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Abstract

Background: The biological properties of thiosemicarbazone have been widely reported. The incorporation of some
transition metals such as Fe, Ni and Cu to thiosemicarbazone complexes is known to enhance its biological effects. In this
study, we incorporated nickel(II) ions into thiosemicarbazone with N4-substitution groups H3L (H; H3L1, CH3; H3L2, C6H5;
H3L3 and C2H5; H3L4) and examined its potential anti-inflammatory activity.

Methodology/Principal Findings: Four ligands (1–4) and their respective nickel-containing complexes (5–8) were
synthesized and characterized. The compounds synthesized were tested for their effects on NF-kB nuclear translocation,
pro-inflammatory cytokines secretion and NF-kB transactivation activity. The active compound was further evaluated on its
ability to suppress carrageenan-induced acute inflammation in vivo. A potential binding target of the active compound was
also predicted by molecular docking analysis.

Conclusions/Significance: Among all synthesized compounds tested, we found that complex [Ni(H2L1)(PPh3)]Cl (5)
(complex 5), potently inhibited IkBa degradation and NF-kB p65 nuclear translocation in LPS-stimulated RAW264.7 cells as
well as TNFa-stimulated HeLa S3 cells. In addition, complex 5 significantly down-regulated LPS- or TNFa-induced
transcription of NF-kB target genes, including genes that encode the pro-inflammatory cytokines TNFa, IFNb and IL6.
Luciferase reporter assays confirmed that complex 5 inhibited the transactivation activity of NF-kB. Furthermore, the anti-
inflammatory effect of complex 5 was also supported by its suppressive effect on carrageenan-induced paw edema
formation in wild type C57BL/6 mice. Interestingly, molecular docking study showed that complex 5 potentially interact
with the active site of IKKb. Taken together, we suggest complex 5 as a novel NF-kB inhibitor with potent anti-inflammatory
effects.
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Introduction

Nickel (Ni) is an essential trace element for bacteria, plants,

animals and humans. The concentration of nickel in human tissue

is relatively low (1 mg/L) compared to zinc, iron and copper

(100 mg/L) [1]. Studies to investigate the biological functions of

nickel have expanded dramatically following the discovery of

nickel as an active site metal in the jack bean urease by Zerner and

his co-workers in 1975. We now know that a number of enzymes

depend on nickel, including urease, NiFe hydrogenase, CO

dehydrogenase, acetyl-CoA synthase, methyl-Coenzyme M re-

ductase, glyoxalase I, acireductone dioxygenase, and nickel

containing superoxide dismutase [2]. These nickel-containing

enzymes are utilized in a diverse range of biological reactions

attributed to nickel’s flexibility including varied coordination

numbers, geometries and oxidation states.

Thiosemicarbazone complexes were discovered a few decades

ago and they are now attracting growing interest because of their

pharmacological properties including antiviral, antibacterial,

antimalarial [3,4] and anticancer effects [5]. Thiosemicarbazone
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compounds are the products of condensation reactions of a

suitable aldehyde or ketone with thiosemicarbazide or substituted

thiosemicarbazide at the N4 position. The biological activities of

thiosemicarbazone can be modified or enhanced by the linkage to

important metal ions such as Fe, Ni, Cu and Zn [6]. For example,

nickel complexes of thiosemicarbazone have been shown to

possess anti-proliferative activity in a few cancer cell lines [3,7,8].

Inflammation is a physiological response to injury and infectious

agents, such as viruses and microbes [9]. Studies revealed the

involvement of inflammation in the progression of various diseases,

especially cancers, which supports the hypothesis by Rudolf

Virchow that malignant cancerous cells can originate from sites of

chronic inflammation [9–11]. Transcription factor NF-kB (nuclear

factor-kappa-light-chain-enhancer of activated B cells) plays an

indispensable role in the pathogenesis of acute or chronic

inflammation [12]. The NF-kB family consists of five members,

p65 (RelA), RelB, c-Rel, p50 and p52 that associate with each

other to form homo- or heterodimeric complexes. The NF-kB

molecules are retained in cytoplasm by interaction with inhibitor

of kappa-B (IkB). Upon stimulation, IkB will be degraded and

dissociated from NF-kB, which enables NF-kB migration from the

cytoplasm into the nucleus. Once activated by ligands, such as LPS

or TNFa, NF-kB will trigger the transcription of numerous genes

involved in pro-inflammatory responses [13–17]. Thus, targeting

or inhibiting NF-kB transactivation has potential therapeutic

value, as NF-kB is the key molecule involved in inflammatory

pathogenesis.

Though the versatility binding modes of thiosemicarbazone to

nickel ion have been reported, the biological effect of various N4-

substituted groups is unknown. In the present study, four

thiosemicarbazone derivatives of 2,3-dihydroxybenzaldehyde,

differing in the substituent on N4 of the thiosemicarbazone (H;

H3L1, CH3; H3L2, C6H5; H3L3 and C2H5; H3L4), were

synthesized and their anti-inflammatory effects were examined.

We presented evidence to show that one of the synthesized

compounds potently inhibited inflammation in vitro and in vivo.

