max}}^B$ (x 10^-2)</th>
<th>α-transition</th>
<th>$\tan \delta_{\text{max}}^B$ (x 10^-2)</th>
<th>β-transition</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>SGD0</td>
<td>5.12</td>
<td>8.21</td>
<td>55</td>
<td>3.83</td>
<td>-70</td>
</tr>
<tr>
<td></td>
<td>SG50%RH0</td>
<td>9.43</td>
<td>10.10</td>
<td>17</td>
<td>3.98</td>
<td>-74</td>
</tr>
<tr>
<td></td>
<td>SGW0</td>
<td>5.71</td>
<td>11.43</td>
<td>-13</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>100/0</td>
<td>SGD18</td>
<td>0.82</td>
<td>4.72</td>
<td>69</td>
<td>1.88</td>
<td>-64</td>
</tr>
<tr>
<td></td>
<td>SG50%RH18</td>
<td>4.86</td>
<td>5.10</td>
<td>18</td>
<td>2.05</td>
<td>-76</td>
</tr>
<tr>
<td></td>
<td>SGW18</td>
<td>2.80</td>
<td>5.37</td>
<td>-16</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>75/25</td>
<td>SG75/C25D</td>
<td>1.05</td>
<td>5.09</td>
<td>66</td>
<td>1.89</td>
<td>-66</td>
</tr>
<tr>
<td></td>
<td>SG75/C25, 50%RH</td>
<td>4.42</td>
<td>4.79</td>
<td>16</td>
<td>1.86</td>
<td>-77</td>
</tr>
<tr>
<td></td>
<td>SG75/C25W</td>
<td>3.02</td>
<td>5.59</td>
<td>-14</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>50/50</td>
<td>SG50/C50D</td>
<td>0.83</td>
<td>5.07</td>
<td>67</td>
<td>1.77</td>
<td>-66</td>
</tr>
<tr>
<td></td>
<td>SG50/C50, 50%RH</td>
<td>4.35</td>
<td>4.57</td>
<td>18</td>
<td>1.77</td>
<td>-76</td>
</tr>
<tr>
<td></td>
<td>SG50/C50W</td>
<td>3.30</td>
<td>5.52</td>
<td>-13</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>25/75</td>
<td>SG25/C75D</td>
<td>1.15</td>
<td>5.07</td>
<td>67</td>
<td>1.72</td>
<td>-66</td>
</tr>
<tr>
<td></td>
<td>SG25/C75, 50%RH</td>
<td>4.36</td>
<td>4.60</td>
<td>17</td>
<td>1.59</td>
<td>-74</td>
</tr>
<tr>
<td></td>
<td>SG25/C75W</td>
<td>3.47</td>
<td>5.44</td>
<td>-12</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>0/100</td>
<td>SCD33</td>
<td>1.10</td>
<td>4.83</td>
<td>69</td>
<td>1.66</td>
<td>-66</td>
</tr>
<tr>
<td></td>
<td>SC50%RH33</td>
<td>4.17</td>
<td>4.65</td>
<td>19</td>
<td>1.58</td>
<td>-76</td>
</tr>
<tr>
<td></td>
<td>SCW33</td>
<td>3.98</td>
<td>5.44</td>
<td>-11</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Figure 8: Tensile strength of composites subjected to dry condition
Figure 9: Tensile modulus of composites subjected to dry condition
Figure 10: Fracture strain of composites subjected to dry condition
Table 3: Tensile properties of glass/carbon hybrid fibre composites at different condition

<table>
<thead>
<tr>
<th>Sample</th>
<th>Composition of carbon fibre composites (%)</th>
<th>Fracture strain (%)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dry</td>
<td>50%RH</td>
<td>Wet</td>
</tr>
<tr>
<td></td>
<td>Experimental</td>
<td>Calculated</td>
<td>Experimental</td>
</tr>
<tr>
<td>SG18</td>
<td>0</td>
<td>9.00</td>
<td>10.46</td>
</tr>
<tr>
<td>SG75/C25</td>
<td>25</td>
<td>6.93</td>
<td>7.69</td>
</tr>
<tr>
<td>SG50/C50</td>
<td>50</td>
<td>6.65</td>
<td>6.70</td>
</tr>
<tr>
<td>SG25/C75</td>
<td>75</td>
<td>6.05</td>
<td>6.41</td>
</tr>
<tr>
<td>SC33</td>
<td>100</td>
<td>5.55</td>
<td>6.07</td>
</tr>
</tbody>
</table>

Figure 11: Variation of fracture energy with specimen geometry function of hybrid fibre composites under dry condition.
Figure 11: Variation of fracture energy with specimen geometry function of hybrid fibre composites under dry condition
Figure 12: G_c values of hybrid fibre composites under dry, 50% RH and wet condition
Table 4: The critical strain energy release rate, G_c values of hybrid composites under various conditions.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Composition of carbon composites (%)</th>
<th>G_c (kJm$^{-2}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SGD18</td>
<td>12.41</td>
<td></td>
</tr>
<tr>
<td>SG50%RH18</td>
<td>27.72</td>
<td></td>
</tr>
<tr>
<td>SGW18</td>
<td>41.43</td>
<td></td>
</tr>
<tr>
<td>SG75/C25D</td>
<td>12.45</td>
<td></td>
</tr>
<tr>
<td>SG75/C25,50%RH</td>
<td>26.68</td>
<td></td>
</tr>
<tr>
<td>SG75/C25W</td>
<td>34.31</td>
<td></td>
</tr>
<tr>
<td>SG50/C50D</td>
<td>16.27</td>
<td></td>
</tr>
<tr>
<td>SG50/C50,50%RH</td>
<td>24.16</td>
<td></td>
</tr>
<tr>
<td>SG50/C50W</td>
<td>35.22</td>
<td></td>
</tr>
<tr>
<td>SG25/C75D</td>
<td>11.53</td>
<td></td>
</tr>
<tr>
<td>SG25/C75,50%RH</td>
<td>17.86</td>
<td></td>
</tr>
<tr>
<td>SG25/C75W</td>
<td>28.68</td>
<td></td>
</tr>
<tr>
<td>SCD33</td>
<td>11.27</td>
<td></td>
</tr>
<tr>
<td>SC50%RH33</td>
<td>14.57</td>
<td></td>
</tr>
<tr>
<td>SCW33</td>
<td>24.55</td>
<td></td>
</tr>
</tbody>
</table>
Conclusion

Effect of hybridisation:-

- No sensible change in matrix properties from DSC results
- Positive effect on E, G_c
- Negative effect on UTS
Conclusion

Effect of moisture absorption:-

- Plasticisation effect – shown in mechanical and dynamic mechanical properties
Thank you