Materials and Methods

Synthesis of thiosemicarbazone ligands and complexes
Triphenylphosphine was purchased from Merck, nickel(II)

[Ni(II)] chloride hexahydrate, potassium thiocyanate was from

Sigma-Aldrich and reagents were of analytical grade and used

without further purification. [NiCl2(PPh3)2] was prepared accord-

ing to the published procedure [18]. The thiosemicarbazone

ligands H3L(1–4) were prepared following the published proce-

dure [19] by reaction of 2,3-dihydroxybenzaldehyde with

thiosemicarbazide (H3L1; ligand 1), 4-methyl-3-thiosemicarbazide

(H3L2; ligand 2), 4-phenyl-3-thiosemicarbazide (H3L3; ligand 3)

and 4-ethyl-3-thiosemicarbazide (H3L4; ligand 4) in a 1: 1 molar

ratio, under standard reflux conditions. Complexes (5–8) were

synthesized according to the published works [20,21]. Complexes

[Ni(H2L1)(PPh3)]Cl (5), [Ni(H2L2)(PPh3)] (6), [Ni(HL3)(PPh3)] (7)

and [Ni(HL4)(PPh3)] (8) were also named as complex 5, 6, 7 and 8
below. For biological testing, stock solutions (10 mg/ml) of these

compounds were prepared in 10% v/v aqueous dimethylsulfoxide

(DMSO) (Fisher chemicals).

IR and NMR spectra measurements
Infrared (IR) spectra were recorded as KBr pellets in the

frequency range of 400–4000 cm21 by using a Perkin-Elmer

Spectrum RX-1 spectrophotometer. Nuclear magnetic resonance

(NMR) spectra were recorded in deuterated DMSO-d6 on ECA

400 MHz instrument. Elemental analyses were performed on a

Pelkin-Elmer Analyst 400.

X-ray crystallography
Recrystallization of complex [Ni(HL3)(PPh3)] (7) from a mixture

of dimethylformamide/ethanol afforded plate purple crystals

whereas block red crystals of the complex [Ni(HL4)(PPh3)] (8)

were obtained from its methanol mother liquor. Data were

collected on a Bruker SMART APEX CCD area detector

diffractometer, equipped with a highly-oriented pyrolytic graphite

crystal incident beam monochromator and a molybdenum Ka
(l= 0.71073 Å). The APEX2 software was used for data

acquisition and the SAINT software for cell refinement and data

reduction [22]. SADABS software was used for Absorption data

corrections [23]. The structures were solved and refined by

SHELXL97 package [24]. Molecular graphics were drawn by

using ORTEP [25].

Cell culture
RAW264.7, HeLa S3 and K562 cells were purchased from

ATCC. KCL22 cells was as previously described [26].

RAW264.7, K562 and KCL22 cells were cultured in RPMI,

while HeLa S3 and 293T-luc cells were cultured in DMEM. Both

media were supplemented with 10% fetal bovine serum, penicillin

G (100 mg/ml), and streptomycin (100 mg/ml). Cells were

maintained at 37uC with 5% CO2 in a humidified incubator.

Cell proliferation assay
A total number of 1.06104 cells per well were seeded into a 96-

well plate and incubated overnight at 37uC in 5% CO2. The next

day, the cells were treated with a two-fold serial dilution of

compounds. MTT assays were performed as described [27]. After

48 h, (4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazoliumbromide)

was added at 2 mg/ml. After 3 h of incubation at 37uC in 5%

CO2, DMSO was added to dissolve the formazan crystals. The

plates were then read in Chameleon multitechnology microplate

reader (Hidex, Turku, Finland) at 570 nm absorbance. The ratio

of the absorbance of treated cells to the absorbance of DMSO-

treated control cells was determined as percentage cell viability.

The concentration of compounds which resulted in a 50%

reduction in viability was defined as the IC50.

ORAC antioxidant assay
ORAC assay was performed based on reported procedures [28]

with slight modifications. Chemicals used such as fluorescein

sodium salt, AAPH (2,29-Azobis(2-methylpropionamidine) dihy-

drochloride), quercetin dehydrate and trolox ((6)-6-Hydroxy-

2,5,7,8-tetramethylchromane-2-carboxylic acid) were purchased

from Sigma-Aldrich. Compounds were diluted to a final concen-

tration of 100 mg/ml, with total reaction volume of 200 ml. The

assay was performed in a 96-well black microplate, with 25 ml of

samples, standard (trolox), blank (solvent/PBS) or positive control

(quercetin). Subsequently, 150 ml of working fluorescein solution

was added to each well. The plate was incubated at 37uC for at

least 5 min. Then, 25 ml of AAPH working solution was then

added to the wells to make a total volume of 200 ml. Fluorescence

was read in Chameleon multitechnology microplate reader

(Hidex, Turku, Finland) with excitation wavelength of 485 nm

and emission wavelength of 538 nm. Data were collected every

2 min for a duration of 2 h, and were analyzed by calculating the

differences of area under fluorescence decay curve (AUC) of

samples and blank. The values were expressed as Trolox

equivalent (TE).
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Figure. 1. Chemical structures of thiosemicarbazone complexes. (A) 2,3-dihydroxybenzaldehyde –N4-subsituted thiosemicarbazone, the
backbone structure of the complexes. (B) Chemical structures of thiosemicarbazone complexes with N4 substituted with –H, -CH3, - C6H5 and -C2H5

groups. These complexes were regarded as ligands. (C) Chemical structures of ligands with additional triphenyl phosphine group as coligand.
doi:10.1371/journal.pone.0100933.g001

Figure 2. Crystal structures of two of the complexes. (A) ORTEP diagram for complex [Ni(HL3)(PPh3)] (7). (B) ORTEP diagram for compound
[Ni(HL4)(PPh3)] (8).
doi:10.1371/journal.pone.0100933.g002
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Immunofluorescence staining
NF-kB Activation Kits (Thermo Scientific) were used as

previously described [29]. Cells were pretreated with compounds

for 4 h before being stimulated with lipopolysaccharide (LPS)

ortumour necrosis factor a (TNFa) for 1 h. Cells were then fixed

and permeabilized before probing with NF-kB p65 antibody for

1 h. Staining solution (containing DyLight 488 Goat Anti-Rabbit

and Hoechst dye) was then added and incubated for 1 h. The plate

with stained cells was evaluated using a Cellomics ArrayScan HCS

Reader (Cellomics, PA, USA). Data were captured, extracted and

analyzed with ArrayScan II Data Acquisition and Data Viewer

version 3.0 (Cellomics).

Immunoblot analysis
Cells were pretreated with or without of complex 5 (25 mg/ml

or 50 mg/ml) for 4 h before treatment with LPS (10 ng/ml) or

TNFa (10 ng/ml), for the indicated times. The cytoplasmic

extracts were prepared by using the hypotonic lysis buffer (10 mM

Tris, pH 7.5; 1.5 mM MgCl2; 10 mM KCl; 0.5 mM DTT;

0.5 mM PMSF; 16 Protease Inhibitor, 0.1% NP40) followed by

incubation on ice for 20 min and centrifugation at 3k rpm at 4uC
for 10 min. The supernatants were collected as cytoplasmic

extracts. The nuclear pellets were resuspended in the whole cell

lysis buffer (25 mM Tris, pH7.5; 420 mM NaCl; 1.5 mM MgCl2;

0.2 mM EDTA; 25% Glycerol; 0.5 mM DTT; 0.5 mM PMSF;

16 Protease Inhibitor). The nuclear extracts were then collected

by centrifugation at 15 krpm at 4uC for 10 min. Immunoblotting

was performed using antibodies against PARP (F-2, N-20),

HSP90a (C-20), p65 (C-20), IkBa (C-21) and p-IkBa from Santa

Cruz Biotech.

Quantitative PCR analysis
Cells pretreated with or without of complex 5 for 4 h were

incubated with LPS or TNFa for 4 h. Total RNAs were isolated

with Thermo Scientific GeneJET RNA Purification Kit. Compli-

mentary DNAs were synthesized and Quantitative PCR was

performed with 26 SYBR Green PCR Master mix (Thermo

Scientific) and run on the Bio-Rad CFX 96 Real-Time PCR

System. All data were then normalized to L32. The sequences of

the primers are listed in Supporting Information Table S1.

Luciferase reporter assay
293T cells were transduced with a lentivirus carrying luciferase

reporter driven by NF-kB enhancer found in immunoglobulin

kappa light chain gene to prepare 293T-luc cells. The 293T-luc

cells were pretreated with or without of complex 5 (12.5 mg/ml,

25 mg/ml, 50 mg/ml) for 4 h. The cells were later stimulated with

TNFa (10 ng/ml) for 12 h. Cells were scraped, collected into

1.5 ml tubes and centrifuged at 1.5 k rpm 4uC for 5 min before

removing the culture medium. Cell pellets were resuspended in

50 ml luciferase lysis buffer (100 mM Sodium Phosphate buffer,

pH7.8; 8 mM MgCl2; 1% Triton X-100; 15% glycerol; 1 mM

DTT). A total volume of 50 ml of luciferase substrate (containing

1 mM ATP; 0.25 mM luciferin; 1% BSA) was added to each well

on a white 96-well plate containing 20 mg lysate. Luciferase

activity was measured in 96-well plate with a VarioskanFlash

microplate reader (Thermo Scientific).

In vivo inflammatory assay
Male C57BL/6 mice at age 8–12 weeks old were from Jackson

Laboratories, USA. Mice were administrated intraperitoneally

(i.p.) with two different doses of complex 5 (2.5 mg/kg and 5 mg/

kg). Negative control groups were i.p. injected with 200 ml of
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vehicle (50% v/v ethanol). A standard drug 2 mg/kg dexameth-

asone (Sigma) was included in the study. After 1 h, paw edema was

induced by injecting 50 ml of 1% carrageenan (Sigma) through the

plantar tissue at the right hind paw of each mouse. The thickness

of right paw of each mouse was measured at 1, 3 and 5 h after

carrageenan was administered. Four animals per group were

tested (n = 4). Quantification of right hind paw thickness were

analyzed for statistical significance using Student’s t-test. Animals

were housed in individually ventilated cages in specific pathogen

free facility, Animal Experimental Unit, University of Malaya. All

efforts were made to minimize animal suffering and the number of

animals used. At the end of the experiment, mice were euthanized

by CO2 asphyxiation. Animal work was approved by the Faculty

of Medicine Animal Care and Use Committee (FOMIACUC) at

University of Malaya and reported according to ARRIVE

guidelines.

Molecular docking
GOLD (v 5.1; Genetic Optimization for Ligand Docking) [30]

was used to dock compounds into IkB kinase b (IKKb). The

bound inhibitor (compound 1) was used to indicate the binding site

(all protein atoms within 5.0 Å) within the kinase domain of IKKb
(PDB 3RZF) [31]. The crystal structure of IKKb was treated by

Amber 12 with amber ff12SB force field and all hydrogen atoms

were added. GOLD was used to dock each ligand 10 times,

starting each time from a different random population of ligand

orientations and using the default automatic genetic algorithm

parameter settings. All torsion angles in each compound were

allowed to rotate freely. For the bound Ni atom, Zn was

substituted as the best surrogate for Ni [32].

Results

Spectroscopic characterization
Four complexes and four respective ligands were synthesized

and the chemical structures were as depicted (Figure 1). The most

Table 2. Selected bond lengths (Å) and angles (u) for complex 8.

Bond lengths Bond angles

Ni1—O1 1.8510(12) O1—Ni1—N1 94.93(6)

Ni1—N1 1.8961(14) O1—Ni1—S1 173.72(4)

Ni1—P1 2.2059(5) N1—Ni1—S1 87.03(4)

Ni1—S1 2.1488(5) O1—Ni1—P1 88.61(4)

S1—C8 1.7529(18) N1—Ni1—P1 171.55(4)

P1—C17 1.8176(17) S1—Ni1—P1 90.261(18)

P1—C11 1.8264(18) C8—S1—Ni1 95.92(6)

P1—C23 1.8249(17) C7—N1—N2 112.62(14)

O1—C2 1.321(2) C7—N1—Ni1 125.76(12)

O2—C3 1.368(2) N3—C8—S1 118.33(13)

O2—H1 0.8400 N2—C8—S1 123.33(13)

N1—C7 1.297(2) N2— C8— N3 118.32(16)

N1—N2 1.400(2) C17— P1 —Ni1 114.97(6)

N2—C8 1.299(2) C11 —P1 —Ni1 114.64(6)

N3—C8 1.359(2) C23 —P1— Ni1 112.34(6)

doi:10.1371/journal.pone.0100933.t002

Table 3. Cell proliferation assay.

RAW264.7 HeLa S3

Complex IC50 (mg/ml) Complex IC50 (mg/ml)

H3L1 (1) 22.8461.67 H3L1 (1) .100

H3L2 (2) 27.8460.96 H3L2 (2) .100

H3L3 (3) 31.4861.82 H3L3 (3) .100

H3L4 (4) 19.3761.07 H3L4 (4) 87.1961.81

[Ni(H2L1)(PPh3)]Cl (5) 28.6362.24 [Ni(H2L1)(PPh3)]Cl (5) 29.3161.10

[Ni(H2L2)(PPh3)]Cl (6) 37.7363.62 [Ni(H2L2)(PPh3)]Cl (6) 77.5561.56

[Ni(HL3)(PPh3)] (7) 42.4464.17 [Ni(HL3)(PPh3)] (7) .100

[Ni(HL4)(PPh3)] (8) 56.3163.86 [Ni(HL4)(PPh3)] (8) .100

IC50 values of Ni(II) thiosemicarbazone ligands and their Ni(II)-phosphine complexes on RAW 264.7 cells and HeLa S3 cells at 48 h treatment.
doi:10.1371/journal.pone.0100933.t003
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significant IR bands for nickel(II) phosphine mixed complexes

of 2,3-dihydroxybenzaldehyde-N4-subsituted thiosemicarbazone

were collected with their tentative assignments (Table 1). The

crystal structures of complexes 5 and 6 have been described

previously [20,21]. The title complexes 7 and 8 crystallized into

orthorhombic crystal system. The molecular structures of

[Ni(HL3)(PPh3)] (7) and [Ni(HL4)(PPh3)] (8) were as shown

(Figure 2A and 2B), while the selected bond lengths and bond

angles were as summarized (Table 2).

Cytotoxic effect of nickel complexes of
thiosemicarbazone

To examine whether synthesized Ni(II) thiosemicarbazone

ligands or Ni(II)-phosphine complexes were cytotoxic, we treated

RAW264.7 (leukemic monocyte macrophage) and HeLa S3

(cervical adenocarcinoma) cells with these compounds for 48 h.

The cell viability was determined with MTT assays [33]. These

compounds exerted low to moderate cytotoxicity on RAW264.7

cells with an IC50 ranging from 19.37 to 56.31 mg/ml (Table 3).

The proliferation of HeLa S3 cells was unaffected by most of the

compounds, with IC50 more than 100 mg/ml, suggesting better

tolerability to these compounds in HeLa S3 cells.

Complex 5 efficiently inhibits LPS-induced NF-kB
translocation

To investigate the anti-inflammatory effect, we treated

RAW264.7 cells with Ni(II) thiosemicarbazone ligands or Ni(II)-

phosphine complexes before stimulating them with LPS (a potent

inducer and activator of NF-kB). NF-kB acts as a central mediator

of inflammatory responses and compounds that inhibit NF-kB

activation are potential anti-inflammatory agents. To evaluate this,

we performed immunofluorescence staining of NF-kB p65. In the

absence of LPS, we showed that NF-kB p65 remained in the

cytoplasm of RAW264.7 cells (Figure 3). In response to LPS

stimulation, NF-kB p65 translocated from cytoplasm into the

nucleus, implying NF-kB activation (Figure 3). Next, we tested all

compounds using this model and found that complex 5 efficiently

inhibited LPS-mediated NF-kB p65 nuclear translocation at

25 mg/ml (Figure 3). Of note, the ligand of complex 5 (Ligand

1, H3L1) and other compounds did not affect NF-kB translocation

at similar concentration. Moreover, we observed that complex 6–8
required higher concentration (.50 mg/ml) to elicit similar

inhibitory effect (data not shown).

Complex 5 inhibits NF-kB translocation by interrupting
IkB degradation

Next, complex 5 was chosen for subsequent mechanistic study

due to its potent inhibitory effect on NF-kB p65 nuclear

translocation. In the absence of stimulant, IkBa forms a complex

with NF-kB p65 in the cytoplasm. Upon activation by LPS, the

degradation of IkBa enables nuclear translocation of p65. To

examine the status of IkB in the presence of complex 5, we

pretreated RAW264.7 cells with complex 5 or DMSO for 4 h

before incubating with LPS for various time periods. Cytoplasmic

Figure 3. Effect of N4-substituteted thiosemicarbazone complexes on LPS-induced NF-kB nuclear transloction in RAW264.7
macrophage cells. Staining of Hoechst (nucleus) and NF-kB in RAW264.7 cells. Cells were pre-treated with 25 mg/ml of compounds for 4 h,
followed by LPS stimulation for 1 h.
doi:10.1371/journal.pone.0100933.g003
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and nuclear extracts were separated and analyzed with immuno-

blotting using anti-IkBa and anti-p65 antibodies (Figure 4A and

4B). After 15 min of LPS stimulation, we observed degradation of

IkBa in the cytoplasm. This occurred in conjunction with the

translocation of p65 into the nucleus in control cells. Pre-treating

the cells with complex 5 inhibited both IkBa degradation and p65

nuclear translocation in response to LPS stimulation. The

separation of cytoplasmic and nuclear extracts was verified with

immunoblotting using antibodies against PARP (a nuclear protein)

and HSP90 (a cytoplasmic protein). Taken together, these results

suggest that complex 5 attenuates LPS-induced activation of NF-

kB by inhibiting IkBa degradation.

Complex 5 inhibits TNFa-induced NF-kB translocation in
HeLa S3 cells

To examine whether complex 5 blocks the activation of NF-kB

by another agonist, similar experiments were performed on HeLa

S3 cells induced with TNFa. Similar to LPS-treated RAW264.7

cells, TNFa-induced translocation of NF-kB p65 in HeLa S3 cells

(Figure 5A). Pretreatment of HeLa S3 cells with a very low

concentration of complex 5 (6.25 mg/ml) significantly blocked

TNF-induced translocation of NF-kB. Moreover, biochemical

fractionation showed that pre-treating HeLa S3 cells with complex

5 dramatically reduced IkBa degradation and p65 translocation in

response to TNFa stimulation (Figure 5B and 5C). In addition, we

found that TNF-induced phosphorylation of IkBa was inhibited

Figure 4. Complex 5 blocks LPS-induced NF-kB nuclear translocation by inhibiting IkBa degradation. (A) RAW264.7 cells pretreated with
or without complex 5 for 4 h were treated with LPS for the indicated time points. Cytoplasmic and nuclear extracts were prepared and were
subjected to Western blot analysis with IkBa, p65, HSP90 and PARP antibodies. (B) Relative density of IkBa and p65. Western blot signal intensities
were quantified using ImageJ software. Densities were normalized to 0 min DMSO.
doi:10.1371/journal.pone.0100933.g004
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by complex 5 (Figure 5D). TNF stimulation induced a rapid

phosphorylation of IkBa in DMSO treated cells (within 5

minutes). Pretreating cells with complex 5 completely abolished

TNF-mediated phosphorylation of IkBa, thus protecting IkBa
from TNF-induced degradation.

Complex 5 blocks NF-kB transactivation activity
To test if complex 5 inhibits NF-kB-mediated gene expression,

we cultured RAW264.7 cells with or without complex 5 for 4 h

before treating the cells with LPS for 4 h. Cells were collected for

RNA isolation and real time PCR analysis (Figure 6A). Our results

showed that LPS-induced expression of NF-kB target genes,

TNFa, IFNb, IL6 and IP10 was abolished following pretreatment

of the cells with complex 5.

In addition, we investigated the effect of complex 5 on NF-kB-

mediated gene expression in response to TNFa stimulation in

human HeLa S3 cells. We treated HeLa S3 cells with complex 5
for 4 h before TNFa treatment for 4 h. A marked decrease in the

expression of NF-kB target genes, including IL8, TNFa, IL6,

ICAM1, CCL5 and A20, was observed in complex 5-treated cells

compared to control (Figure 6B). Similar results were obtained in

two CML cell lines, K562 and KCL22 (Figure 6C). Furthermore,

we showed that complex 5 inhibited TNF-induced expression of

COX-2 in a dose dependent manner (Supporting Information

Figure S1). Taken together, these results suggest that complex 5
attenuates both LPS- and TNFa-induced transcription of NF-kB

regulated genes associated with inflammatory response.

To examine whether complex 5 could inhibit NF-kB transacti-

vation activity, we performed luciferase reporter assay using 293T-

luc cell line stably transduced with a promoter containing NF-kB

elements-driven luciferase reporter gene (Figure 6D). The cells

were pretreated with complex 5 for 4 h, followed by TNFa for

12 h before measuring the luciferase activities. Our data showed

that the luciferase activity was induced 8-fold by TNFa stimulation

in control cells. Whereas treating the cells with complex 5
significantly reduced the luciferase activity in a dose-dependent

manner (Figure 6D), indicating that complex 5 efficiently inhibits

NF-kB transactivation activity.

Complex 5 suppresses acute inflammation in vivo
Next, we examined the anti-inflammatory effects of complex 5

in a carrageenan-induced paw edema mouse model. We first

Figure 5. Complex 5 blocks TNFa-induced NF-kB nuclear translocation. Complex 5 inhibits TNFa -induced NF-B nuclear translocation. (A)
NF-kB activation assay on TNFa treated HeLa S3 cells. Staining of Hoechst (nucleus) and NF-kB in HeLa S3 cells. Cells were pre-treated with 25 mg/ml
of Ligand 1 and Complex 5 for 4 h, followed by TNFa stimulation for 1 h. (B) HeLa S3 cells pretreated with or without complex 5 for 4 h were
incubated with TNFa for the indicated time points. Cytoplasmic and nuclear extracts were prepared and were subjected to western blot analysis with
IkBa, p65, HSP90 and PARP antibodies. (C) Relative density of IkBa and p65. Western blot signal intensities were quantified using ImageJ software.
Densities were normalized to 0 min DMSO. (D) HeLa S3 cells pretreated with or without complex 5 for 4 h were incubated with TNFa for the
indicated time points. Whole cell extracts were prepared and were subjected to western blot analysis with IkBa, p-IkBa and PARP antibodies.
doi:10.1371/journal.pone.0100933.g005
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tested the acute toxicity effect of complex 5 in C57BL/6 mice. All

tested mice displayed no overt abnormalities during a 14 day

observation period. Renal and liver functional tests suggested that

a low amount of complex 5 up to 125 mg/kg or 250 mg/kg was

safe for consumption, but a higher concentration at 500 mg/kg

may be cytotoxic to the host (Supporting Information Table S2

and S3).

To test the in vivo inhibitory effect of complex 5 on

inflammation, we administrated two doses of complex 5
(2.5 mg/kg and 5.0 mg/kg) into C57BL/6 wild type mice through

i.p. injection. For a positive control, we performed i.p. injection of

2.0 mg/kg dexamethasone into the mice. After 1 h, paw edema in

the mice was induced by injecting 1% carrageenan to the right

hind paw. The paw sizes were measured at 1, 3 and 5 h after

edema induction. The edema formation at the mice paw was due

to inflammatory response causing the accumulation of histamine,

serotonin, prostaglandin and other secreted inflammatory medi-

ators. From visual observation, the group of mice administrated

with 5.0 mg/kg complex 5 demonstrated obvious reduction of

paw edema formation (Figure 7A). One hour after induction of

inflammation, paw size in control mice increased to 7.360.8 mm.

In mice preinjected with 2.5 mg/kg or 5.0 mg/kg of complex 5,

we observed a reduction of paw size to 5.860.4 mm and

5.060.2 mm, respectively. This was comparable to the paw size

(4.660.4 mm) in mice pretreated with standard drug, dexameth-

asone (Figure 7B). At 3 and 5 h post carrageenan administration,

paw edema was further reduced in complex 5-treated mice

compared to untreated mice, supporting the ability of complex 5
to suppress acute inflammation in vivo.

Complex 5 does not function as an anti-oxidant
The association between inflammation and reactive oxygen

species (ROS) has been demonstrated by a previous study [34].

ROS may amplify inflammatory responses via up-regulation or

activation of certain genes/transcription factors, such as NF-kB.

Several reports have suggested the possible antioxidant capacity of

some transition metals such as copper and iron [35,36]. Therefore,

we conducted ORAC assays to investigate the antioxidant capacity

of complex 5. The ORAC assay uses peroxyl radical as pro-

oxidant and the antioxidant activity is quantified via area under

curve (AUC) [37]. We included quercetin, a known antioxidant, as

a positive control. We found that complex 5, as well as the other

nickel-containing complexes synthesized exhibited low antioxidant

activity compared to quercetin (Table 4), indicating that these

Figure 6. Complex 5 inhibits NF-kB transactivation activity. (A) RAW264.7 cells pretreated with or without complex 5 for 4 h were treated
with LPS for 4 h. The expression of TNFa, IFNb, IL6 and IP10 were measured by QPCR. (B) HeLa S3 cells pretreated with or without complex 5 for 4 h
were stimulated with TNFa for 4 h. The expression of TNFa, IL8, CCL5, ICAM1, IL6 and A20 were measured by QPCR. (C) K562 or KCL22 cells pretreated
with or without 50 mg/ml of complex 5 for 4 h were stimulated with 100 ng/ml TNFa for 2 h. The expression of IL8 and TNF were measured by QPCR.
(D) 293T-luc reporter cells pretreated with or without various concentrations of complex 5 were stimulated with TNFa for 12 h. Cell lysates were
prepared and the luciferase activities were measured. Error bars represent the variation range of duplicate experiments. Asterisks represents statistical
significance by Student’s t-test (*P,0.05).
doi:10.1371/journal.pone.0100933.g006
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compounds have little or no antioxidant activity. Therefore, we

suggest that complex 5 does not function as an antioxidant as it is

not a potent ROS scavenger.

Complex 5 docks to active site of IKKb
To further understand the mechanism of complex 5 mediated

inhibition of NF-kB activation, we reasoned that degradation of

IkB to activate NF-kB can be achieved by the upstream activation

of IKK kinases [14]. To give some further clues as to whether

complex 5 might inhibit IKK kinases, complex 5 was docked to

IKKb, for which the crystal structure is available [31]. Complex 5
was successfully docked into the kinase domain of IKKb and the

triphenylphosphine docked deep into the active site (Figure 8A).

The alignment of complex 5 and a previously known inhibitor

[31], showed a good overlay and potentially mimics the molecular

interactions of the inhibitor (Figure 8B). Based on this docking

pose (Figure 8C), we can speculate that the triphenylphosphine is

‘‘locked’’ deeply into the binding site and have hydrophobic

interactions with surrounding residues. The hydrophilic side chain

of complex 5 points outside the binding site and forms one

hydrogen bond with TYR98. This docking pose gives a possible

explanation as to why those compounds without triphenylpho-

sphine have poor biological activities. Further, complexes 6 to 8
contain larger hydrophobic side chains that would point towards

the solvent accessible area, which may preclude binding in a

similar pose.

Discussion

In the present study, we synthesized four thiosemicarbazones

derivatives of 2,3-dihydroxybenzaldehyde, differing in the substit-

uent on N4 of the thiosemicarbazone (H; H3L1, CH3; H3L2,

C6H5; H3L3 and C2H5; H3L4). We have described the synthesis,

characterization and anti-inflammatory activities of Ni(II) thio-

semicarbazone complexes with incorporated triphenylphosphine

as an auxiliary ligand. Results from spectroscopic data and crystal

Figure 7. Complex 5 suppresses acute inflammatory responses in vivo. Male C57BL/6 mice at age of 8-12 weeks old were non-injected or
injected i.p. with 2.5 mg/kg or 5.0 mg/kg complex 5, whereas for positive controls, mice were injected i.p. with 2.0 mg/kg dexamethasone. After 1 h,
acute inflammation was induced in the right hind paw of each mice by injecting 50 ml of carrageenan. The size of the paw were measured after (A)
1 h or, (B) 1, 3 and 5 h post carrageenan injection. Shown were mean 6SD (n = 4). Statistical analysis was performed with Student’s t-test. At 1 h post-
carrageenan induction, control versus 2.5 mg/kg complex 5 (P,0.05), control versus 5.0 mg/kg complex 5 (P,0.01), and control versus 2.0 mg/kg
dexamethasone (P,0.01).
doi:10.1371/journal.pone.0100933.g007

Table 4. ORAC assay.

Complex mM TE per 100 mM

H3L1 (1) 5.1860.05

H3L2 (2) 8.2360.43

H3L3 (3) 9.7160.77

H3L4 (4) 7.5461.61

[Ni(H2L1)(PPh3)]Cl (5) 10.5660.17

[Ni(H2L2)(PPh3)]Cl (6) 15.6560.89

[Ni(HL3)(PPh3)] (7) 9.3761.14

[Ni(HL4)(PPh3)] (8) 13.3461.49

Quercetin 24.4160.35

Antioxidant capacity of Ni(II) thiosemicarbazone ligands and their Ni(II)-
phosphine complexes by ORAC assay.
doi:10.1371/journal.pone.0100933.t004
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structure analysis showed that these four complexes are coordi-

nated with the ONS tridentate thiosemicarbazone ligand bounded

to Ni(II) through phenolic oxygen, azomethine nitrogen and

thiolate/thione sulfur. Of note, we found that the N4-substituted

groups on the thiosemicarbazone moiety may influence both the

coordination mode of thiosemicarbazone to Ni(II) and their

inhibitory effect on NF-kB translocation.

The biological activities of the Ni(II) complexes are possibly

influenced by the type of N4 substituents as well as the presence of

co-ligands. Our findings suggested that ligands 1 to 4 demon-

strated very little effect on the blockage of LPS-mediated nuclear

translocation of NF-kB in RAW264.7 cells compared to

complexes 5 to 8, indicating the importance of co-ligands in

mounting the inhibitory activity. Among the synthesized com-

plexes 5, 6, 7 and 8, interestingly, only complex 5 showed a

marked inhibition of NF-kB translocation. The inhibitory activity

of complex 5 could be related to the square planar geometry,

which is coordinately unsaturated. Further details on the

compounds were as provided (Supporting Information Discussion

S1). Based on the findings, we observed that the inhibition

efficiency of Ni(II) complexes with 2,3-dihydroxybenzaldehyde

N4- thiosemicarbazone in the presence of auxiliary ligand can be

arranged according to the substituents on N4 of the thiosemicar-

bazone moiety as phenyl , C2H5 , CH3 ,H. The higher

inhibition efficiency by complex 5 may be attributed to the less

steric hindrance between the unsubstituted N4- thiosemicarbazone

with its potential interactive target such as IKKb as demonstrated

in this study.

MTT cell viability assays showed that compounds 1–8 were

relatively less cytotoxic to RAW264.7 and HeLa S3 cells (IC50.

15 mg/ml), as compared to the US National Cancer Institute

recommended guideline for pure compound (IC50,4 mg/ml) [38].

In fact, as low as 6.25 mg/ml of complex 5 is sufficient to prevent

TNFa-induced NF-kB nuclear translocation after 4 h treatment in

HeLa S3 (cell viability still remained .90%), indicating that the

inhibition effect was not due to cell death or apoptosis.

Importantly, complex 5 did not showed significant cell growth

inhibition on primary Human Umbilical Vein Endothelial Cells

(HUVEC), with IC50.80 mg/ml, indicating less cytotoxicity

towards normal cells. Further acute toxicity test in C57BL/6

mice showed that complex 5 could be well tolerated up to

250 mg/kg. Of note, we observed that 5 mg/kg of complex 5
effectively reduced carrageenan-induced paw edema formation,

supporting the notion that complex 5 is a potential anti-

inflammatory agent, consistent with the in vitro experiments using

cell lines.

In response to inflammatory stimulants, such as LPS and TNFa,

cells could mount immune responses through the activation of NF-

kB, a key transcription factor that regulates innate and adaptive

immune responses. NF-kB is a transcription factor whose activity

is regulated mainly by its nuclear translocation. In resting cells,

NF-kB is sequestered in the cytoplasm through its association with

IkBa. In response to stimuli, such as proinflammatory cytokines

and pathogen-associated molecules, IkBa is phosphorylated by

IKKb and degraded by ubiquitin-proteasome. Degradation of

IkBa released NF-kB and enabled its translocation into the

nucleus to activate multiple inflammatory-associated genes [14].

Among the NF-kB target genes examined, TNFa, IFNb, IL6 and

IL1b are pro-inflammatory cytokines that exacerbates inflamma-

tory responses. CCL5 (Rantes), IL8 (CXCL8), and IP10

(CXCL10) functions as chemoattractant for other immune cells

while ICAM is ligand for LFA-1 integrin that promotes leukocyte

adhesion to endothelial cells and transmigration into tissue. A20

(TNFAIP3) is a ubiquitination-associated protein which plays an

important role in the NF-kB pathway activation. Our study

showed that complex 5 treatment could block NF-kB nuclear

Figure 8. Molecular docking of complex 5 to IKK complex. (A) The binding of complex 5 in the kinase domain of IKKb. The protein is
represented by the protein surface and complex 5 in a stick model. (B) The overlay of complex 5 and inhibitor (compound 1 [30]). The inhibitor is
represented by a balls and sticks model and complex 5 by a sticks model, in which the Nickel is colored in orange, nitrogen is colored in blue, oxygen
is in red, carbon is in grey, sulphur is in green, hydrogen in white and phosphate is in purple. (C) The interaction between complex 5 and the binding
site. One hydrogen bond is formed between complex 5 and TYR98, which is indicated by a green dotted line.
doi:10.1371/journal.pone.0100933.g008
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translocation and attenuate the expression of these proinflamma-

tory genes after TNFa or LPS stimulation, further supporting its

potential role as an anti-inflammatory agent.

To understand the underlying inhibitory mechanism, we

performed cytoplasmic/nuclear fractionation and Western blot-

ting. Results showed that both TNFa- and LPS-induced IkBa
protein degradation was blocked in the presence of complex 5,

suggesting that complex 5 impaired the upstream signaling

pathway that involves the IKK kinase complex. Activated IKK

complex phosphorylates and promotes the degradation of IkB,

thus enables nuclear translocation of NF-kB. Using molecular

docking, we demonstrated potential interactions between complex

5 and the active site of IKKb in a manner that mimics the

interactions with a known inhibitor [31]. In this position, the

triphenylphosphine appears to bind deep with the hydrophilic side

chain of complex 5 pointing outside the binding site, forming one

hydrogen bond with TYR98, which gives a possible explanation as

to why those compounds without triphenylphosphine or that

contain larger hydrophobic side chains have poor biological

activities. Thus, we propose that interaction of IKKb with

complex 5 could reduce LPS- or TNFa-mediated IkBa degrada-

tion, which subsequently blocked NF-kB nuclear translocation.

In conclusion, we found that complex 5 efficiently blocked

TNF- or LPS-induced NF-kB nuclear translocation compared to

other tested compounds. This resulted in lower transcriptional

activity, as reflected by the downregulation of pro-inflammatory

cytokines mRNA levels. Further in vivo studies showed that

complex 5 could suppress acute inflammation in mice. As a pilot

study, molecular docking was used to predict complex 5 binding at

the active site of IKKb, which could explain how complex 5 might

interrupt the LPS or TNFa-induced IKK/IkBa/NF-kB activation

pathway.
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